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In this paper, we study traveling waves connecting the infection-free equilibrium 
state and the endemic equilibrium state for a diffusive SIR model with delay and 
saturated incidence rate. Since this system does not enjoy the comparison principle, 
we will use an iteration process to construct a pair of upper and lower solutions. 
With the aid of the pair of upper and lower solutions, we can apply the Schauder 
fixed point theorem to construct a family of solutions of the truncated problems, 
which, via the limiting argument, can generate the traveling wave. Indeed, we show 
that there exists c∗ > 0 such that this system admits a traveling wave solution with 
speed c iff c ≥ c∗.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Traveling waves in a diffusive epidemic model have received attention by several researchers because they 
can be used to describe the state that a disease propagates spatially with a constant speed. In the biological 
context, one of the important issues is whether the traveling wave solutions exist. In this paper, we will 
study this problem for a delayed SIR model

St(x, t) = dSSxx(x, t) + μ(Λ − S(x, t)) − F (S(x, t), I(x, t− τ)), (1.1a)

It(x, t) = dIIxx(x, t) + F (S(x, t), I(x, t− τ)) − (μ + γ)I(x, t), (1.1b)

Rt(x, t) = dRRxx(x, t) + γI(x, t) − μR(x, t), (1.1c)

where dS , dI , dR, Λ, μ, γ, and τ are positive constants. Here S(x, t), I(x, t), and R(x, t) stand for the 
numbers of the susceptible, infected, and removed individuals at position x and time t, respectively, and 
the parameters dS, dI , and dR are their diffusion coefficients. The constant μΛ is the recruitment rate of 
the susceptible population, γ is the recovery rate of the infective population, μ is the natural death rate 
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for all the susceptible, the infective, and the removed population, and τ is the latent period of the disease. 
The constant Λ can be interpreted as a carrying capacity, or maximum possible population size. This model 
can be used to describe transmission of viral agent diseases such as measles, mumps, and small pox. In 
practical use, there are various types of the incidence term F (S, I). The common types include bilinear 
incidence (or mass action incidence) βSI (see, for example, [5,2,12,15]), standard incidence βSI

Λ (see, for 
example, [8]), and saturated incidence βSI

1+αI (see, for example, [3,8,9,11,13,14,17,16,18]), where β and α are 
positive constants. In this paper, we focus on the case of saturated incidence and therefore hereafter we 
assume that F (S, I) = βSI

1+αI .
Observing that the first two equations of (1.1) form a closed system and the function R can be derived as 

long as both S and I are solved, from now on we only consider (1.1a)–(1.1b). For convenience, by a change 
of variables, we rewrite (1.1) in the following form

St(x, t) = δSxx(x, t) + μ(1 − S(x, t)) − βS(x, t)g(I(x, t− τ)),

It(x, t) = Ixx(x, t) + βS(x, t)g(I(x, t− τ)) − (μ + γ)I(x, t),
(1.2)

where g(ξ) := ξ/(1 + αξ).
Note that the infection-free equilibrium state (1, 0) always exists in system (1.2). Besides, when the basic 

reproduction number R0 := β/(γ + μ) > 1, there also exists a positive endemic equilibrium state (s∗, i∗), 
where

s∗ := αμ + μ + γ

β + αμ
and i∗ := μ(β − μ− γ)

(μ + γ)(β + αμ) .

Since we are concerned with the spread of disease, we always assume that R0 > 1 throughout this paper.
By a traveling wave solution of system (1.2), we mean a solution of system (1.2) of the form

(S(x, t), I(x, t)) = (s(z), i(z)), z = x + ct,

with the boundary condition (s, i)(−∞) = (1, 0) and (s, i)(+∞) = (s∗, i∗). Here the wave speed c is a 
constant to be determined and the wave profile (s, i) ∈ C2(R) × C2(R) is a pair of nonnegative functions. 
Upon substituting the ansatz on (s, i) into (1.2), we are led to the governing system for (s, i) as follows:

δs′′(z) − cs′(z) + μ(1 − s(z)) − βs(z)g(i(z − cτ)) = 0, (1.3a)

i′′(z) − ci′(z) + βs(z)g(i(z − cτ)) − (μ + γ)i(z) = 0 (1.3b)

on R, together with the boundary conditions

(s, i)(−∞) = (1, 0), (s, i)(+∞) = (s∗, i∗). (1.4)

Here the prime indicates differentiation with respect to z.
Linearizing (1.3b) around the point (1, 0) leads to the equation

i′′(z) − ci′(z) + βi(z − cτ) − (μ + γ)i(z) = 0,

whose characteristic equation is given by

P (λ, c) := λ2 − cλ + βe−cτλ − γ − μ = 0. (1.5)

Since R0 > 1, we obtain that P (0, c) = β − γ − μ > 0. For each fixed c > 0, we note that Pλλ(λ, c) > 0
for all λ ∈ R and Pλ(0, c) < 0. Since P (λ, 0) > 0 and Pc(λ, c) < 0 for all λ > 0, and, for any fixed λ > 0, 
P (λ, c) < 0 if c is sufficiently large, it follows that
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c∗ := sup{c > 0|P (λ, c) > 0, ∀λ ∈ R}

exists and is positive, and the equation P (λ, c∗) = 0 has a unique root, denoted by λ∗. One can easy verify 
that λ∗ is positive, and

P (λ∗, c∗) = 0 and Pλ(λ∗, c∗) = 0. (1.6)

In addition, for each c > c∗, the equation P (λ, c) = 0 has two positive roots λ1 and λ2, and P (λ, c) < 0
when λ ∈ (λ1, λ2). In the sequel, we retain the notations c∗, λ∗, λ1, λ2.

Now we are in a position to state our main result on the existence and non-existence of traveling waves 
for system (1.2) in the following theorem.

Theorem 1.1. For c ≥ c∗, system (1.3)–(1.4) admits a nonnegative solution (s, i) satisfying the following 
properties:

(i) 0 < s < 1 and 0 < i < B := β−μ−γ
α(μ+γ) over R.

