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This article presents a closed-form formula for calculating the loan-to-value (LTV) ratio in an
adjusted-rate reverse mortgage (RM) with a lump sum payment. Previous literatures consider the pric-
ing of RM in a constant interest rate assumption and price it on fixed-rate loans. This paper success-
fully considers the dynamic of interest rate and the adjustable-rate RM simultaneously. This paper
also considers the housing price shock into the valuation model. Assuming that house prices follow a
jump diffusion process with a stochastic interest rate and that the loan interest rate is adjusted instan-
taneously according to the short rate, we demonstrate that the LTV ratio is independent of the term
structure of interest rates. This argument holds even when housing prices follow a general process:
an exponential Lévy process. In addition, the HECM (Home Equity Conversion Mortgage) program
may be not sustainable, especially for a higher level of housing price volatility. Finally, when the loan
interest rate is adjusted periodically according to the LIBOR rate, our finding reveals that the LTV
ratio is insensitive to the parameters characterizing the CIR model.

Keyword: reverse mortgage; option pricing; jump diffusion process; exponential Lévy process

1. Introduction

Demographic aging offers one of the most serious challenges that developed and developing

countries face. The elderly dependent ratio – defined as the ratio of the number of senior

dependents (over 65 years of age) to the total working-age population (aged 15–65 years) –

keeps rising in most countries, which means that the overall economy faces a greater burden

to support an aging population. Governments and industries seek to decrease their financial

burden by deferring the retirement age, reducing the received benefits in a defined benefit
pension plan, and/or transferring the defined benefit pension scheme to a defined contribu-

tion pension scheme. Eventually, it becomes difficult for pension and social security systems

to provide sufficient benefits. Therefore, reverse mortgage (RM) products might provide a

great alternative solution.
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For many seniors, the equity of their residence is their greatest asset, yet it is unavailable

to them unless they take a home equity loan or sell the equity. For example, in the US, the

American Housing Survey shows that more than 12.5 million elderly have no mortgage

debt, and the median value of mortgaged-free homes is US $127,959. A RM involves bor-

rowing money by using the equity in their homes as collateral. Therefore, it enables the

seniors to finance their retirement years without selling the property and having to pay back

the money until the borrower dies, sell the property, or move out permanently. At the mort-

gage’s due date, the loan gets repaid with accumulated interest through the sale of the prop-

erty. Moreover, the lender can only receive the minimum of the entire debt or the net value

of the property, which prevents the borrower from owing more than the value of the house.

This nonrecourse clause makes the RM difficult to value.

There are several payment options for RMs: lump sum payment, line of credit, term, ten-

ure, modified term (a combination of line of credit with term), and modified tenure (a com-

bination of line of credit with tenure payment). In Home Equity Conversion Mortgage

(HECM) scheme, the adjustable rate option is available with all kinds of payment options,

whereas the fixed rate option is only available for the lump sum payment. Prior to 2009,

nearly all HECMs carried adjustable interest rates. The lump sum RMs, including the fixed-
rate and the adjustable-rate option, have dominated the market (nearly 70% market share)

since mid-20091. An alternative to a RM is the sale and leaseback financing, i.e. the home-

owner sells the home and then leases it from the purchaser. Although the sale and leaseback

transaction is prevailing in business, it is not popular in home equity conversion.

The main purpose of this study is to develop a framework to model the embedded risks

and value the non-recourse provision of the RM products under an HECM scheme. As

pointed out by Phillips & Gwin (1992), loan providers of RMs are mainly involved with

longevity risk, housing price risk, and stochastic interest rate risk. The existing literature on

risk modeling of the HECM program has three flaws. First, some use static mortality tables

and thus neglect the longevity risk (see Weinrobe, 1988; Szymanoski, 1994; Tse, 1995; Zhai,

2000). We employ a generalized Lee–Carter model to model mortality risks and construct

dynamic mortality tables. Second, previous HECM models assume home prices are driven

by a geometric Brownian motion (e.g. Szymanoski, 1994; Ma et al., 2007; Wang et al.,

2007). However, most of the housing price returns exhibit negative skewness and positive

excess kurtosis. In addition, extensive literatures suggest that external shocks might lead to a

string of house price changes. These external shocks include money supply shocks

(Lastrapes, 2002), redevelopment (Lee et al., 2005), and foreign property shocks (Wilson

et al., 2007). The housing price jump risk is getting more attention to the mortgage-pricing

research after the subprime crisis (Chen, Chang, et al., 2010). Therefore, we use exponential

Lévy processes to model house price returns. Finally, as pointed by Chen, Cox, et al.

1 For more detail, please refer to ‘RMs–Report to Congress’ published by the Consumer Financial Protection
Bureau on 28 June 2012.
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(2010), HECM loans almost exclusively opt for adjustable interest rates in practice2, yet

most literatures choose a constant interest rate assumption (e.g. Chinloy & Megbolugbe,

1994; Szymanoski, 1994; Chen, Cox, et al., 2010; Li et al., 2010). This paper incorporates

the CIR (Cox et al., 1985) stochastic model of the short interest rate in pricing

adjustable-rate RMs.

This paper builds a modeling and pricing framework for adjustable-rate RM products with

a lump sum payment. The complexity of valuation problems comes from the fact that the

adjustable-rate RM products are involved with multiple risks. Therefore, most literatures

(such as Chen, Cox, et al., 2010) use Monte Carlo simulation to numerically calculate the

values of RM products. The first contribution of this paper is to directly derive a closed-

form formula for the adjustable-rate RM insurance with longevity risk, housing price risk,

and stochastic interest rate risk. In addition, the loan-to-value (LTV) ratio is determined,

under which the present value of premium income is equal to the cost of RM insurance.

The second contribution of this paper is to prove that the level of LTV ratio of an adjusted-

rate RM is independent with the interest rate parameters if the RM rates are adjusted instan-

taneously based on the short rates. In other words, when the loan interest rates are adjusted

instantaneously according to short rates, the valuation of adjusted-rate RMs is only con-

nected with the housing price risk, longevity risk, and interest rate spread on the loan. We

also assess the risk profile of RM insurance in empirical and numerical analyses. Finally, for

the adjustable-rate RMs, the loan interest rate is adjusted monthly or annually according to

the LIBOR rate in practice. The third contribution of this paper is to demonstrate that when

the loan interest rate is adjusted yearly based on LIBOR rate the impact of parameters char-

acterizing the CIR models on the LTV ratio is also trivial.

The remainder of this article is organized as follows: in the next section, we outline the

valuation framework, including the identification of the RM contract. After we present the

valuation formula in the Section 3, we extend the housing price model to a general Lévy

process in the Section 4. We present the numerical results and sensitivity analysis and then

offer several conclusions.

2. The model

In this section, we first describe the contract structures of RMs and the LTV ratios, which

provide the basis for our valuation. In addition, as Phillips and Gwin (1992) point out, the

crucial impact factors of RMs are longevity risk, housing price risk, and stochastic interest

rate risk. We then model the dynamics of the spot interest rates, the house prices, and the

mortality rates sequentially.

