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a b s t r a c t

The Gram–Charlier and Edgeworth series are expansions of probability distribution in
terms of its cumulants. The expansions for the multivariate case have not been fully
explored. This paper aims to develop themultivariate Gram–Charlier series byWoodroofe–
Stein’s identity, and improve its approximation property by using the scaled normal density
and Hermite polynomials. The series are useful to reconstruct the probability distribution
from measurable higher moments.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

There exist several types of expansions of a univariate probability density function (pdf) in the orthogonal sets of Hermite
polynomials. The expansions express the probability distribution in terms of its moments or cumulants. Three well-known
expansions are the Gram–Charlier, Gauss–Hermite, and Edgeworth series. The first two series differ from each other in using
different sets of Hermite polynomials, while the Edgeworth series differs from the first two series in that it collects terms of
the same order. So, the Edgeworth series is an asymptotic expansion, whereas the other two are not.

It is known that the Gram–Charlier series may diverge in many cases of interest, and that even the asymptotic Edge-
worth series may not converge. For the one-dimensional case, if the pdf p(z) is of bounded variation in (−∞, ∞) and the
integral


∞

−∞
p(z) exp(z2/4)dz exists, the Gram–Charlier series converges; on the other hand, if the conditions are not sat-

isfied, the expansions may diverge (Cramér, 1946, Chapter 17). Blinnikov and Moessner (1998) gave a comparison of the
Gram–Charlier, Gauss–Hermite, and Edgeworth series. They showed that the Edgeworth expansion is the best among them;
however, for strongly non-Gaussian cases, like χ2

ν with degrees of freedom ν = 2, the Edgeworth series also diverges like
the Gram–Charlier series.

Despite divergence in some cases, in many practical applications what we really concern is whether a small number of
terms suffice to give a good approximation (Cramér, 1946). In fact, these expansions are useful to measure the deviations of
a pdf from the normal pdf, to provide correction terms for density approximation, and to reconstruct a pdf by measurable
higher order moments. They have been used in a variety of areas. For instance, Sargan (1975, 1976) introduced it into
econometrics; Van Der Marel and Franx (1993), Scherrer and Bertschinger (1991), and Blinnikov and Moessner (1998)
applied the Gram–Charlier, Gauss–Hermite, and Edgeworth expansions in astrophysics; Comon (1994) and Amari et al.
(1996) used the Edgeworth series in Independent Component Analysis to approximate the one-dimensional differential
entropy; Hall (1992) showed how Edgeworth expansion and bootstrap methods can help explain each other; Rubinstein
(1998) employed the Edgeworth expansion to value derivatives, among others.

Though there are many applications based on the expansion for the one-dimensional probability density, relatively few
studies are available for the multivariate densities. To the best of our knowledge, the most comprehensive account of the
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expansions for the multivariate case is by Barndorff-Nielsen and Cox (1989). Basically, they take the traditional approach
which inverts expansions of the characteristic functions by the inverse Fourier transform. Other studies for the multivariate
cases include Csörgő and Hegyi (2000), Van Hulle (2005), among others.

Instead of inverting the characteristic function, Weng (2010) derived the Gram–Charlier type and Edgeworth type
expansions of a univariate pdf based on a version of Stein’s identity. The identity is essentially repeated integration by parts,
which naturally leads to a series expansion. This version of Stein’s identity was developed by Woodroofe (1989, 1992a)
for obtaining integrable expansions for posterior distributions. It is closely related to the well-known Stein’s lemma (Stein,
1981) — the latter considers the expectation with respect to a normal distribution, while the former the expectation with
respect to a ‘‘nearly normal distribution’’ Γ in the sense of (7); and both are proved by an application of Fubini theorem.
Stein’s lemma (Stein, 1981) is famous for its applications to James–Stein estimator (James and Stein, 1961) and empirical
Bayes methods. As for Stein’s identity, it has been applied to set frequentist corrected confidence sets following sequentially
designed experiments (e.g. Woodroofe, 1992b; Coad and Woodroofe, 1996; Weng and Woodroofe, 2006, among others),
and to Bayesian inference (e.g. Weng, 2003; Baghishania and Mohammadzadeh, 2012, among others). Recently Weng and
Lin (2011) applied this identity to derive Bayesian online algorithms for ranking players; and to distinguish it from the
well-known Stein’s lemma, they coined it asWoodroofe–Stein’s identity. The identity may be further explored.