(ii) As z → −∞, we have

i(z) =
{

O(eλ1z), if c > c∗,

O(−zeλ
∗z), if c = c∗.

However, for c < c∗, there exist no nonnegative solutions of system (1.3)–(1.4).

Our proof is briefly sketched as follows. To show the existence of traveling waves, our strategy is to 
construct a solution (s, i) of (1.3) on R such that it is sandwiched between the upper and lower solutions 
(s+, i+) and (s−, i−). Since (s+, i+)(−∞) = (s−, i−)(−∞) = (1, 0), we can infer that (s, i) is a nonnegative 
solution of (1.3) on R with (s, i)(−∞) = (1, 0), which serves as a candidate of a nonnegative solution 
(s, i) of system (1.3)–(1.4). Then, by constructing a Lyapunov functional and an invariant set, we use the 
Lyapunov–LaSalle Theorem to show that (s, i)(+∞) = (s∗, i∗), which confirms that (s, i) is a nonnegative 
solution of system (1.3)–(1.4).

The remaining parts of this paper are organized as follows. In Section 2, we first establish the non-existence 
of traveling waves of (1.2). Then, we construct a pair of upper and lower solutions. Finally, we derive the 
solution of truncated problem of system (1.3). In Section 3, we use a family of solutions of the truncated 
problems of system (1.3) to obtain the non-critical waves of system (1.2). Section 4 is devoted to the existence 
of critical waves of system (1.2). Finally, some auxiliary lemmas are given in Appendix A.

2. Preliminary

2.1. Non-existence of traveling waves

The non-existence of traveling waves of (1.2) is stated in the following lemma. Its proof can be easily 
obtained by following the proof of Theorem 4.3 in [16] and therefore we omit it.

Lemma 2.1. For c < c∗, there exists no nonnegative solution of system (1.3)–(1.4).

2.2. Upper and lower solutions for the case c > c∗

In this subsection, we will use an iteration process to construct a pair of upper and lower solutions of (1.3)
with c > c∗. Therefore, throughout this section, we always assume that c > c∗. Specifically, we first construct 
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the s-component of the upper solution s+, which is immediately employed to construct the i-component of 
the upper solution i+. Then i+ in turn used to generate the s-component of the lower solution s−. Finally, 
we use s− to construct the i-component of the lower solution i−. The idea of such a construction is motivated 
by [1]. To begin with, we give the definition of upper and lower solutions of (1.3).

Definition 2.1. (s+, i+) and (s−, i−) are called a pair of upper and lower solutions of (1.3) if s+, i+, s−, i−
satisfy

δ(s+)′′(z) − c(s+)′(z) + μ(1 − s+(z)) − βs+(z)g(i−(z − cτ)) ≤ 0,

δ(s−)′′(z) − c(s−)′(z) + μ(1 − s−(z)) − βs−(z)g(i+(z − cτ)) ≥ 0,(
i+

)′′(z) − c
(
i+

)′(z) + βs+(z)g(i+(z − cτ)) − (γ + μ)i+(z) ≤ 0,(
i−

)′′(z) − c
(
i−

)′(z) + βs−(z)g(i−(z − cτ)) − (γ + μ)i−(z) ≥ 0

except for finitely many points of z in R.

To construct upper and lower solutions, we set z0 := lnB/λ1, and select 0 < ν < min{c/δ, λ1} and 
0 < η < min{ν, λ1, λ2 − λ1} such that

c− δν > 0, (2.1)

λ1 − ν > 0, η − ν < 0, η − λ1 < 0, and P (λ1 + η) < 0. Then we choose

M := e−νz1 > 1, (2.2)

where z1 is a negative number such that z1 < z0 and

e(λ1−ν)z ≤ μ

β
· eλ1cτ , ∀z ≤ z1. (2.3)

Finally, we pick

L > max
{
M,−β(M + α)

P (λ1 + η)

}
, (2.4)

and set z2 = − lnL/η. Note that z2 < z1 < 0 since z1 = − lnM/ν, L > M , and η < ν.
Now we define four nonnegative continuous functions s+, s−, i+, and i− as follows:

s+(z) := 1,

s−(z) :=
{

1 −Meνz, z ≤ z1,

0, z > z1,

i+(z) :=
{

eλ1z, z ≤ z0,

B, z > z0,

i−(z) :=
{

eλ1z − Le(λ1+η)z, z ≤ z2,

0, z > z2.

It is obvious that s+(z) satisfies the inequality

δ(s+)′′(z) − c(s+)′(z) + μ(1 − s+(z)) − βs+(z)g(i−(z − cτ)) ≤ 0 (2.5)
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for all x ∈ R. In the following, we will show that (s+, i+) and (s−, i−) are a pair of upper and lower solutions 
of (1.3).

Lemma 2.2. The function i+(z) satisfies the equation

(
i+

)′′(z) − c
(
i+

)′(z) + βs+(z)g(i+(z − cτ)) − (γ + μ)i+(z) ≤ 0 (2.6)

for all z �= z0.

Proof. For z > z0, since i+(z) ≡ B in (z0, ∞) and i+(z− cτ) ≤ B, the inequality (2.6) follows from the fact 
that βg(i+(z − cτ)) − (γ + μ) · i+(z) ≤ βg(B) − (γ + μ)B = 0. For z < z0,

(
i+

)′′(z) − c
(
i+

)′(z) + βi+(z − cτ) − (γ + μ)i+(z) = P (λ1, c) · i+(z) = 0, (2.7)

which, together with s+ ≡ 1 and g(i+(z − cτ)) ≤ i+(z − cτ), implies (2.6). �
Lemma 2.3. The function s−(z) satisfies the inequality

δ(s−)′′(z) − c(s−)′(z) + μ(1 − s−(z)) − βs−(z)g(i+(z − cτ)) ≥ 0 (2.8)

for all z �= z1.

