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Motivated by the recent observation of the Kondo effect in graphene in transport experiments, we investigate
the resistivity and dephasing rate in the Kondo regime due to magnetic impurities in graphene with different
chemical potentials (μ). The Kondo effect due to either carbon vacancies or magnetic adatoms in graphene is
described by the single-orbital pseudogap asymmetric Anderson impurity model which is solved by the accurate
numerical renormalization group method. We find that although the Anderson impurity model considered here
is a mixed-valence system, it can be driven into either the Kondo [μ > μc (critical value) > 0], mixed-valency
(μ ≈ μc), or empty-orbital (μ < μc) regime by a gate voltage, giving rise to characteristic features in resistivity
and dephasing rate in each regime. Specifically, in the case of μ < μc, the shapes of the resistivity (dephasing
rate) curves for different μ are nearly identical. However, as temperature decreases, they start to increase to
their maxima at a lower T/TK , but more rapidly [as (TK/T )3/2] than in normal metals [here, T (TK ) denotes
the (Kondo) temperature]. As T further decreases, after reaching the maximum, the dephasing rate drops more
quickly than in normal metals, behaving as (T/TK )3 instead of (T/TK )2. Furthermore, the resistivity has a distinct
peak above the saturation value near TK . In the case of μ > μc, in contrast, the resistivity curve has an additional
broad shoulder above 10TK and the dephasing rate exhibits an interesting shoulder-peak shape. In the narrow
boundary region (μ ≈ μc), both the resistivity and dephasing rate curves are similar to the corresponding ones in
normal metals. This explains the conventional Kondo-like resistivity from recent experiments on graphene with
defects, although the distinct features in the resistivity in the other cases (μ < μc or μ > μc) were not seen in the
experiments. The interesting features in the resistivity and dephasing rate are analyzed in terms of the calculated
T -dependent spectral function, correlation self-energy, and renormalized impurity level.
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I. INTRODUCTION

Interactions between particles in many-body systems are
responsible for the formation of correlated many-body states
which lead to a plethora of quantum phenomena. Therefore,
the many-body correlation in quantum systems has been one
of the most significant topics in condensed-matter physics.
Graphene, a newly discovered two-dimensional material with
carbon atoms arranged in a single-layer honeycomb lattice
possessing an unusual band structure with a linear spectrum,
hosts two-dimensional Dirac fermions [1–3]. It provides a
great opportunity to investigate novel many-body correlation
in low-dimensional Dirac fermion systems. Furthermore, the
easy manipulation of the Fermi level by an applied gate voltage
also makes graphene an excellent candidate for important
technological applications.

In particular, there has been an increasing interest
in low-temperature behaviors of dilute magnetic impuri-
ties in graphene in recent years [4]. Local magnetic moments
in graphene can be created by placing magnetic atoms onto
the graphene sheet or by introducing point defects in the
graphene sheet [5–11]. The theoretical model for describing
the interactions of local magnetic moments with conduction
electrons in metals was first formulated by Anderson, known
as the Anderson impurity model [12]. The impurity and
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conduction electrons could form an entangled many-body
state below the Kondo temperature (TK ) in the presence of
the hybridizations between them. The magnetic moment
of the impurity would then be screened by the formation
of the many-body singlet, known as the Kondo effect [13].
However, in systems with a pseudogap, such as graphene,
the Kondo effect could be significantly different [14–20]. For
example, with vanishing density of state at the Fermi level, the
tendency toward the screened impurity in graphene would get
reduced. Therefore, the Kondo effect would only take place
when the strength of the coupling of the impurity state to
the conduction electrons (�0) exceeds a critical value (�c),
resulting in an unusual phase diagram for the system. Up
to now, the thermodynamical properties of graphene Kondo
systems have been extensively studied [4,18,21].

However, the thermodynamical properties in graphene with
dilute impurities are difficult to probe. On the other hand,
transport properties are easier to measure. Indeed, resistivity
evidence for the Kondo effect in graphene with vacancies
has been recently reported [22]. By the manipulation of the
Fermi level by an applied gate voltage, the carrier density
becomes controllable. This provides a rare opportunity to study
the carrier density tuning of the Kondo effect, which could
lead to many interesting transport phenomena [22–27]. Under
an applied gate voltage, for example, the Fermi level would
move away from the Dirac point, and the density of states
at the Fermi level becomes finite. Therefore, the magnetic
moment of the impurity can be screened in the low-temperature
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limit. Although the thermodynamical properties of the system
might become similar to that of normal metals, the impurity
spectral function could have unusual characteristics [24,25].
These unusual characteristics would make the behaviors of
the transport properties, such as resistivity and dephasing
rate, become different from that of the conventional Kondo
effect.

So far, however, there have been few studies on the
transport properties in graphene with the Kondo effect [24,25]
and all of these studies are on the tunneling spectra for
scanning tunneling spectroscopy. In Ref. [24], the Anderson
impurity model with the on-site Coulomb interaction U → ∞
was solved within the slave-boson mean-field approximation,
whereas in Ref. [25], the standard spin-1/2 Kondo model was
treated using the nonperturbative numerical renormalization
group (NRG) method [28]. In this work, we systematically
study the behaviors of resistivity and dephasing rate in the
Kondo regime in the asymmetric Anderson impurity model
with the realistic model parameters for graphene with carbon
vacancies or magnetic adatoms. We use the accurate NRG
method [28]. We find that although the asymmetric Anderson
impurity model considered here is a mixed-valence system, it
can be driven into either the Kondo, mixed-valency, or empty-
orbital regime by a gate voltage, giving rise to characteristic
features in resistivity and dephasing rate in each regime.
The results not only explain the Kondo resistivity observed
in recent experiments [22], but also suggest directions for
further transport experiments to identify the exotic features
of the Kondo effect in graphene. This rest of this paper begins
with an introduction to the structure of graphene with local
magnetic moments in Sec. II. This will be followed by a brief
description of the Anderson impurity model for graphene with
carbon vacancies and magnetic adatoms, and the NRG method
in Sec. II. Then, the calculated resistivity and dephasing rate
are presented in Sec. III. Recent experiments on the Kondo
effect in graphene are discussed and further experiments on
transport properties are suggested in Sec. IV. Finally, the
conclusions that could be drawn from this work are given in
Sec. V.

