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ABSTRACT
Our reasoning is clearly fuzzy, so why is crisp logic so often adequate? We explain this 
phenomenon by showing that in the presence of  noise, an arbitrary continuous (e.g., fuzzy) 
system can be well described by its discrete analog. However, as the description gets more 
accurate, the continuous description becomes necessary.
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1. Formulation of  the Problem

Fuzzy logic is needed. Our reasoning is clearly fuzzy. Whenever we use terms 
like “small,” “young,” etc., there is no crisp boundary: some people are clearly young, 
some are clearly not young, but there is always an area in between in which a 
natural answer should be “young to a certain degree.”

Fuzzy logic has been specifically designed to capture this “fuzziness;” see, e.g., [2, 3, 7].
While fuzzy logic is successful, crisp methods are, surprisingly, successful 

as well. Fuzzy logic indeed has many useful applications. However, the puzzling fact 
is that in many other practical applications, crisp (non-fuzzy) methods work really 
well.

What we do in this paper. In this paper, we provide a possible explanation for 
this phenomenon.
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Comment. Some of  our results first appeared in [4].

2. Basis for Our Explanation: Tsirelson’s Theorem

Tsirelson’s observation. B. S. Tsirelson noticed [6] that in many cases, when we 
reconstruct the signal from the noisy data, and we assume that the resulting signal 
belongs to a certain class, the reconstructed signal is often an extreme point from 
this class. For example:

 ● when we assume that the reconstructed signal is monotonic, the reconstructed 
function is often (piece-wise) constant;

 ● if  we additional assume that the signal is smooth (one time differentiable, 
from the class C1), the result is usually one time dif ferentiable but rarely 
twice differentiable, etc.

Geometric explanation for Tsirelson’s observation: general idea. Tsirelson 
provides an elegant geometric explanation to this fact: namely, when we reconstruct 
a signal f rom a mixture of  a signal and a Gaussian noise, then the maximum 
likelihood estimation (a traditional statistical technique; see, e.g., [5]) means that 
we look for a signal that belongs to the priori class, and that is the closest (in the 
L2-metric) to the observed “signal + noise.”

In particular, if  the signal is determined by finitely many (say, d) parameters, 
we must look for a signal  from the a priori set  that is the 
closest (in the usual Euclidean sense) to the observed values

where ni denotes the (unknown) values of  the noise.
Since the noise is Gaussian, we can usually apply the Central Limit Theorem [5] 

and conclude that the average value of  (ni)2 is close to σ2, where σ is the standard 
deviation of  the noise. In other words, we can conclude that

(ni)2 + ...  + (nd)2 ≈ d ∙ σ2.

In geometric terms, this means that the distance
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between . Let us denote this distance . by ε.
Geometric explanation: 2-D case. Let us (for simplicity) consider the case 

when d = 2, and when A is a convex polygon. Then, we can divide all points p from 
the exterior of  A that are ε-close to A into several zones depending on what part of  
A is the closest to p: one of  the sides, or one of  the edges.

Geometrically, the set of  all points for which the closest point a ∈ A belongs 
to the side e is bounded by the straight lines orthogonal (perpendicular) to e. The 
total length of  this set is therefore equal to the length of  this particular side; hence, 
the total length of  all the points that are the closest to all the sides is equal to the 
perimeter of  the polygon. This total length thus does not depend on ε  at all.

On the other hand, the set of  all the points at the distance ε  from A grows with 
the increase in ε; its length grows approximately as the length of  a circle, i.e., as 
const∙ε.

When ε  increases, the (constant) perimeter is a vanishing part of  the total 
length. Hence, for large ε:

 ● the fraction of  the points that are the closest to one of  the sides tends to 0, 
while

 ● the fraction of  the points p for which the closest is one of  the edges tends to 1.
Geometric explanation: general case. Similar arguments can be repeated 

for any dimension. For the same noise level σ, when d increases, the distance 
ε =  also increases, and therefore, for large d, for “almost all” observed points 

, reconstructed signal is one of  the extreme points of  the a priori set A.
Much less probable is that the reconstructed signal belongs to the 1-dimensional 

face of  the set A, even much less probable that s belongs to a 2-D face, etc.
Methodological consequences. The main methodological consequence of  this 

result is that even when the actual state space is continuous, when we determine 
the state from measurements result, we inevitably obtain (most often) one of  the 
discretely many states. On the large-scale level, we get one of  the few clusters. When 
we add new measurements and thus, get to the next level, each original cluster sub-
divides into new clusters, etc., so that we get a hierarchical structure.

3. Our Explanation of  the Success of  Crisp Teachniques

Tsirelson’s result explains why in spite of  the clearly fuzzy character of  most 
human reasoning, binary logic describes most of  this reasoning pretty well.

Indeed, states with unusual “truth values” (different from 0 and 1) are not an 
exception, but rather a general rule. However, if  we do the observations in the 
presence of  some noise (e.g., if  we use a not-prefect procedure for describing the 
values of  the membership function), then we will mainly notice the extreme points 
of  the set [0, 1] of  the truth values, i.e., the values 0 and 1.
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4. In the Future, Fuzzy Techniques Will Be More and More 
Important

An interesting corollary is that as observations become more accurate, we will 
observe the actual intermediate fuzzy values as well, and crisp description will 
become more and more difficult.

Comment. Similarly, we can explain Schrödinger’s paradox in quantum mechanics (see 
Appendix).

5. Conclusion

In this paper, we provide a geometric explanation of  why in many cases, in spite 
of  a fuzzy nature of  human reasoning, crisp models work amazingly well.
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Appendix: Explanation of  Schrödinger’s Paradox

In classical physics, it is assumed that for each state of  a physical system, every 
property is either true or false. For example, a particle is either located in a certain 
interval of  space coordinates [x − Δ, x + Δ], or it is not located inside this interval.

In quantum mechanics, in addition to the states in which a particle is located 
within this interval, and to the states in which the particle is definitely outside it, 
there are states in which some measurements of  the coordinate will lead to results 
within the interval, and some to the results outside this interval.

In such states, we cannot say that a statement “the particle is located in the 
given interval” is true or that this statement is false; at best, we can determine the 
probability of  the “yes” answer. (To describe such unusual “truth value,” quantum 
logic has been introduced.)

States with unusual “truth values” are not an exception, but rather a general 
rule in quantum mechanics: e.g., for every two states ψ  and ψ ′ with certain values 
λ ≠ λ′ of  a measured quantity, there exists a state called their super position in 
which the value of  this quantity is no longer certain. (In the standard formalism 
of  quantum mechanics, where states are described by vectors in a Hilbert space, 
superposition is simply linear combination.) 

Such superposition state is easy to generate.
Schroedinger has shown that this superposition principle seemingly contradicts 

our intuition; see, e.g., [1].
Indeed, suppose that we have a cat in a box, and a light-controlled rifle is aimed 

at the cat in such a way that a left-polarized photon would trigger the rifle and kill 
the cat, while the right-polarized photon would keep the cat alive. 

If  we send a photon with a circular polarization (that is, according to quantum 
mechanics, a superposition of  left- and right-polarized states), we would get (due to 
the linear character of  the equations of  quantum mechanics), the superposition of  
the states resulting from using left- and right-polarized photons. In other words, we 
will get a superposition of  a dead and alive cat states. This is, however, something 
that no one has ever observed: for macroscopic objects (cats included), an object is 
either dead or alive. Tsirelson’s result explains why such non-extremal states are 
indeed difficult to observe.
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