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Abstract
Current antiviral therapies have dramatically improved the long-term outcomes of patients with chronic hepatitis B virus

(HBV) infection. Both interferon (IFN) and nucleos(t)ide analogue (NA) treatments have been shown to reduce the progres-

sion of liver disease in chronic hepatitis B (CHB) patients. However, persistent covalently closed circular DNA (cccDNA) can

result in a viral relapse after discontinuation of antiviral treatment. On the basis of extensive research on the HBV lifecycle

and virus–host interactions, several new agents focusing on viral and host targets are under development to cure HBV. New

polymerase inhibitors, tenofovir alafenamide and besifovir provide effective and safer treatment for CHB patients. Agents

targeting cccDNA, such as engineered site-specific nucleases and RNA interference therapeutics could eliminate cccDNA or

silence cccDNA transcription. Inhibitors of HBV nucleocapsid assembly suppress capsid formation and prevent synthesis of

HBV DNA. The HBV entry inhibitor, Myrcludex-B, has been shown to effectively inhibit amplification of cccDNA as well as

the spread of intrahepatic infection. Agents targeting host factors that enhance innate and adaptive immune responses,

including the lymphotoxin-b receptor agonist, toll-like receptor agonist, immune checkpoint inhibitors and adenovirus-based

therapeutic vaccine, could play a critical role in the elimination of HBV-infected cells. With all of these promising approaches,

we hope to reach the ultimate goal of a cure to HBV in the near future.
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Hepatitis B virus (HBV) is an important public health
problem and the leading cause of chronic hepatitis, cir-
rhosis and hepatocellular carcinoma (HCC) worldwide.
The estimated annual incidence of cirrhosis is 2–6% in
hepatitis B e antigen (HBeAg)-positive and 8–10% in

HBeAg-negative patients. The estimated lifetime risk of
developing cirrhosis, liver failure or HCC in HBV
patients is as high as 15–40% (1–3). Therefore, effective
antiviral agents are urgently needed to delay or even halt
the progression from chronic hepatitis to cirrhosis and
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HCC. Research and therapeutic developments in the
molecular virology of HBV have led to significant
advances in the treatment of chronic hepatitis B (CHB).
At present antivirals approved for CHB include
standard or pegylated interferon-a (PEG-IFN-a) and
nucleos(t)ide analogues (NA) (4–6). Although the effi-
cacy of antivirals has markedly improved the long-term
outcomes of CHB patients, clearance of hepatitis B sur-
face antigen (HBsAg) is only achieved in a small portion
of HBV patients. Therefore, a cure of HBV infection is
still a daunting challenge, especially in Asian patients
who acquire the virus early in life (7). Several potential
strategies focusing on viral and host targets responsible
for persistent HBV are under clinical development to
cure HBV (8). This article reviews and discusses new
therapeutic perspectives of CHB.

Current antiviral agents decrease disease
progression and the incidence of hepatocellular
carcinoma

At present, seven agents are extensively used for the
treatment of CHB: standard interferon-a (IFN-a) or
pegylated interferon-a (PEG-IFN-a) and five nucleos(t)
ide analogues (NA), including lamivudine (LAM), tel-
bivudine (LdT), entecavir (ETV), adefovir dipivoxil
(ADV) and tenofovir disoproxil fumarate (TDF). The
pharmacological properties of these agents differ. For
example, IFN mainly has immune modulatory effects
and weak direct antiviral effects while NA have direct
antiviral effects only. Several international HBV man-
agement guidelines recommend PEG-IFN-a, ETV and
TDF as the first-line treatments (4–6).

In hepatitis B e antigen (HBeAg)-positive patients,
1 year of PEG-IFN monotherapy led to HBeAg sero-

conversion in 29–32% of patients at 6 months off-
therapy. HBsAg seroconversion was achieved in 3–5%
of patients at 6 months off-therapy (9, 10). Fifteen
percent of HBeAg-negative patients treated with 1
year PEG-IFN had a combined response with serum
alanine aminotransferase (ALT) normalization and
HBV DNA <400 copies/ml. HBsAg loss was reported
in 4% at 6 months off-therapy (11). After 4 years of
follow-up, HBsAg seroclearance progressively
increased to 11% (12).