The main contribution of present paper is a theoretical advancement in generalizing Weng’s (2010) approach to give
a closed-form expression for the multivariate Gram–Charlier expansion. Furthermore, as the Gram–Charlier series suffers
from poor convergence, a modified series is proposed for better convergence properties. The modification starts by suitably
scaling the variable and applying the expansion to pdf of the scaled variable, and then converted back to the original variable.

The remaining of this paper is organized as the following. The next section provides some reviews. Section 3 presents the
Gram–Charlier type expansion for multivariate densities and describes the proposed modified series. Section 4 concludes.

2. Reviews

2.1. Woodroofe–Stein’s identity

We review the identity. Some results here will be generalized in Section 3.1. Some definitions and notations are needed.
Let φp and Φp denote the density and distribution function of a standard p-variate normal distribution, and abbreviate Φ1
and φ1 as Φ and φ. For a function h : Rp

→ R, we may write

Φph ≡


hdΦp (1)

for simplicity, provided the integral is finite. Let h0 = Φph be a constant, hp(z) = h(z),

hj(z1, . . . , zj) =


Rp−j

h(z1, . . . , zj,w)dΦp−j(w), and (2)

gj(z1, . . . , zp) = ez
2
j /2


∞

zj
[hj(z1, . . . , zj−1, w) − hj−1(z1, . . . , zj−1)]e−w2/2dw, (3)

for −∞ < z1, . . . , zp < ∞ and j = 1, . . . , p.

Lemma 2.1. For a function h : Rp
→ R, let hj and gj be as in (2) and (3). If h(z) depends on z only through z1, . . . , zi, then we

have hj(z1, . . . , zj) = h(z) for all j ≥ i; and consequently, gj(z) ≡ 0 for all j > i.

The proof of the lemma is straightforward from (2) and (3), so we omit it. Now we shall define operators U(h) and U2(h)
associated with h. Let U(h) denote the vector of the functions gj in (3),

U(h) = [g1, . . . , gp]T . (4)

For example, for z ∈ ℜ
p, if h(z) = z1, then Uh(z) = (1, 0, . . . , 0)T and if h(z) = ∥z∥2, then Uh(z) = z . Further, let U2

denote the composition of U with itself:

U2(h) = U(U(h)) = [U(g1), . . . ,U(gp)]T , (5)

which is a p × p matrix whose jth row is U(gj) and gj is as in (3). Since gj(z) defined in (3) depends only on (z1, . . . , zj), by
Lemma 2.1 we have that U2(h) is a lower triangular matrix. Next, define

V (h) =
U2(h) + (U2(h))T

2
=

1
2
{[U(g1), . . . ,U(gp)]T + [U(g1), . . . ,U(gp)]}. (6)

Then, V (h) is a symmetric matrix.
A function f : Rp

→ R is said to be almost differentiable if there exists a function ∇f : Rp
→ Rp such that

f (z + x) − f (z) =

 1

0
xT∇f (z + tx)dt
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for z, x ∈ Rp. We note that a continuously differentiable function f is almost differentiable with ∇f equal to its gradient. Let
Γ be a measure of the form:

dΓ (z) = f (z)φp(z)dz, (7)
where f is a real-valued function (not necessarily non-negative) defined on Rp.

Proposition 2.1 (Woodroofe–Stein’s Identity). Suppose that dΓ is defined as in (7), where f is almost differentiable. Let h be a
real-valued function defined on Rp. Then,


h(z)dΓ (z) =


h(z)f (z)dΦp(z) and

h(z)f (z)dΦp(z) =


h(z)dΦp(z) ·


f (z)dΦp(z) +


(Uh(z))T∇f (z)dΦp(z), (8)

provided all the integrals are finite.

Proposition 2.1 was given by Woodroofe (1989). The last term on the right side of (8) can be further expanded. The
derivation is in Proposition 2 of Woodroofe and Coad (1997) and Lemma 1 of Weng and Woodroofe (2000). We sketch the
proof below as it is needed in Theorem 3.1. First assume that ∂ f /∂zj, j = 1, . . . , p are almost differentiable. Next, by writing