II. THEORY AND COMPUTATIONAL METHOD

A. The Anderson impurity model

The positions of impurities play an important role in the
Kondo physics in graphene. Possible absorption sites on a
graphene sheet can be classified as the top, hollow, and bridge
ones. The systems with adatoms absorbed on the hollow and
bridge sites are the candidates to realize the multichannel
Kondo problem [29]. Other possible structures include carbon
vacancies and substitutional impurities [21,30]. Nevertheless,
in the systems with magnetic adatoms absorbed on the
hollow and bridge sites and also substitutional impurities,
the scattering rate is proportional to |ω + μ|3, where ω and
μ are the energy and chemical potential, respectively. This
suggests that the Kondo effect would hardly occur in these
systems [29,30]. In this paper, therefore, we consider only
the cases of carbon vacancies and also magnetic adatoms
absorbed on the top sites, which are the single-channel Kondo
problems.

The Anderson impurity model can be written as [21,29]

H =
∑

σ

εdf
†
σ fσ + Uf

†
↑f↑f

†
↓f↓

+
∑

σ

∫ D

−D

dω|ω + μ|gσ (ω)c†σ (ω)cσ (ω)

+
∑

σ

∫ D

−D

dω

√
�(ω)

πD
[f †

σ cσ (ω) + c†σ (ω)fσ ], (1)

where σ = ↑,↓; εd is the energy of the impurity level, and U

is the Coulomb interaction between the electrons; f
†
↑ (f †

↓ ) and
f↑ (f↓) are creation and annihilation operators for an electron
in the ↑ (↓) impurity state; c

†
↑(ω) [c†↓(ω)] and c↑(ω) [c↓(ω)]

are creation and annihilation operators for an electron in the
↑ (↓) conduction states with energy equal to ω; and gσ (ω) is
the part of the density of states that couples to the impurity
state. D is the total bandwidth. �(ω) is the scattering rate and
related to gσ (ω) by �(ω) = πgσ (ω)|Vhyb(ω)|2, where Vhyb(ω)
is the effective hybridization strength.

In the case of carbon vacancies, the scattering rate �(ω) can
be written as [21]

�(vac)(ω) = �0V
2

vac|ω + μ|
2�2v2

F

[
2 − J0

(
2

3

|ω + μ|
t

)]
, (2)

where �0, vF , t , and Vvac are the unit cell area, the Fermi
velocity, the hopping energy, and the hybridization strength,
respectively; J0 is the zeroth Bessel function. Since we only
consider the cases of small chemical potentials, the value
of (2/3)(|ω + μ|/t) is small for small ω. Therefore, we can
expand J0 at ω = 0, and �(vac)(ω) can be approximated as

�(vac)(ω) = �0V
2

vac|ω + μ|
2�2v2

F

[
1 + 4

27

( |ω + μ|
t

)2]
. (3)

Hence the effective hybridization strength can be written as

V
(vac)

hyb (ω) = Vvac

√
1 + 4

27

( |ω + μ|
t

)2

. (4)

In the case of adatoms on the top sites, the tight-binding
formalism is used. We only need to consider the hybridizations
of the impurity with the conduction electrons below the
impurity and the next-nearest neighbors. Thus, the scattering
rate can be written as [29]

�(ada)(ω) = �0V
2
A|ω + μ|

2�2v2
F

[
1 − (ω + μ)

t

VB

VA

]2

, (5)

where VA is the hybridization of the impurity with the conduc-
tion electron below the impurity, and VB is the hybridization of
the impurity with the conduction electrons on the next-nearest
neighbors. In general, VB � VA. The effective hybridization
strength can be approximated as

V
(ada)

hyb (ω) = VA

[
1 − (ω + μ)

t

VB

VA

]
. (6)
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In this work, therefore, the following scattering rate is
assumed:

�(ω) =

⎧⎪⎨
⎪⎩

�0|ω̃ + μ̃|s(ω̃ + μ̃), |ω̃ + μ̃| � 1

�0s
(

ω̃+μ̃

|ω̃+μ̃|
)
, 1 < |ω̃ + μ̃|,|ω̃| � D

Deff

0, |ω̃| > D
Deff

,

where �0 = �0V
2Deff/2�

2v2
F ; V = Vvac (VA) for the case

of carbon vacancies (adatoms); ω̃ = ω/Deff and μ̃ = μ/Deff ;
Deff is the effective bandwidth within which the density of
states is approximately proportional to |ω + μ|; and s(x) is
defined as

s(x) =
{

1 + αx2 for carbon vacancies

(1 − βx)2 for adatoms,

where α = (4/27)(Deff/t)2 and β = (Deff/t)(VB/VA).
In this work, we exploit the powerful NRG method [28]