Proof. For z > z1, since s−(z) ≡ 0 in (z1, ∞), the inequality (2.8) follows. For z < z1, s−(z) = 1 −Meνz. 
By (2.3), we deduce that

μeνz ≥ βi+(z − cτ),∀z ≤ z1. (2.9)

Noting that 1 − s−(z) = Meνz, s−(z) ≤ 1, and g(i+(z− cτ)) ≤ i+(z− cτ), we can use (2.1), (2.2), and (2.9)
to deduce that

δ(s−)′′(z) − c(s−)′(z) + μ(1 − s−(z)) − βs−(z)g(i+(z − cτ))

≥ Mν(c− δν)eνz + μMeνz − βi+(z − cτ)

≥ 0.

Hence (2.8) holds. �
Lemma 2.4. The function i−(z) satisfies the inequality

(i−)′′(z) − c(i−)′(z) + βs−(z)g(i−(z − cτ)) − (γ + μ)i−(z) ≥ 0 (2.10)

for all z �= z2.

Proof. For z > z2, the inequality (2.10) holds immediately since i−(z) ≡ 0 in (z2, ∞). For z < z2, i−(z) =
i+(z) − Le(λ1+η)z and s−(z) = 1 −Meνz. A simple computation gives that

(i−)′(z) = (i+)′(z) − (λ1 + η)Le(λ1+η)z,

(i−)′′(z) = (i+)′′(z) − (λ1 + η)2Le(λ1+η)z,

and
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s−(z)g(i−(z − cτ))

≥ s−(z)i−(z − cτ)[1 − αi−(z − cτ)]

= s−(z)i−(z − cτ) − αs−(z)i−(z − cτ)2

≥ (1 −Meνz)
(
i+(z − cτ) − Le(λ1+η)(z−cτ)

)
− αe2λ1(z−cτ)

(by definition of s− and i− and the fact that s− ≤ 1 and i−(z) ≤ eλ1z)

≥ i+(z − cτ) −Me(ν+λ1)z−λ1cτ − Le(λ1+η)(z−cτ) − αe2λ1(z−cτ)

≥ i+(z − cτ) −Me(ν+λ1)z − Le(λ1+η)(z−cτ) − αe2λ1z.

Together with (2.7) and definition of P , we get

(i−)′′(z) − c(i−)′(z) + βs−(z)g(i−(z − cτ)) − (γ + μ)i−(z)

≥ e(λ1+η)z[−P (λ1 + η)L− βMe(ν−η)z − βαe(λ1−η)z]

≥ 0 (by e(ν−η)z ≤ 1, e(λ1−η)z ≤ 1, and (2.4))

The proof of this lemma is therefore completed. �
2.3. Truncated problem for the case c > c∗

In this subsection, we always assume that c > c∗ and we consider the following truncated problem

δs′′(z) − cs′(z) + μ(1 − s(z)) − βs(z)g(i(z − cτ)) = 0 in Il := (−l, l), (2.11a)

i′′(z) − ci′(z) + βs(z)g(i(z − cτ)) − (γ + μ)i(z) = 0 in Il, (2.11b)

s(z) = s−(z), i(z) = i−(z) in (−∞,−l] ∪ [l,∞), (2.11c)

where l > max{−z2, |z0|}.
For convenience, we set

X := C(R) × C(R) and Y := C1(Il) × C1(Il).

We will apply the Schauder fixed point theorem to show that there exists a pair of functions (s, i) ∈ X ∩ Y

satisfying (2.11). To begin with, we introduce the set

E := {(s, i) ∈ X| s− ≤ s ≤ s+ and i− ≤ i ≤ i+ in R},

which is a closed convex set in the Banach space X equipped with the norm ‖(f1, f2)‖X = ‖f1‖C(R) +
‖f2‖C(R). Next, we define the mapping FE → E as follows: given (s0, i0) ∈ E,

F(s0, i0) := (s, i),

where (s, i) is a pair of functions (s, i) ∈ X ∩ Y satisfying

δs′′(z) − cs′(z) + μ(1 − s(z)) − βs(z)g(i0(z − cτ)) = 0 in Il, (2.12a)

i′′(z) − ci′(z) + βs0(z)g(i0(z − cτ)) − (γ + μ)i(z) = 0 in Il. (2.12b)

s(z) = s−(z), i(z) = i−(z) in (−∞,−l] ∪ [l,∞). (2.12c)
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Obviously, any fixed point of F is a pair of functions (s, i) ∈ X ∩ Y satisfying (2.11). In the following, we 
will verify that the mapping F satisfies the conditions of the Schauder fixed point theorem.

Lemma 2.5. The mapping F is well-defined; that is, for a given (s0, i0) ∈ E, there exists a unique pair of 
functions (s, i) ∈ X ∩ Y satisfying (2.12). Moreover, s− ≤ s ≤ s+ and i− ≤ i ≤ i+ in R.

Proof. Since system (2.12) is not a coupled system and the equations (2.12a) and (2.12b) are inhomogeneous 
linear equations, the existence and uniqueness of solutions to the boundary value problem (2.12) can be easily 
obtained by [7, Theorem 3.1 of Chapter 12]. Moreover, since δs′′(z) −cs′(z) −[μ +βg(i0(z−cτ))]s(z) = −μ ≤ 0
on Il and s(±l) = s−(±l) ≥ 0, it follows from the maximum principle that s > 0 over Il. By a similarly 
way, we also deduce that i > 0 over Il.

Now it remains to show that s− ≤ s ≤ s+ in Il. Using (2.12a) and the fact that i0 ≤ i+, we deduce that

δs′′(z) − cs′(z) + μ(1 − s(z)) − βs(z)g(i+(z − cτ)) ≤ 0 in Il.