(Uh(z))T∇f (z) =

p
i=1

gi(z)
∂ f (z)
∂zi

and applying (8) with h and f replaced by gi and ∂ f /∂zi, we obtain
gi

∂ f
∂zi

dΦp(z) =


gi(z)dΦp(z) ·


∂ f
∂zi

dΦp(z) +


(U(gi))T∇


∂ f
∂zi


dΦp(z), (9)

provided all the integrals are finite. Then, summing up both sides of (9) over i = 1, . . . , p and making use of the notations
(5) and (6), we can rewrite (8) as

h(z)f (z)dΦp(z) =


h(z)dΦp(z) ·


f (z)dΦp(z)

+


(Uh(z))dΦp(z)

T 
∇f (z)dΦp(z) +


tr

(Vh(z))∇2f (z)


dΦp(z); (10)

where ‘‘tr’’ denotes the trace of amatrix, and∇
2f theHessianmatrix of f . Recall in (1)we denote byΦph the integral of hwith

respect toΦp. Analogously, we denote byΦp(Uh) for integrals of a vector of functions Uh,Φp(Uh) = (Φp(g1), . . . , Φp(gp))T ;
and similarly Φp(Vh) for a matrix function Vh.

Lemma 2.2. The integrals Φp(Uh) and Φp(Vh) can be expressed as

Φp(Uh) =


Rp

zh(z)Φp(dz), (11)

Φp(Vh) =


Rp

1
2
(zzT − Ip)h(z)Φp(dz). (12)

Eq. (11) can be obtained by taking f (z) in (8) as zi, and Eq. (12) by taking f (z) in (10) as zizj for i, j = 1, 2, . . . , p.
Now suppose that the pdf of a random vector Z takes the form

p(z) = cφp(z)f (z), (13)
where c is the normalizing constant (not necessarily known). Clearly (13) is of the form (7). So, we can apply (8) and (10) to
obtain the expectations:

E[h(Z)] = Φph + E

[Uh(Z)]T

∇f (Z)

f (Z)


, (14)

E[h(Z)] = Φph + (ΦpUh)TE


∇f (Z)

f (Z)


+ E


tr

Vh(Z)

∇
2f (Z)

f (Z)


. (15)

By (4), if h(z) = zi, then Uh(z) = ei; and if h(z) = zizj, where i ≤ j, then Uh(z) = ziej, where {e1, e2, . . . , ep} denotes the
standard basis for Rp. With these h in (14) and (15), we have the following result:

Lemma 2.3. Let Z be a random vector whose pdf takes the form (13). Then,

E(Z) = E


∇f (Z)

f (Z)


and E(ZiZj) = δij + E


∇

2f (Z)

f (Z)


ij
, (16)

where [·]ij denotes the (i, j) component of a matrix and δij = 1 if i = j and 0 otherwise.



R.C. Weng / Journal of Statistical Planning and Inference 167 (2015) 174–181 177

2.2. Bayesian connections

Woodroofe–Stein’s identity fits to Bayesian framework. Let ℓ(θ) be the log-likelihood based on data D, where θ ∈ Rp.
Assume that ℓ(θ) is twice continuously differentiable with respect to θ. Assume also that themaximum likelihood estimator
θ̂ satisfies∇ℓ(θ̂) = 0 and−∇

2ℓ(θ̂) being positive definite, where∇ indicates differentiationwith respect to θ. Define a p×p
matrix Σ and a p-dimensional random vector Z as

ΣTΣ = −∇
2ℓ(θ̂) and Z = Σ(θ − θ̂). (17)

Consider a Bayesian model in which θ has a prior density ξ . Then the posterior density of θ given data D is p(θ|D) ∝

exp(ℓ(θ))ξ(θ), and the posterior density of Z is

p(z|D) ∝ exp[ℓ(θ) − ℓ(θ̂)]ξ(θ), (18)

where the relation of θ and z is given in (17). Now define

u(θ) = ℓ(θ) − ℓ(θ̂) +
1
2
∥z∥2 and f (z) = ξ(θ(z)) exp[u(θ)].