to solve the Anderson impurity model. In all of the present
calculations, we use the discretization parameter 
 = 1.8
and keep 1200 states per NRG iteration so that the obtained
resistivity and dephasing rate converge within 0.1%. The
valence bandwidth of the graphene band structure is about
20 eV and the linear dispersion extends up to about 2 eV
above and below the Dirac point [6]. Therefore, we set
D = 20 eV and Deff = 2 eV. Test NRG calculations with
different D values show that the calculated thermodynamic
and transport properties are unaffected by the particular D

value used. Parameters εd , U , and �0 (V ) would depend
on the type of impurities. Typically, U varies from about
1 to 10 eV, �0 of the order of 1 eV, and εd is around
−1 eV [5–9,21,25]. We have explored a wide parameter
range. The calculated thermal properties such as susceptibility,
entropy, Kondo temperature, and specific heat are consistent
with previous theoretical reports [18,21,24,25]. In this paper,
we use parameters U = 10 eV, εd = −0.7 eV, and �0 = 1
eV (i.e., V = 2.6 eV). That is, we consider a mixed-valence
system since |εd |/�0 � 1 [31,32]. Interestingly, as will be
demonstrated below, this mixed-valence graphene system can
be driven into either the Kondo, mixed-valency, or empty-
orbital regime by a gate voltage, giving rise to contrasting
behaviors in resistivity and dephasing rate.

B. Resistivity calculation

To obtain resistivity and dephasing rate, we first calculate
the temperature (T )-dependent single-particle Green’s func-
tion G

f
σ (ω,T ) of the impurity by the NRG method [28].

The impurity spectral function is defined as A
f
σ (ω,T ) =

−(1/π )ImG
f
σ (ω,T ) and can be calculated directly by the

Lehmann representation,

Af
σ (ω,T ) = 1

Z(T )

∑
r,r ′

|Mr,r ′ |2(eEr/kBT + eE′
r /kBT )

× δ[ω − (E′
r − Er )], (7)

where Z(T ) is the partition function and Mr,r ′ = 〈r|fσ |r ′〉 is
the relevant many-body matrix element; |r〉 (|r ′〉) is the many-
body eigenstate and Er (E′

r ) is the corresponding eigenenergy.
The real part of G

f
σ (ω,T ) can be obtained via Kramers-Kronig

relation. In the present calculations, the method for improving
the resolution of A

f
σ (ω,T ) is used [33].

Single-particle Green’s function Gσ (ω,T ) for the conduc-
tion electrons can be written as [13]

Gσ (ω,T ) = G0
σ (ω,T ) + G0

σ (ω,T )cimpTσ (ω,T )G0
σ (ω,T ),

(8)

where G0
σ (ω,T ) is the single-particle Green’s function for the

noninteracting conduction electrons. The single impurity T

matrix Tσ (ω,T ) is given by |Vhyb(ω)|2Gf
σ (ω,T ) [13]. For a

small impurity concentration cimp, Gσ (ω,T ) is determined by
the Dyson equation,

Gσ (ω,T ) = G0
σ (ω,T ) + G0

σ (ω,T )cimpTσ (ω,T )Gσ (ω,T ),

(9)

which is valid to the first order of cimp. In this approximation,
the self-energy �σ (ω,T ) for the conduction electrons is equal
to cimpTσ (ω,T ). Then, the relaxation time can be obtained
by taking the imaginary part of �σ (ω,T ). By substituting
A

f
σ (ω,T ) for Tσ (ω,T ), the expression of the relaxation time

can be written as

1

τσ (ω,T )
= 2πcimp|Vhyb(ω)|2

�
Af

σ (ω,T ). (10)

Finally, based on the Boltzmann transport theory and using
τσ (ω,T ) obtained above, the resistivity (sum over two spin)
can be written in the form

ρm(T ) = ρ0

{∫ [
−∂f (ω)

∂ω

] |ω + μ|dω

|Vhyb(ω)|2Af
σ (ω,T )

}−1

, (11)

where ρ0 = 4π2cimp�/e2 and f (ω) is the Fermi-Dirac distri-
bution function.

C. Dephasing rate calculation

An electron could interact with another electron through
an inelastic-scattering event. This scattering would change its
energy and hence the evolution of its phase. Consequently,
the phase of the electron wave would suffer some dephasing.
Therefore, the dephasing rate can be defined as the inelastic-
scattering rate. The total scattering rate has already been given
in Eq. (10). The elastic-scattering rate can be derived from the
Fermi golden rule, and written as

1

τ
(ela)
σ (ω,T )

= 2cimp|Vhyb(ω)|2
�

�(ω)
∣∣Gf

σ (ω,T )
∣∣2

. (12)

Finally, the dephasing rate can be obtained as the difference
between the total scattering rate and the elastic scattering.
Therefore, the ω-resolved dephasing rate can be written as [34]

1

τ
φ
σ (ω,T )

= 2cimp|Vhyb(ω)|2
�

× [
πAf

σ (ω,T ) − �(ω)
∣∣Gf

σ (ω,T )
∣∣2]

. (13)

In experiments, measurement of the resistivity correction
to the weak-localization effect can be used to determine
the dephasing rate [35]. To compare to experiments, one
should calculate the total dephasing rate γm(T ), which for
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two-dimensional structures is given by an integral over the
ω-resolved dephasing rate as [36]

γ φ
m (T ) = 1

τ
exp

{∫ [
−∂f (ω)

∂ω

]
ln

τ

τ
φ
σ (ω,T )

dω

}
, (14)

where τ is the unit time.