Together with (2.8), we see that the function w1 := s − s− satisfies δw′′
1 (z) − cw′

1(z) − (μ + βg(i+(z −
cτ)))w1(z) ≤ 0 in (−l, z1). In addition, from (2.12c) and the fact s(z1) > 0 and s−(z1) = 0, we know that 
w1(z1) > 0 and w1(l) = 0. Hence the maximum principle asserts that w1 ≥ 0 in (−l, z1), which implies that 
s− ≤ s in (−l, z1). Together with the fact that s− ≡ 0 ≤ s in [z1, l), we get s− ≤ s in Il. Next, we show 
that s ≤ s+ in Il. Since i0 ≥ i−, it follows that

δs′′(z) − cs′(z) + μ(1 − s(z)) − βs(z)g(i−(z − cτ)) ≥ 0 in Il.

Note that s(±l) ≤ s+(±l), we can use (2.5) and the maximum principle to get that s ≤ s+ in Il.
Finally, we claim that i− ≤ i ≤ i+ in Il. Since

s−(z)g(i−(z − cτ)) ≤ s0(z)g(i0(z − cτ)) ≤ s+(z)g(i+(z − cτ)),

it follows that

i′′(z) − ci′(z) + βs−(z)g(i−(z − cτ)) − (γ + μ)i(z) ≤ 0 (2.13)

and

i′′(z) − ci′(z) + βs+(z)g(i+(z − cτ)) − (γ + μ)i(z) ≥ 0 (2.14)

for all z in Il. Consider the function w2 = i −i−. From (2.12c) and the fact i(z2) > 0 and i−(z2) = 0, we know 
that w2(z2) > 0 and w2(−l) = 0. In addition, (2.10) and (2.13) give that w′′

2 (z) + cw′
2(z) − (γ +μ)w2(z) ≤ 0

for all z ∈ (−l, z2). Then it follows from the maximum principle that w2 ≥ 0 in (−l, z2). This implies that 
i− ≤ i in (−l, z2). Together with the fact that i− ≡ 0 ≤ i in [z2, l), we get i− ≤ i in Il. To prove i ≤ i+

on Il, we note that ī(z) := B satisfies

ī′′(z) − c̄i′(z) + βs+(z)g(̄i(z − cτ)) − (γ + μ)̄i = 0 in Il.

Since s0(z)g(i0(z − cτ)) ≤ s+(z)g(̄i(z − cτ)), it follows that

i′′(z) − ci′(z) + βs+(z)g(̄i(z − cτ)) − (γ + μ)i(z) ≥ 0 in Il.

Note that i(±l) ≤ B. Then one can easily use the maximum principle to deduce that i ≤ B in Il. Together 
with the fact that i+(z) = B in [z0, l), we get that i ≤ i+ in [z0, l). To prove i ≤ i+ in (−l, z0], we note that 
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i(−l) ≤ i+(−l) and i(z0) ≤ B = i+(z0). Together with (2.6), (2.14) and the maximum principle, we deduce 
that i ≤ i+ in (−l, z0]. Hence the proof of this lemma is completed. �

Finally, arguing as the proofs of Lemma 4.4 and Lemma 4.5 in [6] and using Lemma A.1 and Lemma A.2, 
one can verify that the mapping F is continuous and precompact. Then we can apply the Schauder fixed 
point theorem to conclude that F has a fixed point (sl, il) ∈ X ∩ Y , which is a pair of functions satisfying 
(2.11) and s− ≤ sl ≤ s+ and i− ≤ il ≤ i+ on R. From the above discussion, we have the following existence 
result for the truncated problem (2.11).

Lemma 2.6. There exists a pair of functions (sl, il) ∈ X ∩ Y satisfying (2.11). Moreover,

0 ≤ s− ≤ sl ≤ s+ ≡ 1 and 0 ≤ i− ≤ il ≤ i+ ≤ B (2.15)

on R.

3. Existence of non-critical waves

In this section, we use the solution (sl, il) of the truncated problem (2.11) and the limiting argument to 
obtain a solution (s, i) of system (1.3) satisfying (s, i)(−∞) = (1, 0). The condition that (s, i)(∞) = (s∗, i∗)
will be verified by the Lyapunov–LaSalle Theorem. Now we state the existence result for non-critical waves.

Lemma 3.1. For c > c∗, system (1.3)–(1.4) admits a nonnegative solution (s, i) with 0 < s < 1 and 0 < i < B

over R. Moreover, i(z) = O(eλ1z) as z → −∞.

Proof. Let {ln}n∈N be an increasing sequence in (z2, ∞) such that l1 > max{−z2, |z0|} and ln → ∞ as 
n → ∞, and let (sn, in), n ∈ N, be a pair of functions in X × Y satisfying (2.11) with l = ln and (2.15)
on R. For any fixed N ∈ N, since the sequences

{sn}n≥N and {in}n≥N

are uniformly bounded in [−lN , lN ], we can use Lemma A.2 to infer that the sequences

{s′n}n≥N and {i′n}n≥N

are also uniformly bounded in [−lN , lN ]. Using (2.11), we can express s′′n and i′′n in terms of sn, in, s′n and i′n. 
Differentiating (2.11), we can use the resulting equations to express s′′′n and i′′′n in terms of sn, in, s′n, i′n, s′′n
and i′′n. Consequently, the sequences

{s′′n}n≥N , {i′′n}n≥N , {s′′′n }n≥N and {i′′′n }n≥N

are uniformly bounded in [−lN , lN ]. With the aid of Arzela–Ascoli theorem, we can use a diagonal process 
to get a subsequence {(snj

, inj
)} of {(sn, in)} such that

snj
→ s, s′nj

→ s′, s′′nj
→ s′′,

and

inj
→ i, i′nj

→ i′, i′′nj
→ i′′,

uniformly in any compact interval of R as n → ∞, for some functions s and i in C2(R). Then it is easy to 
see that (s, i) is a nonnegative solution of system (1.3) and satisfies
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s− ≤ s ≤ s+ = 1 and i− ≤ i ≤ i+ ≤ B

over R. Together with definitions of s± and i±, we deduce that (s, i)(−∞) = (1, 0), and i(z) = O(eλ1z) as 
z → −∞.