2 In FHA’s (Federal Housing Administration) HECM program, borrower can choose an adjustable interest rate or
a fixed-rate RM. If one chooses an adjustable interest rate, one may choose to have the interest rate adjust monthly
or annually. Lenders may not adjust annually adjusted HECMs by more than two percentage points per year and not
by more than five total percentage points over the life of the loan. FHA does not require interest rate caps on
monthly adjusted HECMs. (For more details, please refer to http://portal.hud.gov/hudportal/HUD?src=/program_offi
ces/housing/sfh/hecm/hecmabou).
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2.1. RM contract and LTV ratio

We investigate RM with a lump sum payment, analogous to the US HECM program

(Szymanoski, 1994). The initial property value, denoted H(0), enables us to determine the

lump sum payment. The borrower receives a lump sum payment, BAL(0), and does nothing

else, as long as the house is his or her principal residence. We assume that the loan becomes

due and payable only at the borrower’s death. At the terminal date of the loan, the outstand-

ing balance is payable, and the remainder of the value belongs to any heirs of the borrower

if the home value is greater than the outstanding balance. However, the lender must accept

the home value if it is less than the loan amount. To cover this contingent loss, the lender

charges an initial premium, or 100π0 percent of the initial house value, at the inception of

the contract, as well as an annual assessment of 100πm percent of the outstanding balance

for the life of the loan. These charges are not paid by cash but rather accrue to the outstand-

ing balance of the loan.

For the HECM demonstration, the premium structure is a combination of a one-time

upfront charge and an annual assessment (πm) proportional to the outstanding balance for the

life of the loan. Because the sequential premium πm of the RM insurance gets charged over

the life of the loan and accrued to the outstanding balance with the interest rate, the size of

πm not only affects the present value of the future insurance premium but also influences the

probability that a contingent loss occurs, and its severity.

Let the loan interest rate be equal to the short rate plus an interest rate spread πr. The death

of the borrower can happen at the end of each year for our purposes. BAL(t), the outstanding

balance at time t, is determined by the outstanding balance at time t − 1 plus the premium

charge with interest accrued; that is,

BALðt1Þ ¼ ðBALðt0Þ þ p0Hðt0ÞÞ exp
Z t1

t0

ðrðsÞ þ prÞds
� �

; (1)

BALðtjþ1Þ ¼ BALðtjÞð1þ pmÞ exp
Z tjþ1

tj

ðrðsÞ þ prÞds
( )

; j ¼ 1; 2; . . .; (2)

where r(t) is the instantaneous rate of interest (short rate) at time t; π0 is the initial premium

rate, equal to a percentage of the house value, and πm is the sequential annual premium rate,

which equals a percentage of the outstanding balance. In turn, we can reduce Equations (1)

and (2) to

BALðtjþ1Þ ¼ BALðt0Þpðjþ 1Þ exp
Z tjþ1

t0

ðrðsÞ þ prÞds
� �

; j ¼ 0; 1; 2; . . .; (3)

where
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pðjþ 1Þ ¼ 1þ p0
Hðt0Þ
BALðt0Þ

� �
ð1þ pmÞj for j ¼ 0; 1; 2; . . . : (4)

Through the pricing process, it is more convenient to set the valuation date t0 to 0. Thus,

at the valuation date t0(= 0), the money market account is defined by,

BðtÞ ¼ exp

Z t

0
rðuÞdu

� �
: (5)

According to Equation (3), we have,

BALðtjþ1Þ
Bðtjþ1Þ ¼ BALð0Þpðjþ 1Þepr tjþ1 ; j ¼ 0; 1; 2; . . . : (6)

Under risk-neutral probability measure Q, the value of the RM insurance, which is also the

present value of the expected losses from future claims, equals the expectation of discounted

future cash flows under Q. Let x0 be the age of the borrower at time t0 and ω be the final age at

which all people perish; then, the value of the RM insurance V(0) is of the form,

V ð0Þ ¼
Xx�x0

j¼1

EQ
tj�1px0;t0 � tj px0;t0
� �

BALðtjÞ � HðtjÞ
� �þ

BðtjÞ

" #

¼
Xx�x0

j¼1

EQ tj�1px0;t0 � tj px0;t0
� �

BALð0ÞpðjÞepr tj � DHðtjÞ
� �þh i

; (7)

where [A]+ = max {A, 0}; DH(t) ≡H(t)/B(t) is the discounted housing price; and tnpx0;t0 is the

probability that the cohort aged x0 in year t0 will survive till age x0 + n and satisfies

t0px0;t0 ¼ 1. In views of Equation (7), the RM insurance, contingent on the value of the prop-

erty, is a put option underlying the property. When the option is in the money, the borrower

receives nothing from the sale of the house but retains the right to reside there by keeping

the equity. The borrower would not sell the property in this case. For simplicity, ignoring

the possibilities that the borrower sells the property or moves out permanently, which

increases the early terminated probability of the loan, we consider only the borrower’s death

as a cause of the loan becoming due and payable when pricing a RM insurance.

In contrast, the present value of the premium charges, denoted by R(0), is,

Rð0Þ ¼ p0Hð0Þ þ EQ

Xx�x0

j¼1

tj px0;t0BALðtjÞpm
BðtjÞ

" #
¼ p0Hð0Þ þ EQ

Xx�x0

j¼1
tj px0;t0BALð0ÞpðjÞepr tjpm

" #
:

(8)

The initial advance BAL(0) can be determined by setting the value of the RM insurance

equal to the present value of the premium charges, namely,

V ð0Þ ¼ Rð0Þ: (9)

Scandinavian Actuarial Journal 297

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
he

ng
ch

i U
ni

ve
rs

ity
] 

at
 2

3:
27

 1
3 

Ja
nu

ar
y 

20
16

 



Note that in views of Equations (7) and (8), both V(0) and R(0) are mainly determined by

the discounted housing price and survival probabilities, but are irrelevant to the interest rates,

which implies that the LTV ratio is independent of interest rate parameters when the dis-

counted housing price and survival probabilities are independent of interest rate parameters.

Employing the CIR model, jump diffusion model, and Lee Carter model to capture the

dynamics of the spot interest rates, the housing prices, and the mortality rates, the goal of

this paper is to derive the LTV ratio in closed form to prove this argument.

2.2. Interest rate process

In the paper, we use the CIR model to capture the interest rate dynamic:

drðtÞ ¼ aðbr � rðtÞÞdt þ rr
ffiffiffiffiffiffiffiffi
rðtÞ

p
dWrðtÞ; (10)

where α is the speed of reversion; βr is the long-run short interest rate; σr is the instanta-

neous volatility; and Wr(t) is a standard Brownian motion under risk neutral probability mea-

sure Q. Consequently, the time t price of a zero coupon bond maturing at time T, P(t, T),

under measure Q is as follows:

Pðt; TÞ ¼ Aðt; TÞe�Bðt;TÞrðtÞ; (11)

where

Aðt; TÞ ¼ 2ceðcþaÞðT�tÞ=2

ðcþ aÞ ecðT�tÞ � 1ð Þ þ 2c

	 
2abr
r2r

; (12)

Bðt; TÞ ¼ 2ðecðT�tÞ � 1Þ
ðcþ aÞðecðT�tÞ � 1Þ þ 2c

and c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 2r2r

q
: (13)