Among the direct antiviral agents, both ETV and
TDF are highly potent nucleos(t)ide inhibitors of the
HBV polymerase with a high genetic barrier to drug
resistance. Cumulative rates of HBV undetectability in
treatment-na€ıve patients were more than 90% after
long-term treatment with ETV (13, 14) and TDF (15),
irrespective of HBeAg status. HBeAg seroconversion
occurred in 21% of patients after 1-year of ETV and
TDF therapy, respectively (16, 17). Of note, HBsAg loss
occurred in 11.8% of HBeAg-positive patients after
7 years of TDF treatment (15), mostly in non-Asian
patients with HBV genotype A or D infection. In addi-
tion to the highly potent viral suppression with ETV
and TDF, the high genetic barrier to drug resistance also
results in a sustained virological response (SVR). The 5-
year cumulative probability of genotype resistance of
ETV was 1.2% (18). Similarly, no resistance to TDF was
detected after 7 years of treatment (15).

Histological evaluation after long-term treatment
with ETV and TDF showed improvement in necroin-
flammatory and fibrosis scores in most patients (13,
19). Recent studies have shown that the risk of develop-
ment of HCC was reduced in CHB patients receiving
ETV treatment compared to untreated historical con-
trols (20, 21). The effect of long-term ETV therapy on
the reduction of the risk of HCC in patients with hepati-
tis B-related cirrhosis was also investigated in the Cir-
rhosis Taiwanese Entecavir Multicenter (C-TEAM)
study from Taiwan. In this large hospital-based cohort
study, 503 patients were enrolled in the control group
and 1123 in the ETV group from 24 academic centres.
ETV treatment was associated with a 60% reduction in
the risk of HCC (adjusted hazard ratio [HR]: 0.40, 95%
confidence interval [CI]: 0.27–0.60) in patients with cir-
rhosis (22). The protective effect of NA in the develop-
ment of HCC was also confirmed in a population-based
cohort study in Taiwan. CHB patients treated with NA
had a significantly lower 7-year incidence of HCC
(7.32%; 95% CI: 6.77–7.87%) than patients without NA
treatment (22.7%; 95% CI: 22.1–23.3%; P < 0.001). NA
treatment was associated with a reduced risk of HCC,
with an adjusted hazard ratio of 0.37 (95% CI, 0.34–
0.39; P < 0.001) (23). A similar nationwide study in
Taiwan also showed that NA-treated HCC patients had
a significantly lower rate of recurrent HCC after surgical
resection (45.6%; 95% CI: 36.5–54.6% vs. untreated,
54.6%; 95% CI: 52.5–56.6%; P < 0.001), and NA treat-
ment was independently associated with a reduced risk

Key points

• Several meta-analyses have shown that existing
chronic hepatitis B treatments can reduce progres-
sion of liver disease.

• Persistent covalently closed circular DNA
(cccDNA) is the main source of failure to eliminate
hepatitis B virus (HBV). Engineered site-specific
nucleases and RNA interference therapeutics could
clear or silence cccDNA.

• Myrcludex-B targets HBV entry receptor and inhi-
bits amplification of intrahepatic cccDNA as well
as the spread of intrahepatic infection.

• The lymphotoxin-b receptor agonist, toll-like
receptor agonist, immune checkpoint inhibitor
and adenovirus-based therapeutic vaccine could
enhance innate and adaptive immune responses to
induce non-cytolytic destruction of cccDNA or
attack HBV-infected hepatocytes.
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of HCC recurrence (HR: 0.67; 95% CI: 0.55–0.81;
P < 0.001) (24). All of these results suggest that NA
treatment reduces the risk of HCC in a significant pro-
portion of patients with cirrhosis through long-term
viral suppression. However, the viral or host factors
associated with the development of HCC in patients
with profound viral suppression requires further study.