So, (18) can be rewritten as

p(z|D) ∝ φp(z)f (z). (19)

Since (19) is of the form (7), Proposition 2.1 can be applied.
In the context of Bayesian inference, Weng (2010) specialized Woodroofe–Stein’s identity to the 1-dimensional case to

obtain asymptotic expansions for marginal posterior densities. Let qk denote Hermite polynomials, given by

qk(x)φ(x) = (−d/dx)kφ(x). (20)

For instance, for k = 0, 1, . . . , 4 the Hermite polynomials are q0(x) = 1, q1(x) = x, q2(x) = x2 − 1, q3(x) = x3 − 3x, and
q4(x) = x4 − 6x2 + 3. The Hermite polynomials are orthogonal with respect to the standard normal pdf:

qk(x)qj(x)dΦ(x) = k! if k = j, and 0 if k ≠ j. (21)

Let Z = (Z1, . . . , Zp)T as in (17) and denote the posterior expectation given data D as E(·|D). Weng (2010) obtained the
marginal posterior distribution of Zi:

p(zi) = φ(zi) +


j∈{1,...,3s}
j≠3s−1

1
j!
qj(zi)φ(zi)E[qj(Zi)|D] + O(t−

3s+1
2 +s), (22)

provided some regularity conditions hold. If we disregard the error order and arrange terms in (22) according to j, it becomes

p(x) ∼

∞
j=0

cjqj(x)φ(x), with cj =
1
j!


∞

−∞

p(x)qj(x)dx. (23)

The series (23) is commonly known as the Gram–Charlier series of type A (see Kendall and Stuart, 1977). As pointed out in
Blinnikov and Moessner (1998), (23) is in fact a Fourier expansion of p(x)/φ(x) in Hermite polynomials:

p(x)
φ(x)

=


j


p
φ

,
qj

√
j!


qj(x)
√
j!

,

where the inner product ⟨·, ·⟩ of two functions f1 and f2 is defined as

⟨f1, f2⟩ ≡


R1

f1(x)f2(x)φ(x)dx. (24)

3. Main results

The method in Weng (2010) may readily be generalized to the Gram–Charlier series for multivariate densities, but not
restricted to a posterior density as in Section 2.2.

3.1. Expansions for multivariate case

We shall expand the identities (8) and (10) to (28) in Theorem 3.1, extend Lemmas 2.2 and 2.3 to Propositions 3.2 and
3.3, respectively, and then establish the multivariate Gram–Charlier expansion in Theorem 3.2.



178 R.C. Weng / Journal of Statistical Planning and Inference 167 (2015) 174–181

Some new notations are needed. For a function h : Rp
→ R, let h(0)

= h, and write U(h) and U2(h) in (4) and (5) as h(1)

and h(2):

h(1)
= U(h) = [h(1)

1 , . . . , h(1)
p ]

T , h(2)
= U2(h) = {h(2)

i1 i2
: i1, i2 = 1, . . . , p}.

So, h(0) is a function, h(1) is a p×1 vector (1-dimensional array) of functions, and h(2) is a p×pmatrix (2-dimensional array)
of functions whose jth row is U(h(1)

j ). Analogously, denote a p × p × · · · × p array (k-dimensional array) of functions

h(k)
= Uk(h) = U(Uk−1h) = {h(k)

i1 i2···ik
: i1, i2, . . . , ik = 1, . . . , p},

where U(h(k−1)
i1···ik−1

) = [h(k)
i1···ik−11

, h(k)
i1···ik−12

, . . . , h(k)
i1···ik−1p

]
T . For any function f : Rp

→ R, denote by f (s)
i1,...,is

(z) the sth derivative
of f with respect to zi1 , . . . , zis :

f (s)
i1,...,is

(z) =
∂ sf (z)

∂zi1 · · · ∂zis
. (25)

With these definitions and notation (1), we can rewrite (8) and (10) as

Φp(hf ) = Φp(h) · Φp(f ) +


i1

Φp(h
(1)
i1

f (1)
i1

) (26)

Φp(hf ) = Φp(h) · Φp(f ) +


i1

Φp(h
(1)
i1

)Φp(f
(1)
i1

) +


i1,i2

Φp(h
(2)
i1 i2

f (2)
i1 i2

), (27)

where the summation is over i1, i2 = 1, . . . , p.

Theorem 3.1. Let s be any positive integer. Then,

Φp(hf ) = Φp(h) · Φp(f ) +


i1

Φp(h
(1)
i1

)Φp(f
(1)
i1

) +


i1,i2

Φp(h
(2)
i1 i2

)Φp(f
(2)
i1 i2

) + · · ·

+


i1,i2,...,ik−1

Φp(h
(k−1)
i1 i2···ik−1

)Φp(f
(k−1)
i1i2···ik−1

) +


i1,i2,...,ik

Φp(h
(k)
i1 i2···ik

f (k)
i1 i2···ik

), (28)

provided all the integrals exist.