2.3. House price model

We treat the house price H as a jump diffusion process. Equivalently, the behavior of the

changes in housing prices can be divided into two parts: (1) continuous diffusion, which is

responsible for the usual housing price movement and described by a traditional Brownian

motion, and (2) discontinuous jumps, which correspond to the arrival of new information

that is important to the housing market. Under the risk-neutral measure Q, the house price

process is governed by,

dHðtÞ
HðtÞ ¼ rðtÞ � dðtÞð Þdt þ r̂HðtÞ � dW ðtÞ þ dðJðtÞ � kbtÞ; (14)
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where δ(t) is a maintenance yield (or rental rate) for the house; W(t) = [Wr(t), WH(t)]ʹ is a

two-dimensional standard Brownian motion under measure Q; r̂HðtÞ is the volatility vector

of the housing price and satisfies r̂H ðtÞ ¼ rH ðtÞ qHr;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2Hr

ph i0
, that is, jr̂H ðtÞj ¼ rH ðtÞ;

| ⋅ | denotes the Euclidean norm in R2; and ρHr is the correlation coefficient between the

interest rate process and the house price process. Moreover, J(t), a compound Poisson pro-

cess, is defined by JðtÞ ¼PNðtÞ
i¼1 ðYi � 1Þ, where{N(t); t ≥ 0} is a Poisson process with inten-

sity k, and the jump sizes fY1; Y2; . . .g are independent and identically distributed random

variables with mean E(Yi) = β + 1. The random variables fY1; Y2; . . .g are assumed to be

independent of {W(t); t ≥ 0} and {N(t); t ≥ 0}.

Note that JðtÞ � kbt is a Q-martingale, so the jump process does not change the drift term

on average but only affects the volatility of housing returns.

2.4. Mortality model

When treating mortality in this study, we use the Lee–Carter model (Lee & Carter, 1992),

which has gained widespread acceptance and has proved effective for estimating mortality.

Lee (2000) discusses several recent extensions, applications, and methodological improve-

ments to the Lee–Carter model. However, mortality forecasting still is based on historical

mortality data, which presents anticipative processes under P-measures in the arbitrage pric-

ing theory. The recent Wang (2000) transformation provides an elegant and tractable method

to deal with this issue. Denuit et al. (2007) employ the Lee–Carter model to price a risky

coupon survivor bond; they apply the Wang transform to determine the market price of bear-

ing the mortality risk. Following the approach proposed by Denuit et al. (2007), we apply

the Lee–Carter model, accompanied by the Wang transform, to price RM insurance.

2.4.1. Lee–Carter model

We use the Lee–Carter model to assess the mortality-related risks. Let mx,t be the central

death rate for age x at time t. The Lee–Carter model assumes:

lnðmx;tÞ ¼ ax þ bxkt þ ex;t; (15)

where αx presents the average specific pattern of mortality over age group x, βx describes the
pattern of deviations from the age x profile when the parameter k varies, kt explains the

change of mortality over time t, and ex,t describes the error term, which is expected to be

white noise with zero mean and a relatively small variance (Lee, 2000).

We use the singular value decomposition approximation (Lee & Carter, 1992) to fit the solu-

tions of the parameters. By stipulating that
P

tkt = 0 and
P

xβx = 1, we assume âx is simply the

average value over time of ln(mx,t), and k̂t is the sum over various ages of lnðmxtÞ � âx. For
each age group x, we can obtain b̂x by regressing lnðmxtÞ � âx on k̂t without a constant term.

Following Lee & Carter (1992), we forecast future values of kt with:

kt ¼ kt�1 þ zþ et; (16)
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where z is the drift parameter, and ɛt is a sequence of independent and identically normal

distributions with mean 0 and variance σ2. We assume that the values k1,… , kt0 are known

but that ktj are unknown and must be forecast, where tj = t0 + j, for any natural number j. By

virtue of Equation (16), we have,

ktj ¼ kt0 þ jzþ
Xj
i¼1

eti ; (17)

Moreover, conditional on t0, ktj is normal distributed with mean kt0 þ jz and variance jσ2.

2.4.2. Wang risk transform

Wang (2000) proposes a transformation for pricing contingent claims that can be traded or

not. The Wang transform is based on the idea that the annuity market price takes into

account the uncertainty in the mortality table, as well as the uncertainty in the lifetime of an

annuitant once the table is given. Because contracts contingent on mortality rates usually are

not traded on financial markets, Wang’s transformation helps value mortality-linked securi-

ties (Lin & Cox, 2005; Dowd et al., 2006; Liao et al., 2007; Denuit et al., 2007).

Consequently, we also use Wang transform to consider the market price of mortality risk.

Following Denuit et al. (2007), we define the probability that the cohort aged x0 in year t0
will survive to age x0 + n as

tnpx0;t0 ¼ exp �
Xn�1

j¼0

mx0þj;t0þj

 !
¼ exp �

Xn�1

j¼0

exp ax0þj þ bx0þjkt0þj

� � !
: (18)

Let Fn be the cumulative distribution function of tn px0;t0 ; that is,

FnðuÞ ¼ Pr tnpx0;t0 � u
� �

; 0� u� 1: (19)

Based on the Wang transform with a transformation parameter τ, under the risk-neutral mea-

sure Q, the probability of the cohort aged x0 in year t0 surviving to age x0 + n is given by

PrQ tnpx0;t0 � u
� � ¼ UðU�1ðFnðuÞÞ þ sÞ; (20)

where Φ is the distribution function of the standard Normal distribution, and the parameter τ

measures the market price of mortality risk. Therefore, according to the risk-neutral measure

Q, the expected probability of the cohort aged x0 in year t0 surviving to age x0 + n, S(tn),

takes the form:

SðtnÞ ¼ EQ tnpx0;t0
� � ¼ Z 1

0
1� UðU�1ðFnðuÞÞ þ sÞ� �

du: (21)

For a more detailed demonstration of this application, see Denuit et al. (2007).
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3. LTV ratio in closed form

We determine the lump sum payment BAL(0)3 when the present value of the insurance pre-

miums covers the present value of expected losses from future claims. According to Equa-

tions (10), (14), and (15), we derive the closed-form solutions of the value of the RM

insurance V(0) and the present value of the premium charges R(0) in Proposition 1.

Proposition 1: Assume that the mortality process in Equation (15) and the financial asset
prices (i.e. interest rate process in Equation (10) and house price process in Equation (14))

are independent. Let Yi be lognormal distributed with E[ln Yi] = θ and Var½lnYi� ¼ r2Y . The
present value of the premium charges R(0) and the value of the RM insurance V(0) are

Rð0Þ ¼ p0Hð0Þ þ
Xx�x0

j¼1

SðtjÞBALð0ÞpðjÞpmepr tj ; (22)

V ð0Þ ¼
Xx�x0

j¼1

Sðtj�1Þ � SðtjÞ
� �

CðtjÞ; (23)

respectively, where

CðtjÞ ¼ BALð0ÞpðjÞepr tj
X1
m¼0

e�k tjðk tjÞm
m!

Uð�d2jðmÞÞ

� Hð0Þe�
R tj

0
dðsÞdsX1

m¼0

e�kQ tjðkQ tjÞm
m!