Unmet needs of existing CHB treatment: clearance
of cccDNA and better prevention of hepatocellular
carcinoma

Although there has been significant progress in the
treatment of CHB in the past decade, there are still
unsolved problems. First, although a higher rate of
sustained off-treatment response is achieved with IFN
than with NA, its serological response rate is still far
from satisfactory. Most patients do not obtain clear-
ance of HBsAg. In contrast, since NA do not affect
HBV covalently closed circular DNA (cccDNA), viral
relapse is common after discontinuation of NA, even
in patients who have achieved therapeutic endpoints
(25–29). Second, NA reduces the risk of development
of HCC through long-term viral suppression in a sig-
nificant proportion of patients with cirrhosis. How-
ever, HCC still occurs in patients in persistent
virological remission (30). In addition, maintained
viral suppression under NA therapy has been associ-
ated with a lower risk of HCC in Asians but not in
Caucasians (31). These data suggest that NA reduces,
but does not eliminate, HCC. Thus, new treatment
strategies to clear intrahepatic HBV cccDNA are
urgently required for patients who are at a high risk
of developing cirrhosis and HCC. Finally, the defini-
tion of a cure to HBV must still be clarified. Interna-
tional guidelines state that the ideal therapeutic
endpoints for CHB include HBeAg/HBsAg loss or
seroconversion in HBeAg-positive patients, and HBsAg
loss or seroconversion in HBeAg-negative patients
(4–6). To evaluate these treatment goals, the definition
of a cure must be confirmed. In principle, a complete
or sterilizing cure of HBV requires either clearance of
HBV cccDNA or purging HBV-infected hepatocytes
(32). At present achieving HBV cccDNA clearance
could be difficult and we lack the biomarkers to con-
firm it. On the basis of stable off-drug suppression of
HBV viraemia, cccDNA and HBsAg seroconversion, a
functional cure would be the feasible goal of novel
treatments (32, 33).

Towards a cure to HBV

A review of the existing data shows that eradication of
HBV infection is still a challenge especially in Asian
patients who acquire the virus early in life. Fortunately,
thanks to extensive research of the hepatitis B viral life
cycle and virus–host interactions (Fig. 1), several novel
therapeutic approaches to cure HBV that focus on viral

and host targets responsible for persistent HBV have
been proposed and are being actively investigated
(Table 1) (8).

New polymerase inhibitors

Most NA that have been approved to treat the HBV
polymerase target DNA elongation. ETV and TDF also
impair protein priming (34). However, the major limi-
tation of long-term NA therapy is the development of
drug resistance. Novel NA are thus being developed in
advanced clinical trials.

Tenofovir alafenamide (GS-7340)

Tenofovir alafenamide (TAF) is a prodrug of teno-
fovir. In patients with the human immunodeficiency
virus (HIV) infection, TAF showed more potent anti-
HIV-1 activity and higher intracellular tenofovir levels
as well as low-level plasma tenofovir concentrations
than TDF (35). In an in vitro study, TAF resulted in
high levels of the pharmacologically active metabolite
tenofovir diphosphate than TDF (36). In a recent
study, non-cirrhotic, treatment-na€ıve CHB patients
were randomized to TAF 8, 25, 40, 120 mg and TDF
300 mg for 28 days. Whatever the TAF dose, the
mean change in serum HBV DNA in patients receiv-
ing TAF treatment were similar to those receiving
TDF (37). In addition, TAF has no renal transporter
(organic anion transporters, OAT1 and OAT3)-depen-
dent cytotoxicity, which may result in an improved
renal safety profile (38).

Besifovir (LB80380)

Besifovir (LB80380) is a novel and potent acyclic
nucleotide phosphonate with a similar chemical struc-
ture to adefovir and tenofovir. In a multicenter-rando-
mized trial, there were no differences in the proportions
of patients achieving undetectable HBV DNA, normal-
ization of ALT or HBeAg seroconversion between besi-
fovir and ETV therapy (39, 40).