Furthermore, we claim that 0 < s < 1 and 0 < i < B over R. For contradiction, we assume that i(z̃2) = 0
for some z̃2 ∈ R. Then i′(z̃2) = 0. Therefore the uniqueness gives that i ≡ 0, which contradicts the fact that 
i ≥ i− > 0 on (−∞, z2). Hence i > 0 over R. To prove s < 1 over R, we also use a contradictory argument 
and assume that s(z̃2) = 1 for some z̃2 ∈ R. In this case, s′(z̃2) = 0 and s′′(z̃2) ≤ 0. This contradicts (1.3a)
with z = z̃2. Hence s < 1 over R. By a similar way, we also have i < B over R.

Now it remains to verify that (s, i)(∞) = (s∗, i∗). To this end, we rewrite (1.3) as a system of first-order 
ODEs:

s′(z) = w(z),

δw′(z) = cw(z) + μ(s(z) − 1) + βs(z)g(i(z − cτ)),

i′(z) = y(z),

y′(z) = cy(z) − βs(z)g(i(z − cτ)) + (γ + μ)i(z). (3.16)

In the remaining of the proof, we will use the Lyapunov–LaSalle Theorem to show that (s, i)(∞) = (s∗, i∗). 
We divide the proof into several steps.

Step 1: We construct the Lyapunov functional.
Motivated by [10], we define the Lyapunov functional L by

L(s, w, i, y) = L1(s, w, i, y) + L2(s, w, i, y) + c(μ + γ)i∗L3(s, w, i, y), (3.17)

where

L1(s, w, i, y) := −
(
δw − cs− δs∗

w

s
+ cs∗ ln s

s∗

)
,

L2(s, w, i, y) := −

⎛
⎝y − ci− g(i∗) y

g(i) + cg(i∗)
i∫

i∗

1
g(σ)dσ

⎞
⎠ ,

and

L3(s, w, i, y) :=
τ∫

0

g(i(z − cθ))
g(i∗) − 1 − ln g(i(z − cθ))

g(i∗) dθ.

Along the solution χ(z) := (s(z), w(z), i(z), y(z)), where w := s′(z) and y := i′(z), we have that

d

dz
L1(χ(z)) = −δs∗

w(z)2

s(z)2 + [μ(1 − s(z)) − βs(z)g(i(z − cτ))]
(

1 − s∗

s(z)

)

= −δs∗
w(z)2

s(z)2 + [μ(s∗ − s(z)) + (μ + γ)i∗ − βs(z)g(i(z − cτ))]
(

1 − s∗

s(z)

)
(using the fact that μ = μs∗ + (μ + γ)i∗),

d

dz
L2(χ(z)) = −g(i∗)g′(i(z)) y(z)2

g(i(z))2 + [βs(z)g(i(z − cτ)) − (γ + μ)i(z)]
(

1 − g(i∗)
g(i(z))

)
,

and
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d

dz
L3(χ(z)) =

τ∫
0

d

dz

{
g(i(z − cθ))

g(i∗) − 1 − ln g(i(z − cθ))
g(i∗)

}
dθ

= −1
c

τ∫
0

d

dθ

{
g(i(z − cθ))

g(i∗) − 1 − ln g(i(z − cθ))
g(i∗)

}
dθ

= −1
c

{
g(i(z − cτ))

g(i∗) − g(i(z))
g(i∗) − ln g(i(z − cτ))

g(i(z))

}

= −1
c

{
g(i(z − cτ))

g(i∗) − g(i(z))
g(i∗) − ln s∗

s(z) − ln s(z)g(i(z − cτ))
s∗g(i(z))

}
.

Consequently,

d

dz
L(χ(z))

= −δs∗
w(z)2

s(z)2 − g(i∗)g′(i(z)) y(z)2

g(i(z))2

+ μ(s∗ − s(z))
(

1 − s∗

s(z)

)
+ (γ + μ)i∗

(
1 − s∗

s(z)

)

+ βs∗g(i(z − cτ)) − βg(i∗)s(z)g(i(z − cτ))
g(i(z)) − (γ + μ)i(z)

(
1 − g(i∗)

g(i(z))

)

+ (μ + γ)i∗
[
−g(i(z − cτ))

g(i∗) + g(i(z))
g(i∗) + ln s∗

s(z) + ln s(z)g(i(z − cτ))
s∗g(i(z))

]
.

Together with βs∗g(i∗) = (μ + γ)i∗, we deduce that

d

dz
L(χ(z))

= −δs∗
w(z)2

s(z)2 − g(i∗)g′(i(z)) y(z)2

g(i(z))2

+ μ(s∗ − s(z))
(

1 − s∗

s(z)

)
+ (γ + μ)i∗

(
1 − s∗

s(z) + ln s∗

s(z)

)

− (γ + μ)i(z)
(

1 − g(i∗)
g(i(z))

)
+ (μ + γ)i∗ g(i(z))

g(i∗) − (μ + γ)i∗

+ (μ + γ)i∗
[
1 − s(z)g(i(z − cτ))

s∗g(i(z)) + ln s(z)g(i(z − cτ))
s∗g(i(z))

]

= −δs∗
w(z)2

s(z)2 − g(i∗)g′(i(z)) y(z)2

g(i(z))2

+ μ(s∗ − s(z))
(

1 − s∗

s(z)

)
+ (γ + μ)i∗

(
1 − s∗

s(z) + ln s∗

s(z)

)

− (γ + μ)i∗
(

1 − g(i∗)
g(i(z))

)(
i(z)
i∗

− g(i(z))
g(i∗)

)

+ (μ + γ)i∗
[
1 − s(z)g(i(z − cτ))

s∗g(i(z)) + ln s(z)g(i(z − cτ))
s∗g(i(z))

]
.
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Since Ψ1(ξ) := g(ξ)/ξ is decreasing and Ψ2(ξ) := 1 − ξ + ln ξ is non-positive for ξ > 0, it follows that

(
1 − g(i∗)

g(i(z))

)(
i(z)
i∗

− g(i(z))
g(i∗)

)
≥ 0,

1 − s∗

s(z) + ln s∗

s(z) ≤ 0,

and

1 − s(z)g(i(z − cτ))
s∗g(i(z)) + ln s(z)g(i(z − cτ))

s∗g(i(z)) ≤ 0.