Uð�d1jðmÞÞ; (24)

where kQ ¼ kðbþ 1Þ;

d1jðmÞ ¼
ln Hð0Þ

BALð0ÞpðjÞ

 �

þ rmj þ 1
2r

2
m j

rm j
; d2jðmÞ ¼ d1jðmÞ � rm j (25)

rmj ¼ mhþ 1

2
r2Ym�

Z tj

0
ðdðsÞ þ kbþ prÞds; and r2m j ¼

Z tj

0
rH ðsÞ2dsþ r2Ym (26)

where Φ is the standard normal cumulative distribution function.

Proof: See Appendix 1.

An interesting and meaningful result is that neither the value of the RM insurance nor the

present value of the premium charges correlates with the interest rate process. Thus, the

LTV, equal to the ratio of the lump sum payment to the house price at the valuation date

3 In this study, the valuation date is t0. We use 0 instead of t0 sometimes for simplicity without ambiguousity.
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(BAL(0)/H(0)), is independent of the parameters of the interest rate model – a definitely
important and significant result of our study. There are three assumptions contributing to this

argument. First, the loan interest rate equals the short rate plus an interest rate spread which

is independent of the level of interest rate. Second, the rental rate is independent of the level

of interest rate. Third, the mortality rate process is independent of financial asset processes.

Consequently, the discounted housing price and survival probabilities are independent of

interest rate parameters which in turn lead to the independence between the LTV ratio and

the term structure of interest rates. In the next section, we show that the argument still holds

even when the house price process follows a more general stochastic process: the exponen-

tial Lévy process.

4. Pricing RMs with exponential Lévy processes

For pricing RM insurance contracts, in the literature most of the pricing papers assume that

the housing price process follows traditional geometric Brownian motion. However, US

housing prices in the past two decades have varied significantly in response to government

policy changes and catastrophic events. Chen, Chang, et al. (2010) demonstrate empirically

that the national average new home prices for single-family mortgages jumped notably over

the period 1986–2008. On 14 occasions, the monthly housing price changed more than 10%

per month. The highest monthly housing price returns reached 20.85%, in June 1992,

whereas the lowest monthly housing price returns fell to −22.76% in November 2007. Geo-

metric Brownian motion only reflects the normal events but not the abnormal jumps. As a

result, it is necessary to develop a suitable framework for a housing price process that

includes jump risks.

In this section, we explore Lévy processes as a way to model the housing price process

with jump risks. Roughly speaking, a Lévy process is a continuous time stochastic process

with stationary independent increments, analogous to i.i.d. innovations in a discrete setting.

Two important examples of Lévy processes include Brownian motion (the only purely con-

tinuous Lévy process) and the compound Poisson process underlying the jump diffusion

model. In this section, the housing price dynamics {H(t); t ≥ 0} can be modeled as exponen-

tial Lévy processes, including Brownian motion for normal innovations and pure jump Lévy

process for non-normal innovations as follows:

HðtÞ ¼ Hð0ÞBðtÞ exp AðtÞ þ
Z t

0
r̂HðsÞ � dW ðsÞ þ LðtÞ

� �
; (27)

where A(t), a process of finite variation, is often determined by no-arbitrage or equilibrium

pricing relations and thus depends on the specification of Brownian motion and pure jump

Lévy process; and {L(t); t ≥ 0}, independent from the Brownian motion {W(t); t ≥ 0}, is a

pure jump Lévy process, such that the sample paths of L are right-continuous with left
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limits, and L(u) − L(t) is independent of L(t) and distributed as L(u − t). The definitions of B
(t), r̂H ðsÞ, and W(s) are consistent with previous definitions.

For any ω ∊ R, the following Lévy-Khinchin representation (Bertoin, 1996) states that a

characteristic function ϕ(ω) of a pure jump Lévy process {L(t); t ≥ 0} can be expressed as,

/tðxÞ � EQðexpðixLðtÞÞÞ ¼ expð�twðxÞÞ; (28)

where the characteristic exponent ψ(ω) is given by,

wðxÞ ¼
Z
R�f0g

1� eixx þ ixx1jxj\1

� �
vðdxÞ; (29)

and the Lévy process is uniquely specified by the Lévy measure v, which satisfies the fol-

lowing conditions:

Z 1

�1
1jxj � 1 vðdxÞ\1 and

Z 1

�1
x21jxj\1vðdxÞ\1 (30)

where the symbol 1D denotes an indicator function of D. The first condition means that

Lévy processes L has finite number of large jumps (large jumps are defined as jumps with

absolute values greater than 1) and the second condition states Lévy measure must be

square-integrable around the origin.

Under the risk-neutral measure Q, the discounted housing price process must satisfy the

following expression:

EQ
HðtÞ
BðtÞ

� �
¼ Hð0Þ exp �

Z t

0
dðsÞds

� �
; (31)

where δ(t) is the maintenance yield (or rental rate) for the house. By virtue of Equation (27),

we have,

EQ
HðtÞ
BðtÞ

� �
¼ Hð0ÞEQ exp AðtÞ þ

Z t

0
r̂HðsÞ � dW ðsÞ þ LðtÞ

� �� �

¼ Hð0Þ exp AðtÞ þ 1

2

Z t

0
r2HðsÞds� twð�iÞ

� �
(32)

or equivalently, A(t) can be expressed as follows:

AðtÞ ¼ twð�iÞ �
Z t

0
dðsÞ þ 1

2
r2H ðsÞ

� �
ds: (33)

Therefore, by virtue of Equation (33), the housing price process under the risk-neutral

measure Q becomes,
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lnHðtÞ ¼ lnHð0Þ þ
Z t

0
rðsÞ � dðsÞ � 1

2
r2HðsÞ

� �
dsþ twð�iÞ þ

Z t

0
r̂HðsÞ � dW ðsÞ þ LðtÞ:

(34)

For a pure jump Lévy process, it can display either finite or infinite activity. In the for-

mer case, the aggregate jump arrival rate is finite, whereas in the latter case, an infinite num-

ber of jumps can occur over any finite time interval. We list the Lévy measures and the

corresponding characteristic exponents of some useful pure jump Lévy processes in Table 1.

Since a pure jump Lévy process L is uniquely characterized by its Lévy measure, according

to Table 1, we can reduce the housing price process in Equation (34) to that in Equation

(14) by setting,

vðdxÞ ¼ kffiffiffiffiffiffiffiffiffiffiffi
2pr2Y

p exp
�ðx� hÞ2

2r2Y

 !
dx: (35)

Consequently, different selections of Lévy measures can contribute to different patterns of

housing price dynamics.

When the housing price follows the exponential Lévy process, the value of the RM insur-

ance V(0) is given by Proposition 2.

Proposition 2: Assume that the mortality process in Equation (15) and the financial asset
prices (i.e. interest rate process in Equation (10) and house price process in Equation (14))

are independent. The present value of the premium charges R(0) is given by Proposition 1

and the closed-form solution of the RM insurance is provided as follows:

V ð0Þ ¼
Xx�x0

j¼1

Sðtj�1Þ � SðtjÞ
� �

CLðtjÞ; (36)

Table 1. Lévy measure and characteristic exponents for pure jump Lévy processes.