III. RESULTS AND DISCUSSION

Before presenting the calculated transport properties, let
us first examine the phase diagram of the Kondo effect in
graphene. In pure graphene (i.e., μ = 0), there are two stable
fixed points, i.e., the local-moment (LM) and frozen-impurity
(FI) fixed points [31]. The system would flow to either the
LM or FI regime in the low-temperature limit, depending
critically on the �0 value. When the Fermi level is slightly
raised or lowered, however, the LM fixed point will become
unstable. Also, there will be another stable fixed point, namely,
the strong-coupling (SC) fixed point, when μ is positive.
Nevertheless, although the system where �0 is smaller than
the critical value could enter the SC regime [31], TK could be
very low [25], which would not be experimentally accessible.
Therefore, we only investigate the cases where �0 is larger
than the critical value (�c = 0.953 eV).

Note that in the recent literature [4,21,25,27], the FI and
SC fixed points are generally referred to as the asymmetric
SC point. We believe that this is, at a minimum, not precise
since, as we demonstrate below, the spectral function and
transport properties are quite different in the FI and SC
regimes. Therefore, here we consider the FI and SC fixed points
(regimes) as two different fixed points (regimes). Nevertheless,
in this paper, for simplicity, we loosely use the Kondo
temperature TK to denote the temperature where the system
would enter either the SC or FI regime from either the LM or
VF regime. Strictly speaking, one should use another symbol
(e.g., T ∗) to denote the transition from the VF to FI regime
since there is no Kondo effect in this crossover.

Figure 1 shows the dependence of the Kondo tempera-
ture and also the impurity state occupation number (n) on
the chemical potential. Here, TK is defined by Simp/kB =
(1/2)ln2, where Simp is the impurity entropy and kB is the
Boltzmann constant, respectively. It is clear that there is a
pronounced particle-hole asymmetry in the graphene Kondo
systems [25]. As mentioned in Sec. II A, the graphene Kondo
systems with the types of impurities we consider here are a
mixed-valence system. Therefore, as one might expect from
the conventional Anderson impurity model, there is no LM
fixed point and only one crossover, namely, the crossover
from the valence-fluctuation (VF) to FI regime [31] for the
negative μ values, as shown in Fig. 1(a). When the Fermi
level is lowered below the Dirac point, the density of states
at the Fermi level increases and so does the scattering rate.
Therefore, TK increases with |μ| [Fig. 1(a)]. In the positive
μ case, in contrast, TK initially decreases with |μ| and then
reaches a minimum near μ = μm =∼0.04 eV. As the Fermi
level is further raised, TK increases monotonically with |μ|.
We could attribute this interesting behavior to the occurrence
of the LM fixed point when μ > μc = 0.0126 eV, which is also
evident from the sharp increase of the occupation number of
the impurity state around μ ≈ μc [see the inset in Fig. 1(a)].
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FIG. 1. (Color online) Kondo temperature TK as a function
of chemical potential μ. TK is defined by Simp/kB = (1/2)ln2.
VF: valence-fluctuation regime; LM: local-moment regime; FI:
frozen-impurity regime; SC: strong-coupling regime. (a) The zero-
temperature occupation number (n) of the impurity spin-up (spin-
down) state is displayed as a function of the magnitude of chemical
potential (|μ|) in the inset. (b) The dashed line, determined by
Simp/kB = 1.2ln2, indicates the approximate boundary between the
VF and LM regimes; the vertical dot line at μ = μc = 0.0126 eV
indicates the approximate boundary between the FI and SC regimes
(see Sec. III C). The minimal TK occurs at μ = μm = ∼0.04 eV.

Therefore, the system would enter the SC regime at lower
temperatures from the LM regime (i.e., the Kondo effect)
rather than the VF regime [Fig. 1(b)]. Interestingly, in the
SC regime (μ > μC), the rise of the Kondo temperature with
μ for μ > μm can be fitted by relation kBTK ≈ 0.01μ2.2. The
exponent is slightly smaller than that (2.6) in Ref. [25], in
which the Kondo model is considered.

It is reported in Ref. [37] that due to the unique electron-
phonon interaction, the electronic density of states near
the Dirac point in graphene would be renormalized when
|μ| > 0.2 eV. In particular, the density of states at the Dirac
point would become finite and the density of states in the
vicinity of this point would becomes quadratic rather than
linear [37]. Nevertheless, the Kondo scale (kBTK ) of the system
considered in this paper is ∼10−5–10−1 eV (Fig. 1). As a result,
even when the Dirac point is far away from the Fermi level
(|μ| > 0.2 eV), the finite density of states at the Dirac point
and also its quadratic ω dependence will have no significant
impact on the behaviors of the Kondo effect in graphene,
as demonstrated by our NRG calculations for μ = ±0.5 eV.
Therefore, throughout this paper, we neglect this effect of the
electron-phonon interaction and thus treat the density of states
as being linear in the energy range of |ω + μ| � Deff .

A. Resistivity versus temperature

Figure 2 shows the T dependence of the resistivity and
also the spectral function at T = 0 under different chemical
potentials. In the present calculations, we first set s(x) = 1,
and the scattering rate becomes the power law of r = 1. This
means that for the case of carbon vacancies, the higher-order
terms in the scattering rate are neglected, and that for the case of
adatoms only the hybridization of the impurity with conduction
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FIG. 2. (Color online) (a) Resistivity as a function of temperature
for different chemical potentials. Inset: Occupation number (n) of
the impurity spin-up (spin-down) state as a function of temperature
for different chemical potentials. (b) Impurity spectral function at
zero temperature under different chemical potentials μ. ω = 0 is the
Fermi level. The stars indicate the positions of the Dirac point; the
arrows denote the positions of the effective (renormalized) impurity
level (ε̃d ).

electrons below the impurity is considered. In general, all the
resistivity-versus-T curves in the graphene Kondo systems,
especially that for μ = 0.0126 eV, look similar to that of
the usual Kondo effect [38]. As the systems go through the
crossover region from the high-T VF regime to low-T FI (or
SC) regime, the resistivity increases steeply and eventually
saturates to the zero-temperature resistivity [ρm(0)] near TK .