Proof. It will be proved by induction. First, if k = 1 and 2, (28) reduces to (26) and (27). Next, suppose that (28) holds for
k = j − 1. So, the last term in the equation will be


i1,i2,...,ij−1

Φp(h
(j−1)
i1i2···ij−1

f (j−1)
i1i2···ij−1

). It now suffices to show that (28) holds

for k = j. To verify this, similar to (9) we apply (8) but with h and f replaced by h(j−1)
i1i2···ij−1

and f (j−1)
i1i2···ij−1

, which gives

Φp(h
(j−1)
i1 i2···ij−1

f (j−1)
i1 i2···ij−1

) = Φp(h
(j−1)
i1 i2···ij−1

)Φp(f
(j−1)
i1 i2···ij−1

) +


ij

Φp(h
(j)
i1 i2···ij

f (j)
i1 i2···ij

). (29)

Then, summing up both sides of (29) over ij = 1, . . . , p gives the desired result. �

We remark here that the derivation of Woodroofe–Stein’s identity involves interchanging the order of integration, and
(28) is essentially repeated applications of interchange of the order of integration.

Some notations are needed for Proposition 3.2. Given a positive integer s and nonnegative integers ri, i = 1, . . . , p for
which

p
j=1 rj = s, we define

Isr1,...,rp =


(i1, . . . , is) :

s
j=1

1{ij=k} = rk, for k = 1, . . . , p


, (30)

which represents the set of all possible ways to split n objects into p distinct groups of sizes r1, . . . , rp, respectively. For
instance, if p = 2, then I32,1 = {(1, 1, 2), (1, 2, 1), (2, 1, 1)}. Clearly, the elements in Isr1,...,rp are permutations of one another,
and the number of elements in this set is the multinomial coefficient defined by

s
r1, r2, . . . , rp


=

s!
r1!r2! · · · rp!

. (31)

For p = 2, (31) becomes the binomial coefficient C s
r1 .
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Proposition 3.2. Let s be any positive integer and rj, j = 1, . . . , p be nonnegative integers for which
p

j=1 rj = s. Then,


(i1,...,is)∈Isr1,r2,...,rp

Φh(s)
i1···is

=

 s
r1,r2,...,rp


s!


Rp

p
j=1

qrj(xj)h(x)dΦp(x), (32)

where qi are the Hermite polynomials defined in (20).

The proof is by induction and we omit it. This proposition extends Lemma 2.2, which contains the cases of s = 1 and 2.
More explicitly, for s = 1, if we take f (z) = zi in (26) for 1 ≤ i ≤ p, it gives

Φph
(1)
i =


xih(x)φp(x)dx.

This is the component-wise expression of (11), and is exactly a special case of (32) with s = ri = 1 and rj = 0 for j ≠ i. For
s = 2, we can take f (z) = zizj in (27) for 1 ≤ i, j ≤ p to obtain expressions for Φph

(2)
ij . For instance, if f (z) = z2i , we obtain

Φph
(2)
ii =


1
2
(x2i − 1)φp(x)dx, (33)

which is a special case of (32) when s = ri = 2 and rj = 0 for j ≠ i; and if f (z) = zizj for i ≠ j, we obtain

Φph
(2)
ij + Φph

(2)
ji =


xixjφp(x)dx, (34)

which is a special case of (32) when s = 2, ri = rj = 1, and rk = 0 for k ≠ i, j. Moreover, combining (33) and (34) gives (12).
Now suppose that the pdf of a random vector Z takes the form p(z) = cφp(z)f (z) as in (13), where the normalizing

constant c is not necessarily tractable. Then, E[h(Z)] = Φp(chf ) and by (28) we obtain

E[h(Z)] = Φph +


i1

Φph
(1)
i1

E


f (1)
i1

(Z)

f (Z)


+


i1,i2

Φph
(2)
i1 i2

E


f (2)
i1 i2

(Z)

f (Z)


+ · · ·

+


i1,...,is−1

(Φph
(s−1)
i1...is−1

)E


f (s−1)
i1...is−1

(Z)

f (Z)


+


i1,...,is

E


h(s)
i1...is

(Z)
f (s)
i1...is

(Z)

f (Z)


, (35)

provided all the expectations exist. When s = 1 and 2, the above equations become (14) and (15); furthermore, (16) in
Lemma 2.3 can be rewritten as

E
 f (1)

i (Z)

f (Z)


= E(Zi), E

 f (2)
ii (Z)

f (Z)


= E(Z2

i − 1), E
 f (2)

ij (Z)

f (Z)


= E(ZiZj), if i ≠ j.