Lévy components Lévy measures Characteristic exponents

Finite activity pure jump Lévy components
Merton (1976) k 1ffiffiffiffiffiffiffiffi

2pr2Y
p exp � ðx�hÞ2

2r2Y


 �
k 1� eixh�

1
2r

2
Yx

2

 �

Kou (2002) k 1
2g exp � jx�kj

g


 �
k 1� eixk 1�g2

1þx2g2


 �
Eraker et al. (2003) k 1

g exp � x
g


 �
k 1� 1

1�ixg


 �
Infinite activity pure jump Lévy components
NIG, Barndorff-Nielsen (1998) ebx da

pjxjK1ðajxjÞ �d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � ðbþ ixÞ2

q	 


Generalized hyperbolic, Eberlein
et al. (1998)

ebx

jxj
R1
0

e�
ffiffiffiffiffiffiffi
2yþa2

p
jxj

p2yðJ 2jkj ðd
ffiffiffiffi
2y

p
ÞþY 2

jkj ðd
ffiffiffiffi
2y

p
ÞÞ dyþ1k� 0k e�ajxj

	 

� ln

ffiffiffiffiffiffiffiffiffiffi
a2�b2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�ðbþixÞ2

p
	 
k

jk d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�ðbþixÞ2

p� �
jk d

ffiffiffiffiffiffiffiffiffiffi
a2�b2

p� �	 


CGMY, Carr et al. (2002) Ce�Gjxj jxj�Y�1; x\0;
Ce�M jxj jxj�Y�1; x[ 0

�
CΓ(−Y)[MY − (M − iω)Y +G −
(G + iω)Y]

VG, Madan et al. (1998) expðAx�Bjxj Þ
jjxj

1
j ln 1� ixajþ 1

2 v
2x2j

� �
A ¼ a

v2 ;B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2v2
j þ a2

q
= v2


 �
LS, Carr and Wu (2003) cjxj�a�1; x\0 −cΓ(−α)(iω)α
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where

CLðtjÞ ¼ Kj � Hð0Þe�
R tj

0
dðsÞ ds þ Cðtj; kjÞ; (37)

Cðtj; kjÞ ¼ e�a kj

2p

Z 1

�1
e�ixkj

/hðtjÞðx� ðaþ 1ÞiÞ
ðaþ ixÞðaþ 1þ ixÞdx; (38)

/hðtÞðxÞ ¼ exp ix½lnHð0Þ þ AðtÞ� � x2

2

Z t

0
r2H ðsÞds� twðxÞ

� �
; (39)

Kj ¼ expðkjÞ ¼ BALð0ÞpðjÞepr tj : (40)

Proof:See Appendix 2.

Similar to the case that the housing price index follows a jump diffusion process, neither

the value of the RM insurance nor the present value of the premium charges is related to the

interest rate process. Thus, even when the housing price process follows a general exponen-

tial Lévy process, the parameters of stochastic interest rate model are also irrelevant to the

determination of LTV.

5. Numerical results

In this section, assuming that the housing price process follows a jump diffusion process for

ease of the analysis, we first present the numerical results for the fair LTV ratio. We also

study the sustainability of the HECM program. Finally, a numerical study is carried out to

validate that the LTV ratio is insensitive to the parameters of the CIR model even when a

yearly adjustable-rate RM is considered.

5.1. Fair LTV ratio

In this subsection, we first present the numerical results for a representative base case, and

then depict the sensitivity of the LTV ratios and the option values by varying the level of

several parameters (i.e. borrower’s age, annual premium rate πm, and interest rate spread πr).

The issuer of the RM insurance can understand the characteristics of this product by observ-

ing the sensitivity analysis. Table 2 lists the parameters of the base case. In addition, we use

US male mortality data from the Human Mortality Database4 to fit the Lee–Carter model,

4 See http://www.mortality.org/.
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with observations from 1970 to 2005. The market price of mortality risk, denoted by τ, is
assumed to be –0.55 by referring to Denuit et al. (2007), who measure τ on the basis of

Belgian data and it ranges from −0.44 to −0.49 across various discount rates.

For this base case with the parameters listed in Table 2, the LTV is 32.973%, which

means that the lump sum payment is 32.973 when house price is 100 at the inception of the

loan. The option value, or the value of the RM insurance, is 5.065. Based on Proposition 1,

the hedging ratios, delta (∂V(0)/∂H(0)) and gamma (@delta=@Hð0Þ), can be straightforwardly

calculated as −0.0997 and 0.0024, respectively.

We next examine the sensitivity of the LTV ratios and option values by varying the level

of parameter values, including the borrower’s age, the annual premium rate, and the interest

rate spread. The issuers are capable of adjusting the initial premium rate (π0), the annual pre-

mium rate (πm), and the interest rate spread (πr). In addition, they can also flexibly determine

the LTV ratio together with the option value, to suit the corresponding risks and market

competition.

Figure 1 depicts a three-dimensional plot of LTV ratios for different level of ages and

annual premium rates. From Figure 1, it can be seen that the higher the level of annual pre-

mium rate, the higher the LTV ratio. This is consistent with our intuition. The probability

that the value of the house being smaller than the outstanding balance becomes larger as the

greater of the lump sum payment; and this corresponds to a larger premium charge. Figure 1

also reveals that the elder the borrower, the higher the LTV ratio. For its economic implica-

tion, the present value of the house is the sum of the present values of future rental incomes,

which consists of the rental income during the period that the borrower is alive and the ren-

tal income during the period that the borrower is dead. According to the RM mechanism,

Table 2. Parameters of the base casea.

Parameter Value

x0 Borrower’s age 70
ω Final age all lives are assumed to end 110
π0 Initial premium rate 0.02
πm Sequential annual premium rate 0.005
πr Interest rate spread 0.015
δ(t) Maintenance yield (assumed to be constant) 0.02
σH Volatility coefficient for housing price 0.0739
k Frequency of jumps 8.1676
θ Mean of ln Yi −0.0021
σY Standard deviation of ln Yi 0.0344
τ Market price of risk of mortality –0.5

aThe assumption of π0 and πm are in line with the prevailing HECM program before 4 October 2010 (Chen, Cox,
et al., 2010). Parameters of housing price model are borrowed from Lee et al. (2012), which employ monthly
observations, from January 1973 to December 2010, of the national average prices of previously occupied homes
for conventional single-family mortgages in the United States as a proxy for housing prices.

5 Denuit et al. (2007) measure the market price of mortality risk for a 65-year-old individual based on the Belgian
data. We apply the approach proposed by Denuit et al. (2007) to introduce a way to consider the market price of
mortality risk. Since the predicting of the market price of mortality risk is not our purpose, it is set exogenously and
is assumed to be constant at various ages.
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the borrower uses the rental income after his or her death in exchange for the lump sum

payment at the inception. An older borrower can borrow more money because his or her

expected death comes sooner and the present value of the rental income after death is

greater.

Figure 2 depicts the relationship among the option values, ages, and annual premium

rates. Since the annual premium rate represents the premium charge for covering the contin-

gent loss when the value of the house property is less than the outstanding balance, we can
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Figure 1. Three-dimensional plot of LTV ratios for different ages and πm.

0
0.005

0.01
0.015

0.02

60
65

70
75

80
0

5

10

15

20

25

annual premium rate(pim)
age

O
pt

io
n 

Va
lu

e 
at

 ti
m

e 
0

Figure 2. Three-dimensional plot of the option values for different ages and πm.
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see that, in spite of the borrower’s age, the option value is an increasing function of the

annual premium rate. In addition, as the borrower’s age decreases, the option value increases

even as the LTV ratio falls since the longer the expected maturity date the higher the option

value.