Thus, both TAF and besifovir provide effective and
safer treatment for CHB patients, but still do not clear
HBV cccDNA.

Strategies targeting cccDNA

Persistent HBV cccDNA is the main cause of failure to
achieve a cure to HBV and of viral relapse after NA ther-
apy is stopped (41). Novel drug targets must eliminate
cccDNA or silence cccDNA transcription.

Engineered site-specific nucleases that induce DNA
double-strand breaks are currently used to inhibit HBV
replication. The three most commonly used engineered
DNA-binding proteins used to target cccDNA are the
zinc-finger nucleases (ZFNs), transcription activator-like
effector nucleases (TALENs) and the RNA-guided
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clustered regulatory interspaced short palindromic
repeats (CRISPR) and CRISPR-associated (Cas) protein
endonucleases (42). By blocking the transcription of
cccDNA, ZFNs can be used to inhibit viral transcription
and replication of duck HBV (43). An in vitro study has
also shown effective cleavage of viral DNA targets by
HBV-specific ZFN within cultured cells (44). TALENs
are newly developed sequence-specific nucleases that tar-
get HBV-specific sites to disrupt sequences and suppress
markers of viral replication. Bloom et al. reported that
engineered mutagenic TALENs targeting S or C open-
reading frames caused mutation in 35% of cccDNA
molecules (45). TALENs targeting the conserved regions
of HBV DNA significantly reduced the viral production
of HBeAg, HBsAg, HBcAg and pregenomic RNA, and
resulted in a decreased cccDNA levels and misrepaired
cccDNA in Huh7 cells transfected with monomeric lin-
ear full-length HBV DNA (46). The CRISPR/Cas system
is a novel genome editing tool for site-specific cleavage
of DNA targets directed by a synthetic guide RNA base-
paired to the target DNA sequence (47, 48). Our recent
study showed that the CRISPR/Cas system with eight
HBV-specific guide RNAs targeting different regions of
the HBV genome significantly reduced the production
of HBV core and surface proteins in Huh-7 cells trans-

fected with an HBV-expression vector. The CRISPR/
Cas9 system could thus disrupt HBV-expressing tem-
plates both in vitro and in vivo (49).

Among agents targeting the conversion of relax-cir-
cular DNA to cccDNA two structurally related disubsti-
tuted sulphonamides, called CCC-0975 and CCC-0346,
were recently identified and confirmed as inhibitors of
cccDNA production (50).

Strategies targeting inhibition of nucleocapsid assembly

Hepatitis B virus replication can be prevented by effec-
tive inhibition of nucleocapsid assembly. The inhibitors
of nucleocapsid formation include phenylpropenamide
derivatives (for example AT-61, AT130) (51, 52),
heteroaryldihydropyrimidines (Bay 41-4109) (53) and
sulphamoylbenzamide derivatives (54). These com-
pounds either inhibit capsid formation (heteroaryldihy-
dropyrimidines) or prevent the encapsidation of viral
pregenomic RNA into nucleocapsid (phenylprope-
namide and sulphamoylbenzamide derivatives). Because
inhibition of viral replication occurs at the step prior to
viral DNA synthesis, nucleocapsid formation inhibitors
are effective against both wild-type and NA-resistant
HBV (54).

Fig 1. Model of the replication of hepatitis B virus and suggested mechanisms of action for novel antiviral molecules. cccDNA: covalently
closed circular DNA, ER: endoplasmic reticulum, HBV: hepatitis B virus, NTCP: sodium taurocholate cotransporting polypeptide, pgRNA:
pregenomic RNA; RC-DNA: relaxed-circular DNA; ssDNA: single-stranded DNA. Adapted from Yang et al. (41).
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Strategies targeting HBV RNA

RNA interference-based therapeutics could specifically
knock down the expression of viral proteins, including
HBsAg, and viral replication (55). ARC-520 is a combi-
nation of hepatocyte-targeted, N-acetylgalactosamine-
conjugated melittin-like peptide with liver-tropic
cholesterol-conjugated small interfering RNAs directed
against conserved HBV RNA sequences that effectively
knocks down HBV RNA, proteins and DNA levels (56,
57). By combining HBV gene silencing and induction of
IFN in the liver, 50 triphosphorylated small interfering
RNAs induced a strong expression of IFN-b in liver cells
and showed transient but strong inhibition of viral
replication (58).