Hence we deduce that

d

dz
L(χ(z)) ≤ 0.

Step 2: We claim that there exist positive constants Li, i = 1, 2, 3, 4, such that

−L1s(z) < s′(z) < L2s(z) and −L3g(i(z)) < i′(z) < L4g(i(z)) (3.18)

for all z ≥ 0.
(1) We show that −L1s(z) < s′(z) for all z ≥ 0, if L1 is a positive constant sufficiently large such that 

−L1s(0) < s′(0) and L1 ≥ 2βg(B)/c.
Let

Φ1(z) := s′(z) + L1s(z).

It suffices to show that Φ1(z) > 0 for all z ≥ 0. Note that Φ1(0) > 0. For contradiction, we assume that 
there exists ẑ1 > 0 such that Φ1(ẑ1) = 0 and Φ′

1(ẑ1) ≤ 0. Then there are two possibilities: either

Φ1(z) ≤ 0, ∀z ≥ ẑ1 (3.19)

or

Φ1(ẑ2) = 0 and Φ′
1(ẑ2) ≥ 0, (3.20)

for some ẑ2 ≥ ẑ1. For the first case, (3.19) and the fact that L1 ≥ 2βg(B)/c gives

cs′(z) ≤ −2βg(B)s(z),∀z ≥ ẑ1.

Together with the fact that 0 ≤ i ≤ B and s < 1, we deduce from (1.3a) that

δs′′(z) = cs′(z) + βs(z)g(i(z − cτ)) + μ(s(z) − 1) ≤ −βg(B)s(z) < 0, ∀z ≥ ẑ1,

which implies that s′ is decreasing in [ẑ1, ∞). Hence s′(z) ≤ s′(ẑ1) ≤ −L1s(ẑ1) < 0 for all z ≥ ẑ1, which 
contradicts the boundedness of s. For the second case, (3.20) yields that

s′(ẑ2) = −L1s(ẑ2) < 0 (3.21)

and



S.-C. Fu / J. Math. Anal. Appl. 435 (2016) 20–37 31
s′′(ẑ2) ≥ −L1s
′(ẑ2) > 0. (3.22)

Using (1.3a), we deduce that

0 = δs′′(ẑ2) − cs′(ẑ2) + μ(1 − s(ẑ2)) − βs(ẑ2)g(i(ẑ2 − cτ))

≥ cL1s(ẑ2) − βs(ẑ2)g(B)

(by (3.21) and (3.22), and the fact that 0 < s < 1 and 0 < i ≤ B)

≥ βs(ẑ2)g(B) (by definition of L1)

> 0,

a contradiction again.
(2) We show that s′(z) < L2s(z) for all z ≥ 0, if L2 is a positive constant sufficiently large such that 

s′(0) < L2s(0) and δL2
2 − cL2 − μ − βg(B) > 0.

Let

Φ2(z) := s′(z) − L2s(z).

It suffices to show that Φ2(z) < 0 for all z ≥ 0. Note that Φ2(0) < 0. For contradiction, we assume that 
there exists ẑ3 ≥ 0 such that Φ2(ẑ3) = 0 and Φ′

2(ẑ3) ≥ 0. Then

s′(ẑ3) = L2s(ẑ3) and s′′(ẑ3) ≥ L2s
′(ẑ3) = L2

2s(ẑ3).

Together with the fact that i ≤ B, we deduce from (1.3a) that

0 = δs′′(ẑ3) − cs′(ẑ3) + μ− μs(ẑ3) − βs(ẑ3)g(i( ˆz3 − cτ))

≥
(
δL2

2 − cL2 − μ− βg(B)
)
s(ẑ3) > 0,

a contradiction.
(3) We show that −L3g(i(z)) < i′(z) for all z ≥ 0, where L3 is a positive number sufficiently large such 

that −L3g(i(0)) < i′(0) and L3 ≥ (1 + αB)(μ + γ)/c.
Let

Φ3(z) := i′(z) + L3g(i(z)).

It suffices to show that Φ3(z) > 0 for all z ≥ 0. Note that Φ3(0) > 0. For contradiction, we assume that 
there exists ẑ4 > 0 such that Φ3(ẑ4) = 0 and Φ′

3(ẑ4) ≤ 0. Then there are two possibilities: either

Φ3(z) ≤ 0, ∀z ≥ ẑ4 (3.23)

or

Φ3(ẑ5) = 0 and Φ′
3(ẑ5) ≥ 0 (3.24)

for some ẑ5 ≥ ẑ4. For the first case, (3.23) yields

i′(z) ≤ −L3g(i(z)),∀z ≥ ẑ4.
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Together with (1.3b) the fact that

g(i(z)) ≥ i(z)/(1 + αB), (3.25)

we deduce that

i′′(z) = ci′(z) − βs(z)g(i(z − cτ)) + (μ + γ)i(z) ≤ 0, ∀z ≥ ẑ4,

which implies that i′(z) is decreasing in [ẑ4, ∞). Hence i′(z) ≤ i′(ẑ4) = −L3i(ẑ4) < 0 for all z ≥ ẑ4, which 
contradicts the boundedness of i. For the second case, (3.24) and the fact that g′(ξ) > 0 for ξ > 0 yields 
that

i′(ẑ5) = −L3g(i(ẑ5)) < 0 (3.26)

and

i′′(ẑ5) ≥ −L3g
′(i(ẑ5))i′(ẑ5) > 0. (3.27)

Then we deduce from (1.3b) that

0 = i′′(ẑ5) − ci′(ẑ5) + βs(ẑ5)g(i(ẑ5 − cτ)) − (μ + γ)i(ẑ5)

≥ cL3g(i(ẑ5)) − (μ + γ)i(ẑ5)

(by (3.26) and (3.27))

> 0 (by (3.25) and definition of L3),

a contradiction again.
(4) We show that i′(z) < L4g(i(z)) for all z ≥ 0, if L4 is a positive constant sufficiently large such that 

i′(0) < L4g(i(0)) and (1 + αB)−2L2
4 − cL4 − (μ + γ)(1 + αB) > 0.