In Figures 3 and 4, we depict the LTV ratios as well as the option values in terms of dif-

ferent ages and interest rate spreads. As shown in Figure 3, the LTV ratio is negatively

related to the interest rate spread. Besides, it increases with the borrower’s age, which is

consistent with our previous finding. Figure 4 indicates that the option value is negatively

related to interest rate spread. In sum, Figures 1–4 reveal that, for a borrower aged x0, the

issuer can increase the LTV ratio by charging a higher annual premium rate and/or charging

a lower interest rate spread. However, for a specific πm (or πr), the greater LTV corresponds

to a greater option value for an age-specific borrower.

With Table 3, we also consider the sensitivity of the LTV ratios by varying the level of

the market price of risk. Table 3 reveals that the higher the level of risk parameter (in abso-

lute value), i.e. the higher the level of survival probability as well as the level of mortality

improvements, the lower the LTV ratio. However, compared with the volatility of housing

returns, the impact of the market price of risk is insignificant.

5.2. Sustainability of the HECM Program

In this subsection, following Chen, Cox, et al. (2010), we look at the sustainability of the

HECM program in the United States. Chen, Cox, et al. (2010) consider the sustainability

ratio of the present value of premium charges (R(0)) to the present value of RM insurance

(V(0)) and conclude that the HECM program is sustainable. Following their approach, we

examine the sustainability of the HECM program.
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Figure 3. Three-dimensional plot of LTV ratios for different ages and πr.
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Following Chen, Cox, et al. (2010), the initial house value and the initial loan advance

are assumed to be $300,000 and $187,057, respectively. The present value of premium

charges then equals $22,922 over all cases. Table 4 lists the present value of RM insurance
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Figure 4. Three-dimensional plot of the option values for different ages and πr.

Table 3. LTV ratios for different mortality risk premiums.

LTV ratio (%)

LC model with τ = 0 33.323
LC model with τ = −0.5 (Base Case) 32.973
LC model with τ = −1 32.634

Table 4. Values of RM insurance and sustainability ratios.

σH 0.025 0.05 0.0739 0.10 0.125
V(0) 70,339 72,635 76,052 80,901 86,341
R(0)/V(0) 0.326 0.316 0.301 0.283 0.265

k 0 4 8.1676 12 16
V(0) 63,914 70,211 76,052 80,893 85,512
R(0)/V(0) 0.359 0.326 0.301 0.283 0.268

θ −0.04 −0.03 −0.02 −0.01 −0.0021
V(0) 88,089 83,045 79,157 76,747 76,052
R(0)/V(0) 0.260 0.276 0.290 0.299 0.301

σY 0 0.02 0.0344 0.04 0.06
V(0) 63,964 68,364 76,052 79,701 94,468
R(0)/V(0) 0.358 0.335 0.301 0.288 0.243
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V(0) and the sustainability ratio under a range of housing price parameters6. The higher the

level of R(0)/V(0), the higher is the possibility for the HECM program to be sustainable.

The values of RM insurance together with the sustainability ratio, are irrelevant to the term

structure of interest rates. However, they are sensitive to the volatility of the housing price.

Accordingly, we can see that from Table 4, the increases in σH, k, θ (in absolute value), and

σY, which in turn lead to an increase in the volatility of the housing price, cause an increase

in the value of the RM insurance. In addition, the present value of premium charges col-

lected by FHA (Federal Housing Administration) is less than the present value of the total

expected claim losses for each case; that is, the HECM program is not sustainable according

to our base case. Obviously, it is different from the main finding of Chen, Cox, et al. (2010)

that HECM program is sustainable. By using the simulation approach, we find that the vola-

tility of the housing price is nearly 1.5% of Chen, Cox, et al. (2010) but 12.3% in our base

case. After the subprime crisis, the annual premium for the HECM standard in the RM pro-

gram insured by the FHA has been raised from 0.5 to 1.25% on 4 October 2010. The FHA

asserts that the previous premium rate, 0.5%, was underestimated. Consequently, this evi-

dence reveals that our findings are consistent with the FHA’s perspective.

5.3. Adjustable-rate RMs: A realistic case

In light of our analysis, we consider the loan interest rate adjusted according to the short rate

plus an interest rate spread, demonstrating that the interest rate risk (short rate) is irrelevant

to the fair valuation of RMs. However, in HECM program, the loan interest rate for adjust-

able-rate products is adjusted according to the one-month CMT (Constant Maturity Treasury)

rate or LIBOR rate, not the short rate. Moreover, it is adjusted monthly or annually, depend-

ing on the choice of the borrower. Consequently, this paper provides a more realistic case

for adjustable-rate RMs, the loan interest rate of which is adjusted monthly or annually

according to the LIBOR rate.

Let L(tj, tk) be the prevailing discrete forward rate at time tj over the time interval

[tk, tk + Δt] and Δt = tk+1 − tk. As a result, L(tk, tk) is the spot LIBOR rate at time tk and is

given by L(tk, tk) = (1/Δt)[1/P(tk, tk+1) − 1], where P(tk, tk+1) is the time tk price of a zero cou-

pon bond that pays one dollar at time tk+1. We assume that the loan interest rate is adjusted

yearly according to the spot LIBOR rate. More specifically, instead of Equations (1) and (2),

the outstanding balance at time t is of the form:

BALðt1Þ ¼ ðBALð0Þ þ p0Hð0ÞÞ½1þ Lð0; 0ÞDt�eprDt; (41)

BALðtjþ1Þ ¼ BALðtjÞð1þ pmÞ 1þ Lðtj; tjÞDt
� �

eprDt; j ¼ 1; 2; . . . ; (42)

6 V(0) and R(0) are NRP (non-recourse provision) and MIP (mortgage insurance premiums) defined in Chen,
Cox, et al. (2010), respectively.
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Similarly, Equations (41) and (42) can be reduced to,

BALðtjÞ ¼ ðBALð0Þ þ p0Hð0ÞÞð1þ pmÞj�1
Yj�1

k¼0

1þ Lðtk ; tkÞDt½ �eprDt

¼ BALð0ÞpðjÞ
Yj�1

k¼0

1þ Lðtk ; tkÞDt½ �eprDt: (43)

Substituting BAL(tj) defined in Equation (43) into Equations (7) and (8), we can compute

the present value of the RM insurance (V(0)) and the present value of the premium charges

(R(0)), and in turn determine the LTV ratio through Monte-Carlo simulation.7

For the base case with the parameters listed in Table 2 together with the parameters of the

CIR model in Table 5, the LTV ratio is 32.803% when the loan interest rate is adjusted

yearly according to LIBOR rate, which is very close to 32.973% when the loan interest rate

is adjusted instantaneously according to short rate. Table 6 shows the sensitivity of the LTV

ratios by varying the level of interest rate parameters. We can see that the LTV ratios are

insensitive to the level of interest rate parameters. Consequently, for adjustable-rate RMs,

the LTV ratio is less dependent on the interest rate parameters.

6. Conclusion

Most borrowers of HECM loans choose adjustable interest rates, yet most literatures choose

a constant interest rate assumption. This paper successfully considers the dynamic of interest

Table 5. Parameters of the CIR model.