Nevertheless, a closer examination of Fig. 2(a) shows that
many resistivity-versus-T curves exhibit certain prominent
features that are distinctly different from that in normal metals.
In particular, the resistivity-versus-T curves can be grouped
into three cases, depending on their chemical potentials
[Fig. 2(a)]. The first case includes the systems with negative
μ and also very small |μ| (e.g., μ = 0 and ±0.001 eV)
values. The resistivity curves in this case have a pronounced
peak near TK , especially for very small |μ| values. When
the temperature is lowered from about 100TK , the resistivity
first rises rapidly to that above ρm(0), but then drops quickly
to ρm(0) as temperature further decreases. This interesting
feature is caused by the fact that the resonance of the impurity
state is located at about 10 meV above the Fermi level [see
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FIG. 3. (Color online) Impurity spectral function for (a) μ =
0.001 eV and (b) μ = 0.0398 eV at different temperatures. ω =
0 is the Fermi level.

the inset in Fig. 2(b)]. Therefore, as temperature decreases, the
resonance peak becomes narrower and thus moves away from
the Fermi level [see the inset in Fig. 3(a)]. Furthermore, as
μ becomes more negative, the peak moves further above the
Fermi level [see, e.g., the curve for μ = −0.1 eV in Fig. 2(b)]
and, consequently, the pronounced peak near TK is reduced.
Interestingly, there is no Kondo resonance at the Fermi level in
the impurity spectral function at low temperatures in this case
[see, e.g., Fig. 3(a)]. Therefore, the systems are driven from
the high-T VF regime to the low-T FI regime rather than the
SC regime. Interestingly, Fig. 2(a) shows that in the crossover
from the VF to the FI regime, the resistivity curves in this case
approach their saturation value in the same manner. However,
the increase of the resistivity as the temperature decreases is
much more rapid [as 1.68(TK/T )3/2, as determined by a fitting
to the resistivity curves] than that in the conventional Kondo
effect [Fig. 2(a)].

The case of large positive μ values (μ > 0.0126 eV)
belongs to the second one. A common feature in this case
is that apart from the resonance peak due to the impurity state,
the sharp Kondo resonance appears at the Fermi level in the
spectral function [see, e.g., the curves for μ = 0.0398 and
0.10 eV in Fig. 2(b)]. As a result, the resistivity curve can be
divided into two parts. The first part, with T � 10TK , is mainly
caused by the scattering of the local moment. The other part,
with T < 10TK , is due to the strong coupling between the
impurity spin and conduction electrons. Figure 3(b) shows
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that in the spectral function for μ = 0.0398 eV, a wide peak
centered at the effective impurity level ε̃d = −0.021 eV (also
the Dirac point) and extended across the Fermi level forms at
high temperatures. The sharp Kondo resonance at the Fermi
level shows up as the temperature further decreases. The
scattering of the local moment gives rise to the broad resistivity
shoulder above 10TK [Fig. 2(a)]. The Kondo resonance then
causes the resistivity to rapidly rise, like the usual Kondo
effect, as the system enters the SC regime. This interesting
shoulder-peak feature can be attributed to the occurrence of
the additional LM fixed point [Fig. 1(b)], as already discussed
in the beginning of this section.

The third case includes the systems with a positive μ being
close to μ = 0.0126 eV. In this case, the impurity state peak is
located at the Fermi level [Fig. 2(b)] and hence is merged with
the Kondo resonance. There is no broad resistivity shoulder
above 10TK . The resistivity curves look almost identical to
that of conventional Kondo systems [Fig. 2(a)].

An interesting finding of this work is that for μ < μc,
the system would be in the FI regime rather than the SC
regime when T < TK (Fig. 1). In this FI regime, the spectral
function would have only one peak located at the effective
impurity level above the Fermi level [Figs. 2(b) and 3(a)].
In contrast, in the SC regime (μ > μc), the spectral function
would have two peaks: one sitting on the Fermi level and the
other located at the effective impurity level below the Fermi
level [Figs. 2(b) and 3(b)]. Since the effective impurity level
is above the Fermi level, the low-energy configuration of the
impurity in the FI regime would be a nearly empty state [see
the inset in Fig. 1(a)] and, therefore, there would be almost
no local magnetic moment. This is quite different from that
in the SC regime, where the local magnetic moment would be
screened due to the formation of the spin singlet state with the
conduction electrons.

B. Renormalization of the impurity level

In general, the impurity level in the Anderson model would
be renormalized due to the Coulomb correlations [33]. As a
result, the effective impurity level ε̃d in the pure graphene
would be shifted towards the Fermi level. The U/|εd | ratio
and the �0 value would determine whether the ε̃d is below or
above the Fermi level. With �0 being smaller than the critical
value �c, ε̃d would be located below the Fermi level. The
system would flow to the LM regime in this case. Furthermore,
since the density of states at the Fermi level is zero, the
impurity magnetic moment could not be completely screened.
Consequently, the system would stay in the LM regime at
low temperatures. However, in the asymmetric Anderson
model (U 
= 2|εd |) with �0 > �c, ε̃d would be located above
the Fermi level, and the system would flow to the FI
regime.