Let

Φ4(z) := i′(z) − L4g(i(z)).

It suffices to show that Φ4(z) < 0 for all z ≥ 0. Note that Φ4(0) < 0. For contradiction, we assume that 
there exists ẑ6 ≥ 0 such that Φ4(ẑ6) = 0 and Φ′

4(ẑ6) ≥ 0. Then

i′(ẑ6) = L4g(i(ẑ6)) and i′′(ẑ6) ≥ L4g
′(i(ẑ6))i′(ẑ6) = L2

4g
′(i(ẑ6))g(i(ẑ6)).

Together with the fact that g′(i) ≥ (1 + αB)−2, i ≤ (1 + αB)g(i), and (1 + αB)−2L2
4 − cL4 − (μ + γ) > 0, 

we deduce from (1.3b) that

0 = i′′(ẑ6) − ci′(ẑ6) + βs(ẑ6)g(i(ẑ6 − cτ)) − (μ + γ)i(ẑ6)

≥ L2
4g

′(i(ẑ6))g(i(ẑ6)) − cL4g(i(ẑ6)) − (μ + γ)(1 + αB)g(i(ẑ6)) > 0,

a contradiction.
Step 3: We show that (s, i)(∞) = (s∗, i∗).
Now we construct the open bounded set D of system (3.16) as follows:

D := {(s, w, i, y)|0 < s < 1, 0 < i < B,−L1s < w < L2s,−L3g(i) < y < L4g(i)}.
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Then (3.18) assert that the solution χ(z) = (s(z), w(z), i(z), y(z)) with (w, y) = (s′, i′) of system (3.16) is 
positively invariant in D for all z ≥ 0. Recall the orbital derivative of L along χ(z) is non-positive. Besides, 
one can easily see that L is continuous and bounded below on D. Taken together, it follows from the 
Lyapunov–LaSalle Theorem that χ(z) → (s∗, 0, i∗, 0) as z → ∞, and so (s, i)(∞) = (s∗, i∗). This completes 
the proof of Lemma 3.1. �
4. Existence of critical waves

In this section, we establish the existence of traveling waves of system (1.2) with critical speed c = c∗. 
To this end, we need to construct a pair of upper and lower solutions of (1.3) with c = c∗. For this, we set 
z0 := −1/λ∗ and ρ := eBλ∗ and select 0 < ν < c∗/δ such that

c∗ − δν > 0. (4.28)

Then we set

M := e−νz1 > 1, (4.29)

where z1 is a negative number such that z1 < z0 and

e(λ∗−ν)z ≤ μ

β
· eλ∗c∗τ , ∀z ≤ z1. (4.30)

Noting that limz→−∞
[
Mρ(−z)5/eνz + αρ2(−z)7/2eλ∗(z−c∗τ)] = 0, there exists a number z2 < min{z1, −c∗τ,

−1/ρ2} such that

Mρ(−z)5/2eνz + αρ2(−z)7/2eλ
∗(z−c∗τ) <

1
16(c∗)2τ2, ∀z ≤ z1. (4.31)

Set L := ρ
√−z2 > 1.

Motivated by [4], we define four nonnegative continuous functions s+, s−, i+, and i− as follows:

s+(z) := 1,

s−(z) :=
{

1 −Meνz, z ≤ z1,

0, z > z1,

i+(z) :=
{

−ρzeλ
∗z, z ≤ z0,

B, z > z0,

i−(z) :=
{ [

−ρz − L(−z)1/2
]
eλ

∗z, z ≤ z2,

0, z > z2.

As before, s+(z) satisfies the inequality

δ(s+(z))′′ − c∗(s+(z))′ + μ(1 − s+(z)) − βs+(z)g(i−(z − c∗τ)) ≤ 0

for all x ∈ R. In the following, we will show that (s+, i+) and (s−, i−) are a pair of upper and lower solutions 
of (1.3) with c = c∗.
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Lemma 4.1. The function i+(z) satisfies the equation

(
i+

)′′(z) − c∗
(
i+

)′(z) + βs+(z)g(i+(z − c∗τ)) − (γ + μ)i+(z) ≤ 0 (4.32)

for all z �= z0.

Proof. For z > z0, it is obvious that (4.32) holds. For z < z0, i+(z) = −ρzeλ
∗z. Then we have that

(
i+

)′′(z) − c∗
(
i+

)′(z) + βi+(z − c∗τ) − (γ + μ)i+(z)

= −ρeλ
∗z[P (λ∗, c∗)z + Pλ(λ∗, c∗)] = 0. (4.33)

Together with s+ ≡ 1 and g(i+(z − c∗τ)) ≤ i+(z − c∗τ), we get (4.32). �
Lemma 4.2. The function s−(z) satisfies the inequality

δ(s−)′′(z) − c∗(s−)′(z) + μ(1 − s−(z)) − βs−(z)g(i+(z − c∗τ)) ≥ 0 (4.34)

for all z �= z1.

Proof. For z > z1, since s−(z) ≡ 0 in (z1, ∞), the inequality (4.34) follows. For z < z1, s−(z) = 1 −Meνz. 
By (4.30), we deduce that

μeνz ≥ βi+(z − c∗τ),∀z ≤ z1. (4.35)

Noting that 1 − s−(z) = Meνz, s−(z) ≤ 1, and g(i+(z − c∗τ)) ≤ i+(z − c∗τ), we can use (4.28), (4.35), and 
(4.29) to deduce that

δ(s−(z))′′ − c∗(s−(z))′ + μ(1 − s−(z)) − βs−(z)g(i+(z − c∗τ))

≥ Mν(c∗ − δν)eνz + μMeνz − βi+(z − c∗τ)

≥ 0.