Parameter r(0) α βr σr ρHr

Value 0.03 0.2 0.05 0.02 0.25

Note: ρHr is the correlation coefficient between the interest rate and house price.

Table 6. The sensitivity of the LTV ratios to interest rate parameters (Unit: %).

0 0.03 0.06 0.09 0.12
LTV 32.759 32.803 32.842 32.877 32.906

α 0.01 0.1 0.2 0.3 0.4
LTV 32.822 32.803 32.803 32.806 32.809

βr 0.01 0.03 0.05 0.07 0.09
LTV 32.847 32.830 32.803 32.764 32.712

σr 0.01 0.02 0.03 0.04 0.05
LTV 32.832 32.803 32.772 32.739 32.705

ρHr −1 −0.5 0 0.5 1
LTV 33.048 32.948 32.851 32.755 32.662

7 Each simulated result is based on 10,000 simulation paths. The time partition (dt) is one month.
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rate and the adjustable-rate RM simultaneously. We also successfully consider the housing

price shock into the valuation model. Both of them make a further progress on the literature

of RMs.

In this study, when the RM rate is adjusted instantaneously based on the short rate, we

present a closed-form formula for calculating the LTV in a lump sum payment adjustable-

rate RM. We assume that the house price model follows a general Lévy process and that the

interest rate model follows the CIR model. With the assumption that the RM rate is the short

rate plus an interest rate spread, we demonstrate that the LTV ratio is independent of the

term structure of interest rate. This argument differs from preceding literature and provides a

new perspective on the design of RMs. We also provide a more realistic case with the RM

rate adjusted periodically based on the LIBOR rate. We reach a similar conclusion that the

LTV ratio is insensitive to the parameters of the CIR model even when a yearly adjustable-

rate RM is considered.

We provide a sensitivity analysis of the value of RMs against the annual premium rate

and the interest rate spread. We find that the issuer can increase the LTV by charging a

higher annual premium rate and/or charging a lower interest rate spread. However, for an

age-specific borrower, a greater LTV represents a greater option value. The issuer, therefore,

should understand the influence of these variables to determine the appropriate features of

its products. In addition, we also demonstrate that the HECM program may not be sustain-

able, especially for a higher level of housing price volatility. Consequently, after the sub-

prime crisis, the FHA has adjusted the previous premium rate from 0.5 to 1.25% on 4

October 2010.

Due to mortality improvement a wide range of mortality models have been proposed and

discussed (e.g. Lee and Carter, 1992; Brouhns et al., 2002; Renshaw and Haberman, 2003;

Cairns et al., 2006; Koissi et al., 2006; Melnikov and Romaniuk, 2006; Li and Chan, 2007;

Cairns et al., 2009; Biffis et al., 2010; Yang et al., 2010; Hainaut, 2012). More sophisticated

mortality models might help companies hedge against longevity risk. Consequently, for fur-

ther research, it will be an interesting topic to discuss the impact of mortality model risk on

pricing lump sum RM contracts.

In this study, we do not consider a capped property value, which limits the amount of

value that can be used to determine cash advances and the amount of the insurance. We also

only consider a lump sum payment, which indicates that we ignore annuity payment and line

of credit RMs. These issues also provide some topics of interest for further research.
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Appendix 1. Proof of Proposition 1.

By virtue of Equations (6) and (21), the present value of the premium charges R(0) is,

Rð0Þ ¼ p0Hð0Þ þ EQ

Xx�x0

j¼1

tj px0;t0BALðtjÞpm
BðtjÞ

" #
¼ p0Hð0Þ þ

Xx�x0

j¼1

EQ tjpx0;t0
� �

EQ
BALðtjÞpm

BðtjÞ
	 


¼ p0Hð0Þ þ
Xx�x0

j¼1

SðtjÞBALð0ÞpðjÞpmepr tj ;

where we use the assumption that the mortality process and the financial asset price pro-
cesses are independent.

For the present value of the RM insurance V(0), it can be expressed as follows:

V ð0Þ ¼
Xx�x0

j¼1

EQ
tj�1px0;t0 � tj px0;t0
� �

BALðtjÞ � HðtjÞ
� �þ

BðtjÞ

" #
¼
Xx�x0

j¼1

ðSðtj�1Þ � SðtjÞÞCðtjÞ;

where

CðtjÞ ¼ EQ
BALðtjÞ1D

BðtjÞ
	 


� EQ
HðtjÞ1D
BðtjÞ

	 

¼ A1 � A2;

and D = {BAL(tj) ≥H(tj)}.
To derive A1, applying Equation (6), we have,

A1 ¼ EQ½BALð0ÞpðjÞepr tj1D� ¼ BALð0ÞpðjÞepr tjPrQðBALðtjÞ�HðtjÞÞ:

Using Ito’s Lemma, we obtain the expression for housing price as follows:
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HðtjÞ ¼ Hð0ÞBðtjÞ exp �
Z tj

0
ðkbþ dðsÞ þ 1

2
r2HðsÞÞdsþ

Z tj

0
r̂HðsÞ � dW ðsÞ þ

XNðtjÞ

n¼1

ln Yn

( )

(A.1)

Therefore, using Equation (A.1), we have,

PrQ BALðtjÞ�HðtjÞ
� �

¼ PrQ BALð0ÞpðjÞepr tj �Hð0Þ exp �
Z tj

0
dðsÞ þ kbþ 1

2
r2H ðsÞ

� �
dsþ

Z tj

0
r̂H ðsÞ � dW ðsÞ þ

XNðtjÞ

n¼1

ln Yn

 !( )

¼ PrQ

Z tj

0
r̂H ðsÞ � dW ðsÞ þ

XNðtjÞ

n¼1

lnYn � � xj

( )
ðA:2Þ

where

xj ¼ ln
Hð0Þ

BALð0ÞpðjÞ
� �

�
Z tj

0
pr þ dðsÞ þ kbþ 1

2
r2HðsÞ

� �
ds:

Let lnYn ¼ hþ rYZn �Nðh; r2Y Þ, where Zn is a standard normal random variable and is
independent of Zm, for n ≠ m. Therefore, Equation (A.2) can be rewritten as follows:

PrQ BALðtjÞ�HðtjÞ
� � ¼X1

m¼0

e�ktj ðktjÞm
m!

PrQ

Z tj

0
r̂H ðsÞ � dW ðsÞ þ

Xm
n¼1

ðhþ rY ZnÞ� � xj

( )

¼
X1
m¼0

e�ktj ðktjÞm
m!

PrQ

R tj
0 r̂H ðsÞ � dW ðsÞ þ rY

Pm
n¼1 ZnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR tj

0 r2H ðsÞ dsþ r2Ym
q � �ðxj þ mhÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR tj

0 r2H ðsÞ dsþ r2Ym
q

8><
>:

9>=
>;

¼
X1
m¼0

e�ktj ðktjÞm
m!