To evaluate the effective impurity level and also to see
how the position of the resonant peak (εr ) in the impurity
spectral function evolves as temperature varies, let us rewrite
the impurity Green’s function as

Gf
σ (ω,T ) = 1

(ω + iδ) − εd − �U
σ (ω,T ) − �σ (ω)

, (15)
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FIG. 4. (Color online) The energy of the resonant peak [εr (T )]
in the impurity spectral function for different chemical potentials as
a function of temperature. The real part of the self-energy due to the
Coulomb correlations [Re�U

σ (0,T )] for different chemical potential
as a function of temperature is displayed in the inset of (a). The arrows
indicate the temperatures (Tb) at which εr (Tb) is equal to the energy
of the effective impurity level (ε̃d ).

where δ → 0+, �U
σ (ω,T ) is the self-energy due to the

Coulomb correlations, and �σ (ω), given by

�σ (ω) =
∫ D

−D

�(ω′)/π
(ω + iδ) − ω′ dω′, (16)

is the self-energy caused by the asymmetry of �(ω). By
expanding both �U

σ (ω,T ) and �σ (ω) in powers of ω, Gf
σ (ω,T )

can be rewritten as

Gf
σ (ω,T ) = z

(ω + iδ) − εr (T ) − iIm�̃σ

, (17)

where z−1 = 1 − Re[∂�U
σ (ω,T )/∂ω]ω=0−[∂�σ (ω)/∂ω]ω=0,

�̃σ = z�σ (0), and εr (T ) = z[εd + Re�U
σ (0,T ) + Re�σ (0)]

is the energy position of the resonance. Note that the meaning
of εr (T ) differs in the different regimes. In particular, in the
FI or LM regime, εr (T ) is the energy of the effective impurity
level ε̃d , whereas in the SC regime, it is the position of the
Kondo resonance.

Figure 4 shows εr (T ) and Re�U
σ (0,T ) for different chemi-

cal potentials as a function of temperature. As the temperature
gets lowered from the high-T VF regime, εr (T ) would decrease
monotonically until the boundary between the VF and FI (LM)
regimes for μ < 0.0126 eV (μ > 0.0126 eV) (Fig. 1). At
the boundary (T = Tb), the impurity level forms and εr (T )
becomes equal to the energy of the effective impurity level
ε̃d [i.e., ε̃d = εr (Tb)], as indicated by the arrows in Figs. 2(b)
and 4. Clearly, the lowering of εr (T ) is caused by the decrease
of Re�U

σ (0,T ) due to the increasing strength of the weak
interaction between the impurity and conduction electrons
[see Fig. 4(a) inset]. Interestingly, at T = Tb, Re�U

σ (0,T ) ≈
−(εd + μ) [see Fig. 4(a) inset].

In the case of μ < 0.0126 eV, Re�U
σ (0,T ) and hence εr (T )

would then remain unchanged when temperature is further
lowered. For very small |μ| values (e.g., μ = 0, ±0.001 eV),
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ε̃d is located right above the Fermi level [see Fig. 2(b) and
Fig. 4(b) inset]. For the negative μ (e.g., μ = −0.1 eV),
ε̃d would move further above the Fermi level. Therefore,
the systems would flow to the FI regime since the impurity
state is unbound (ε̃d > 0). In contrast, for μ > 0.0126 eV
(e.g., μ = 0.0398 or 0.1 eV), ε̃d < 0 and the bound impurity
state forms near Tb. Therefore, the system would first flow
to the LM regime. As temperature further decreases, the
impurity state would then interact very strongly with the
conduction electrons, resulting in the pronounced increase of
Re�U

σ (0,T ) [see Fig. 4(a) inset]. Consequently, εr (T ) would
be renormalized to the Fermi level, and the sharp Kondo
resonance at the Fermi level would develop [Fig. 3(b)], as
the systems move from the LM regime to the SC regime [see
Figs. 1(b) and 4]. The local magnetic moment would then
be screened at low temperatures. Clearly, μ = 0.0126 eV is
the critical μ value that separates the FI and SC regimes [see
Fig. 1(b)]. In this case, ε̃d = 0, i.e., the effective impurity level
is located right at the Fermi level.

C. Dephasing rate versus temperature

The calculated dephasing rates as a function of temperature
for different chemical potentials are displayed in Fig. 5(a). To
help understand the calculated dephasing rates, we show the
ω-resolved dephasing rates at zero temperature for different
chemical potentials in Fig. 5(b). For the same purpose,
we also display the ω-resolved dephasing rates at different
temperatures for μ = 0.001 and 0.0398 eV in Fig. 6. The
zero-temperature ω-resolved dephasing rates are very similar
to the corresponding impurity spectral functions [Fig. 2(b)],
except at the Fermi level where the ω-resolved dephasing
rates are always zero in the T = 0 limit. In general, however,
the curves of the dephasing rate as a function of temperature
look quite different from that of the resistivity [see Figs. 2(a)
and 5(a)]. Figure 5(a) shows that all the dephasing rate curves
constitute mainly a prominent peak in the crossover region.
When the system enters the crossover region, the dephasing
rate increases rapidly as temperature decreases, and reaches the
maximum near the center of the crossover region. However, as
temperature further decreases, the system enters the SC (FI)
regime for μ > 0.0126 eV (μ < 0.0126 eV). Consequently,
the dephasing rate drops sharply and finally vanishes in the
T = 0 limit.