Hence (4.34) holds. �
Lemma 4.3. The function i−(z) satisfies the inequality

(i−)′′(z) − c∗(i−)′(z) + βs−(z)g(i−(z − c∗τ)) − (γ + μ)i−(z) ≥ 0 (4.36)

for all z �= z2.

Proof. For z > z2, the inequality (4.36) holds immediately since i−(z) ≡ 0 in (z2, ∞). For z < z2, i−(z) =
i+(z) − L(−z)1/2eλ∗z and s−(z) = 1 −Meνz. A simple computation gives that

(i−(z))′ = (i+(z))′ + Leλ
∗z

[
1
2(−z)−1/2 − λ∗(−z)1/2

]
, (4.37)

(i−(z))′′ = (i+(z))′′ + Leλ
∗z

[
1
4(−z)−3/2 + λ∗(−z)−1/2 − (λ∗)2(−z)1/2

]

≥ (i+(z))′′ + Leλ
∗z

[
λ∗(−z)−1/2 − (λ∗)2(−z)1/2

]
, (4.38)
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and

s−(z)g(i−(z − c∗τ))

≥ s−(z)i−(z − c∗τ)[1 − αi−(z − c∗τ)]

= s−(z)i−(z − c∗τ) − αs−(z)i−(z − c∗τ)2

≥ (1 −Meνz)
[
i+(z − c∗τ) − L(−z + c∗τ)1/2eλ

∗(z−c∗τ)
]
− αρ2z2e2λ∗(z−c∗τ)

(by definition of s− and i−, and the fact s− ≤ 1 and i−(z) ≤ −ρzeλ
∗z)

≥ i+(z − c∗τ) + Mρzeνz+λ∗(z−c∗τ) − L(−z + c∗τ)1/2eλ
∗(z−c∗τ) − αρ2z2e2λ∗(z−c∗τ). (4.39)

Applying the Taylor’s Theorem, we have that

(−z + c∗τ)1/2 ≤ (−z)1/2 + 1
2c

∗τ(−z)−1/2 − 1
8(c∗)2τ2(−z)−3/2 + 1

16(c∗)3τ3(−z)−5/2. (4.40)

Combining (4.39) and (4.40), we deduce that

s−(z)g(i−(z − c∗τ))

≥ i+(z − c∗τ) + Mρzeνz+λ∗(z−c∗τ) − αρ2z2e2λ∗(z−c∗τ)

− Leλ
∗(z−c∗τ)

[
(−z)1/2 + 1

2c
∗τ(−z)−1/2 − 1

8(c∗)2τ2(−z)−3/2 + 1
16(c∗)3τ3(−z)−5/2

]
. (4.41)

Now, using (4.37), (4.38), (4.41) and (1.6), we get

(i−(z))′′ − c∗(i−(z))′ + βs−(z)g(i−(z − c∗τ)) − (γ + μ)i−(z)

≥ βMρzeνz+λ∗(z−c∗τ) − βαρ2z2e2λ∗(z−c∗τ)

+ βLeλ
∗(z−c∗τ)

[
1
8(c∗)2τ2(−z)−3/2 − 1

16(c∗)3τ3(−z)−5/2
]

≥ β(−z)−3/2eλ
∗(z−c∗τ)

[
1
16L(c∗)2τ2 −Mρ(−z)5/2eνz − αρ2(−z)7/2eλ

∗(z−c∗τ)
]

+ 1
16βL(c∗)2τ2(−z)−3/2eλ

∗(z−c∗τ)
(

1 + c∗τ

z

)
≥ 0 (using the fact L > 1 and z < z2 < −c∗τ and by (4.31))

The proof of this lemma is therefore completed. �
Finally, following the proofs of Lemma 2.5, Lemma 2.6, and Lemma 3.1 by replacing c and λ1 by c∗

and λ∗ respectively and using the upper and lower solutions established in this section, we establish the 
existence of traveling waves of system (1.2) with critical speed c = c∗.

Lemma 4.4. For c = c∗, system (1.3)–(1.4) admits a nonnegative solution (s, i) with the 0 < s < 1 and 
0 < i < B over R. Moreover, i(z) = O(−zeλ

∗z) as z → −∞.

Appendix A

In this appendix, we provide some a priori estimates for solutions of the inhomogeneous linear equation

w′′(z) −Aw′(z) + f(z)w(z) = h(z). (A.1)
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Lemma A.1. Let A be a positive constant and let f and h be continuous functions on [a, b]. Suppose that 
w ∈ C([a, b]) ∩ C2((a, b)) satisfies the differential equation (A.1) in (a, b) and w(a) = w(b) = 0. If

−C1 ≤ f ≤ 0 and |h| ≤ C2 on [a, b],

for some constants C1, C2, then there exists a positive constant C3, depending only on A, C1, and the length 
of the interval [a, b], such that

‖w‖C([a,b]) ≤ C2C3.

Proof. Note that the function w̃(z) := w(−z) satisfies

w̃′′(z) + Aw̃′(z) + f̃(z)w̃(z) = h̃(z)

on (−b, −a), where f̃(z) := f(−z) and h̃(z) := h(−z). Then it follows from Lemma 3.2 of [6] that there 
exists a positive constant C3, depending only on A, C1, and the length of the interval [−b, −a], such that

‖w̃‖C([−b,−a]) ≤ C2C3.

This implies that

‖w‖C([a,b]) ≤ C2C3. �
Lemma A.2. Let A, f , and h be as in Lemma A.1. Suppose that w ∈ C([a, b]) ∩C2((a, b)) satisfies (A.1) in 
(a, b). If ‖w‖C([a,b]) ≤ C0 for some constant C0, then there exists a positive constant C4, depending only on 
A, C0, C1, C2, and the length of the interval [a, b], such that

‖w′‖C([a,b]) ≤ C4.

Proof. Arguing as the proof of Lemma A.1 and using Lemma 3.3 of [6], one can easily get the proof. �
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