Uf�d2jðmÞg:

To derive A2, applying Equation (A.1), we have,

A2 ¼ EQ Hð0Þ exp �
Z tj

0
ðdðsÞ þ kbÞds

� �
nRtj

YNðtjÞ

n¼1

Yn

 !
1D

" #

¼ Hð0Þ exp �
Z tj

0
dðsÞ þ kbð Þds

� �
ER

YNðtjÞ

n¼1

Yn

 !
1D

" #
;

where

dR

dQ

����
FT

¼ nRT ¼ exp
Z T

0
r̂HðsÞ � dW ðsÞ � 1

2

Z T

0
r2HðsÞds

� �
:

By Girsanov’s theorem, the process WR(t), defined by,

dWRðtÞ ¼ dW ðtÞ � r̂H ðtÞdt;
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is a standard Brownian motion under probability measure R. Under the probability measure
R, the housing price process satisfies,

dHðtÞ
HðtÞ ¼ ðrðtÞ � dðtÞ þ r2HðtÞÞdt þ r̂H ðtÞ � dWRðtÞ þ dðJðtÞ � kbtÞ:

Similarly, using Ito’s Lemma, we obtain,

HðtjÞ ¼ Hð0ÞBðtjÞ exp
R tj
0 �dðsÞ � kbþ 1

2r
2
HðsÞ

� �
dsþ R tj0 r̂HðsÞ � dWRðsÞ þ

PNðtjÞ

n¼1
ln Yn

( )
:

Therefore, A2 is of the form:

A 2 ¼ Hð0Þ exp �
Z tj

0
ðdðsÞ þ kbÞds

� �
ER

YNðtjÞ

n¼1

expðhþ rYZnÞ
 !

1D

" #

¼ Hð0Þ exp �
Z tj

0
ðdðsÞ þ kbÞds

� �X1
m¼0

e�ktjðktjÞm
m!

ER expðmhþ rY
ffiffiffiffi
m

p
ZÞ1D

� �
¼ Hð0Þ exp �

Z tj

0
dðsÞds

� �X1
m¼0

e�kðbþ1ÞtjðktjÞm
m!

exp m hþ 1

2
r2Y

� �� �
Xm

¼ Hð0Þ exp �
Z tj

0
dðsÞds

� �X1
m¼0

e�kðbþ1Þ tj kðbþ 1Þtj
� �m
m!

Xm;

where Z is a standard normal random variable and b ¼ EðYi � 1Þ ¼ ehþ
r2
Y
2 � 1. Given

N(tj) =m, Xm is defined as follows:

Xm ¼ ER exp rY
ffiffiffiffi
m

p
Z � 1

2
r2Ym

� �
1D

	 


¼
Z 1

�1
1D exp rY

ffiffiffiffi
m

p
z� 1

2
r2Ym

� �
1ffiffiffiffiffiffi
2p

p exp � 1

2
z2

� �
dz

¼
Z 1

�1
1D

1ffiffiffiffiffiffi
2p

p exp � 1

2
ðz� rY

ffiffiffiffi
m

p Þ2
� �

dz:

Let Z	 ¼ Z � rY
ffiffiffiffi
m

p
. Hence, the housing price process, given N(tj) =m, satisfies

HðtjÞ ¼ Hð0ÞBðtjÞ exp
Z tj

0
�dðsÞ � kbþ 1

2
r2H ðsÞ

� �
dsþ ðhþ r2Y Þmþ

Z tj

0
r̂H ðsÞ � dWRðsÞ þ rY

ffiffiffiffi
m

p
Z	

� �

and Xm can be rewritten as,

Xm ¼ Pr

Z tj

0
r̂H ðsÞ � dWRðsÞ þ rY

ffiffiffiffi
m

p
Z	 � � xj þ 1

2

Z tj

0
r2HðsÞ dsþ ðhþ r2Y Þm

� �	 

¼ Uð�d1;jðmÞÞ:

This completes the proof of Proposition 1.
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Appendix 2. Proof of Proposition 2.

By virtue of Equation (6) and (27), CL(tj) can be rewritten as follows:

CLðtjÞ ¼ EQ
BALðtjÞ � HðtjÞ
� �þ

BðtjÞ

" #
¼ EQ BALð0ÞpðjÞepr tj � Hð0ÞeAðtjÞþ

R tj

0
r̂H ðsÞ�dW ðsÞþLðtjÞ

	 
þ	 

:

Assuming that Kj ¼ BALð0ÞpðjÞepr tj and HB(t) =H(t)/B(t), we have,

CLðtjÞ ¼ EQ ðKj � HBðtjÞÞ 1ðHBðtÞ�KjÞ
h i

¼ EQ ðKj � HBðtjÞÞð 1� 1GÞ
� �

¼ Kj � EQðHBðtjÞÞ þ EQ ðHBðtjÞ � KjÞþ
� � ¼ Kj � Hð0Þe�

R tj

0
dðsÞ ds þ Cðtj; kjÞ;

where kj = ln Kj and G = {HB(tj) >Kj}. Then C(tj, kj) can be rewritten as,

Cðtj; kjÞ � EQ ehðtjÞ � ekj
h iþ	 


¼
Z 1

kj

ehðtjÞ � ekj

 �

Q hðtjÞ
� �

dhðtjÞ; (B.1)

where h(t) is equal to lnHð0Þ þ AðtÞ þ R t
0 r̂H ðsÞ � dW ðsÞ þ LðtÞ with a risk-neutral probabil-

ity density QhðtÞ and a characteristic function / hðtÞðxÞ as follows:

/ hðtÞðxÞ ¼ EQ eixhðtÞ

 �

¼ exp ixðlnHð0Þ þ AðtÞÞð ÞEQ eix
R t

0
r̂H ðsÞ�dW ðsÞ

� �
EQ eixLðtÞ

 �

¼ exp ixðlnHð0Þ þ AðtÞÞ � x2

2

Z t

0
r2HðsÞds� twðxÞ

� �
:

To solve C(tj, kj), following the Carr & Madan (1999) approach, we define a modified call
price as:

Cmodðtj; kjÞ � ea kjCðtj; kjÞ (B.2)

where Cmodðtj; kjÞ is expected to satisfy the integrability condition

Z 1

�1
Cmod tj; kj

� ��� �� dkj\1;

by carefully choosing α > 0. Consider a Fourier transform of Cmodðtj; kjÞ as follows:

KtjðxÞ ¼
Z 1

�1
eixkjCmodðtj; kjÞ dkj:

Substituting equations (B.1) and (B.2) and interchanging integrals yields
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KtjðxÞ ¼
Z 1

�1
eixkj ea kjCðtj; kjÞ dkj ¼

Z 1

�1
eixkj ea kj

Z 1

kj

ex � ekj
� �

QhðtjÞðxÞdx dkj

¼
Z 1

�1
QhðtjÞðxÞ

Z x

�1
eixkj exþa kj � eð1þaÞkj


 �
dkjdx

¼
Z 1

�1
QhðtjÞðxÞ

eðaþ1þixÞx

aþ ix
� eðaþ1þixÞx

aþ 1þ ix

� �
dx ¼ /hðtjÞðx� ðaþ 1ÞiÞ

ðaþ ixÞðaþ 1þ ixÞ :

Thus, C(tj, kj) can be obtained by an inverse Fourier transform of KtjðxÞ:

C tj; kj
� � ¼ e�a kj

2p

Z 1

�1
e�ixkjKtjðxÞ dx ¼ e�a kj

2p

Z 1

�1
e�ixkj

/hðtjÞðx� ðaþ 1ÞiÞ
ðaþ ixÞðaþ 1þ ixÞ dx:
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