Figure 5(a) shows that, as for the resistivity curves, the
dephasing rate curves can be grouped into three cases. In
this first case (μ < 0.0126 eV), the dephasing rate curves
have a narrower peak compared to that of the conventional
Kondo effect. Indeed, the dephasing rate begins to increase
at a lower T/TK than that in normal metals and also in
the systems with a large positive μ (e.g., μ = 0.0398 or
0.1 eV). Furthermore, the increasing slope is steep and a
fitting to the dephasing rate curve gives a rising function
of ∼4.6(TK/T ). In the lower-temperature side of the peak,
the dephasing rate drops more quickly than that in normal
metals and also for μ � 0.0126. A fitting to the dephasing rate
curves gives a dropping function of ∼0.10(T/TK )3, which is
distinctly different from the (T/TK )2 behavior obtained using
Fermi-liquid theory for normal metals [13]. This interesting
behavior may be attributed to the fact that the effective impurity
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FIG. 5. (Color online) (a) Total dephasing rates as a function of
temperature for different chemical potentials. γmax is the maximal
dephasing rate. (b) Zero-temperature ω-resolved dephasing rates for
different chemical potentials μ. 1/τ0 = 2cimp�v2

F /�0|μ0| with μ0 =
1 eV. ω = 0 is the Fermi level. The stars indicate the positions of the
Dirac point; the arrows denote the positions of the effective impurity
level (ε̃d ).

level is located above the Fermi level (ε̃d > 0) and thus the
Fermi level is not in the range of the impurity state peak in
the low-T limit [Figs. 2(b), 5(b), and 6(a)]. Therefore, in the
crossover from the VF to the FI regime, the dephasing rate,
after reaching the maximum, will drop sharply since the width
of the peak rapidly becomes narrower with the decreasing
temperature [see Fig. 6(a)]. All scatterings, including the
inelastic scattering, would be suppressed in the T = 0 limit.

In the second case (μ > 0.0126 eV), although the dephas-
ing rate curve is almost identical to the curve of the con-
ventional Kondo effect below the peak temperature (Tm), the
dephasing rate curve differs significantly above Tm [Fig. 5(a)].
In particular, the dephasing rate curve has a pronounced
shoulder above 100TK . This is caused by the occurrence of
the LM fixed point in this case (Fig. 1). In the LM regime, the
dephasing rate first rises well above 100TK due to the inelastic
scattering of the local moment, which gives rise to a broad
peak covering the Fermi level [Fig. 5(b)]. This results in a
wide shoulder above 100TK . In the crossover from the LM to
the SC regime, the dephasing rate then rises more quickly to the
maximum since the impurity now becomes entangled with the
conduction electrons. This is illustrated for μ > 0.0398 eV
in the inset in Fig. 6(b), where it is seen that the Kondo
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resonance grows rapidly as TK is approached from above.
As the temperature further decreases, however, the dephasing
rate drops sharply and eventually vanishes because the Kondo
resonance starts to decrease and eventually drops to zero [see
the inset in Fig. 6(b)] since the impurity magnetic moment is
now totally screened.

In the third case (i.e., μ ≈ 0.0126 eV), the dephasing rate
curve is similar to that for the conventional Kondo effect. In
particular, the two dephasing rate curves are nearly identical
in the low-temperature side of the peak [Fig. 5(a)]. This is
because at this μ value, the Fermi level falls within the range
of the impurity state peak in the spectral function [Figs. 2(b)
and 5(b)]. This causes the behavior of the dephasing rate to be
similar to that of the conventional Kondo effect.

D. Saturation resistivity

As temperature tends to zero, −[∂f (ω)/∂ω] ≈ δ(ω), and
hence the saturation (i.e., zero-temperature) resistivity can be
approximated as

ρm(0)μ 
=0 = ρ0|Vhyb(0)|2Af
σ (0,0)

|μ| . (18)

For the μ = 0 case, the zero-temperature resistivity should be
calculated by using

ρm(0)μ=0 = ρ0|Vhyb(0)|2�0/πDeff[
εd + �U

σ (0,0)
]2 . (19)
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FIG. 7. (Color online) Resistivity at zero temperature as a func-
tion of chemical potential. Filled and open symbols are for the positive
and negative chemical potentials, respectively. Blue diamond lines are
for the case of carbon vacancies, and purple up-triangle lines are for
the case of magnetic adatoms.

The calculated zero-temperature resistivity as a function of
chemical potential is plotted in Fig. 7. First of all, Fig. 7 shows
that the ρm(0) values for the negative μ values are more than
10 times smaller than that for the positive μ values, further
indicating a strong particle-hole asymmetry in the graphene
Kondo systems. This can be explained as follows. For the
positive μ values (μ > 0.0126 eV), as discussed in Sec. III B,
ε̃d < 0 and thus the bound impurity state with the local moment
is present. Consequently, the system will flow to the SC regime
and the Kondo resonance will occur at the Fermi level as
temperature goes to zero. This Kondo effect results in a very
strong scattering and hence a very large resistivity at T = 0 K.
For the negative μ values, on the other hand, ε̃d > 0 and thus
the impurity state is unbound. As a result, the system will flow
to the FI regime and no Kondo resonance will develop at the
Fermi level. Therefore, the scattering will be much suppressed
at low temperatures, compared with the case of μ > 0.0126 eV,
resulting in a much smaller T = 0 resistivity.