The proposition below extends Lemma 2.3 to higher moments. The proof is by induction and we omit it.

Proposition 3.3. Suppose that the pdf of Z takes the form (13). Let s be any positive integer and rj, j = 1, . . . , p be nonnegative
integers for which

p
j=1 rj = s. Suppose that E(

p
j=1 Z

rj
j ) < ∞. Then,

E


f (s)
i1...is

(Z)

f (Z)


= E


p

j=1

qrj(Zj)


. (36)

The next theorem gives an expansion for the multivariate density. We need the following notations. For s = 1, 2, . . . ,
define

Q (s)(z) =


r1,...,rp≥0

p
j=1

rj=s


s

r1, r2, . . . , rp

 p
j=1

qrj(zj) · E


p

j=1

qrj(Zj)


; (37)

for instance, for s = 1, 2, we have

Q (1)(z) =

p
j=1

zjE(Zj) and Q (2)(z) =

p
j=1

(z2j − 1)E(Z2
j − 1) + 2


i≠j

zizjE(ZiZj).
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Theorem 3.2. Suppose that the pdf of Z takes the form (13). Let h(z) = 1{Zi≤zi, i=1,...,p}. Then, the pdf of Z can be expressed as

p(z) = φp(z)

1 + Q (1)(z) +

1
2!

Q (2)(z) +
1
3!

Q (3)(z) + · · · +
1

(k − 1)!
Q (k−1)(z)



+


i1,...,ik

∂p

∂z1 · · · ∂zp
E


h(k)
i1...ik

(Z)
f (k)
i1...ik

(Z)

f (Z)


, (38)

provided all the integrals involved are finite.

Proof. First, plug this indicator function h into (35) and replace the terms on the right hand side of (35) by (32) and (36).
This will give the cumulative distribution function (cdf) of Z in terms of its moments. Then, taking the pth partial derivative
of the cdf with respect to z1, . . . , zp yields the desired pdf. �

Corollary 3.1. Let p = 1. Then, (38) reduces to the Gram–Charlier series in (23):

p(z) ∼ φ(z)
∞
j=0

1
j!
qj(z)E(qj(Z)). (39)

Note that an arbitrary pdf p(x) fits into the form (13) by writing

p(x) = φp(x)
p(x)
φp(x)

.

3.2. Modified series

Cramér (1946) gave the convergence criteria (see Section 1 for details) for the Gram–Charlier series. Though the series
has poor convergence properties, Cramér commented that in many practical applications we were concerned whether the
truncated series gives a good approximation, instead of the convergence properties of the series.

To give a better approximation, we proposed to first consider the Gram–Charlier series of the pdf of a scaled variable Y
defined as

Y = αZ, 0 ≤ α ≤ 1, (40)

and then transform the series to that of p(z). The idea is that since p(y) will fall to zero faster than p(z), the Gram–Charlier
series of p(y) may have better convergence property. Once we obtain the Gram–Charlier series of p(y),

p(y) ∼ φ(y)
∞
j=0

1
j!
qj(y)E(qj(Y )), (41)

we can easily transform it to obtain a Gram–Charlier type expansion for p(z):

p(z) ∼ αφ(αz)
∞
j=0

1
j!
qj(αz)E(qj(αZ)), (42)

where E(qj(αZ)) = E(qj(Y )). The above equation is actually a Fourier series of p(z)/φ(αz) in the scaled orthonormal
polynomials {qj(αz)

√
αj!}, with the inner product defined in (24).

For the multivariate case, we define variable variables Yi, i = 1, . . . , p as

Yi = αiZi, 0 ≤ αi ≤ 1,

and proceed as (42) to obtain a multivariate Gram–Charlier series for p(z). The choice of αi can be flexibly determined by
users. Typically, the more the non-Gaussian requires the smaller the αi.

4. Concluding remarks

We have derived the Gram–Charlier type expansion for multivariate cases byWoodroofe–Stein’s identity, and proposed
a modified series in terms of scaled Hermite polynomials. Some questions deserve further study. First, it is desirable to ef-
fectively derive the coefficients in the multivariate Edgeworth series. Secondly, since the expansion is useful to recover a
distribution by its moments, it is of interest to explore whether the analytical expansions and sampling methods such as
MCMC can benefit each other.
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