Second, Fig. 7 also indicates that for large positive μ values
(μ > 0.0126 eV), all of the calculated resistivities at T = 0 K
collapse onto the solid line determined by Eq. (20). In this case,
as mentioned before, the system will flow to the SC regime
and εr (T ) ≈ 0 at low temperatures. Therefore, Af

σ (0,0) can be
approximated as 1/(π�0

|μ|
Deff

). Plugging this into Eq. (18), the
resistivity at T = 0 K can be written as

ρm(0) = λρ0

∣∣∣∣ μ

μ0

∣∣∣∣
−2

, (20)

where λ = π�0|μ0|2/(4�
2v2

F ) and μ0 = 1 eV. Clearly, this
saturation value is independent of �0, εd , and U . Therefore,
the zero-temperature resistivities collapse onto the solid line
determined by Eq. (20). This is also a manifestation of the
occurrence of the Kondo resonance in the graphene systems
with a positive μ (μ � 0.0126 eV).
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E. Effect of higher-order terms

Finally, we consider the first higher-order term. Figure 7
shows that the results for the cases of α 
= 0 and β 
= 0
qualitatively agree with the case of the pure power law
of r = 1, albeit with a larger �0. This is because for the
case of carbon vacancies, total hybridization becomes larger
when the higher-order terms are considered, resulting in
a larger effective �0. For the case of magnetic adatoms,
in the presence of the hybridization between the impurity
and the conduction electrons on the next-nearest neighbors,
�(ω) becomes asymmetric, giving rise to a larger Re�σ (0).
Therefore, the effective impurity level will rise. As a result, the
system needs a larger chemical potential to bring the effective
impurity level back to below the Fermi level, which has the
same effect of a larger �0.

IV. COMPARISON TO EXPERIMENTS

Recent experiments showed that the Kondo effect could be
observed in graphene with point defects and vacancies [22].
Two prominent features about the transport properties from
the experiments were reported [22]. First, the Kondo effect
was observed in graphene under a wide range of applied
gate voltages (up to |Vg| =∼50 V, which is equivalent to
|μ| =∼0.25 eV). Second, the normalized Kondo part of the
resistivity appeared to be a universal function of T/TK (Vg),
which could fit well to that for the conventional Kondo
effect obtained from much earlier NRG calculations [32]. In
principle, this could be explained as follows. With a large
applied gate voltage, the Dirac point would lie well below
the Fermi level. The two important properties of graphene,
namely, zero density of states at the Dirac point and linear
energy dependence of the density of states, would hardly affect
the transport properties of the system. Therefore, the system
would behave like the conventional Kondo system. Indeed, as
discussed before in Sec. III A, the shape of the resistivity-
versus-T curve for μ ≈ 0.0126 eV calculated here looks very
similar to that of the conventional Kondo effect [Fig. 2(a)].
However, as reported in Sec. III A, our calculated resistivity
curves for other chemical potentials show several unusual
features which were not observed in the experiments [22].

Very recently, the difficulties in uncovering the Kondo effect
in graphene by resistivity measurements because of a possible
similar contribution from the electron-electron interaction to
the low-temperature resistivity were reported [39]. On the
other hand, Fig. 5(a) shows that all of the dephasing rates
in the graphene Kondo systems exhibit characteristic features
that are distinctly different from that of the conventional Kondo
effect. Therefore, we would suggest further measurements on
the dephasing rate in graphene. With the distinct characteristics
we have shown in Sec. III, the unusual features of the
resistivity and dephasing rate in graphene could be identified.
Furthermore, we would also suggest further scanning tun-
neling spectroscopy (STS) experiments on the Kondo effect

in graphene. As noted in Sec. III A, in the FI regime, the
impurity spectral function has only one peak at the effective
impurity level above the Fermi level. On the other hand, in
the SC regime, the spectral function has two peaks, located
at the Fermi level and also at the effective impurity level below
the Fermi level, respectively. These spectroscopic signatures of
the FI and SC regimes could be used in future STS experiments
to differentiate whether the “Kondo effect” in graphene takes
place from the VF to the FI regime or from the LM to the SC
regime.

V. CONCLUSIONS

We have investigated the resistivity and dephasing rate in
the Kondo regime due to magnetic impurities in graphene
under different gate voltages by NRG calculations. We find
that although the Anderson impurity model considered here
is a mixed-valence system, it can be driven into either the
Kondo [μ > μc], mixed-valency (μ ≈ μc), or empty-orbital
(μ < μc) regime by a gate voltage, thereby resulting in
characteristic features in resistivity and dephasing rate in each
regime. In particular, in the case of μ < μc, the shapes of
the resistivity (dephasing rate) curves are nearly identical.
However, as temperature decreases, they start to increase
to their maxima at a lower T/TK , but more rapidly [as
(TK/T )3/2] than in normal metals. As T further decreases,
after reaching the maximum, the dephasing rate drops more
quickly than in normal metals, behaving as (T/TK )3 instead of
(T/TK )2. Furthermore, the resistivity has a pronounced peak
above the saturation value near TK . In the case of μ > μc, in
contrast, the resistivity curve has an additional broad shoulder
above 10TK and the dephasing rate exhibits an interesting
shoulder-peak shape. In the narrow boundary region (μ ≈ μc),
both the resistivity and dephasing rate curves are similar to the
corresponding ones in normal metals. The interesting results
of the resistivity and dephasing rate are analyzed in terms of
the calculated spectral function, self-energy due to Coulomb
correlation, and also effective impurity level. The calculated
resistivity in the vicinity of μ ≈ μc is in good agreement with
the conventional Kondo-like resistivity observed in the recent
experiments, although the interesting features in the resistivity
in the other cases (μ < μc or μ > μc) predicted here were not
seen in the experiments. We hope that the unusual features of
the Kondo resistivity and dephasing rate in graphene reported
here will stimulate further transport experiments on the Kondo
effect in graphene.
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