Strategies targeting HBV entry receptor

Recently, the sodium taurocholate cotransporting
polypeptide (NTCP) has been confirmed as a specific

binding receptor of the pre-S1 domain of the HBV large
envelope protein for HBV entry into the host cell (59).
Based on these results Myrcludex-B, a synthetic lipopep-
tide derived from the pre-S1 domain of the HBV
envelope protein targeting NTCP, has been developed
and shown to effectively inhibit HBV entry in vitro and
in vivo (60, 61). In humanized mice infected with HBV,
6 weeks of Myrcludex-B treatment completely blocked
the rise of serum viral load and HBsAg concentrations.
The results showed that Myrcludex-B inhibited amplifi-
cation of intrahepatic cccDNA as well as the spread of
intrahepatic infection (60). Myrcludex-B mainly inter-
fered with the viral entry process and virion productiv-
ity was not affected during treatment. Myrcludex-B
combined with existing antiviral agents could synergisti-
cally control HBV, both by reducing viraemia and by
blocking de novo infection (60, 62).

Strategies targeting host immune responses

Agents targeting host factors to enhance innate and
adaptive immune responses could play a critical role in
the clearance of HBV-infected cells. Lucifora et al.
recently reported that IFN-a and lymphotoxin-b recep-
tor agonists up-regulated apolipoprotein B mRNA-edit-
ing enzyme, catalytic polypeptide 3A (APOBEC3A) and
APOBEC3B cytidine deaminases in HBV-infected cells,
resulting in non-cytolytic clearance of cccDNA and
reducing cccDNA, HBV DNA and HBsAg levels (63).
The therapeutic potential of lymphotoxin-b receptor
agonists, in combination with NA or future antivirals,
must be evaluated.

The toll-like receptor (TLR) family is important regu-
lator of innate and adaptive immune responses to vari-
ous pathogens (64). Exogenous IFN stimulation by TLR
agonist may reinstate endogenous IFN-a responses and
result in innate and adaptive immune reconstitution
(65). GS-9620, a selective oral TLR7 agonist, could
induce prolonged suppression of HBV DNA in serum
and the liver in chronically infected chimpanzees. Fur-
thermore, serum HBsAg and HBeAg levels, and the
number of HBV antigen-positive hepatocytes were
reduced while hepatocyte apoptosis was increased (66).
Similarly, GS-9620 can induce a SVR in woodchucks
infected with woodchuck hepatitis virus (67). A recent
phase Ib study showed that GS-9620 was safe and asso-
ciated with induction of peripheral IFN-stimulated gene
15 production in CHB patients (68). The data suggest
that the TLR7 agonist is a potential therapeutic
approach to control or eliminate HBV infection.

Antiviral immunity plays an important role in the
control of HBV infection, and therapeutic vaccines have
been considered a promising strategy. Martin et al.
developed a novel adenovirus-based therapeutic vaccine,
TG1050, encoding three HBV antigens or domains,
including core, polymerase and envelope proteins. They
showed that long-lasting HBV-specific memory CD8(+)
T cells could be induced by TG1050 in mouse models

Table 1. Emerging treatments for chronic hepatitis B

Target Mode of action Compound

Virus
HBV
Polymerase

Polymerase
inhibitor

Tenofovir alafenamide
(GS-7340)
Besifovir (LB80380)

cccDNA Site-specific
cleavage
of DNA

ZFNs, TALENs,
CRISPR/Cas

Inhibition of
relax-circular
DNA to cccDNA
conversion

Disubstituted
sulphonamides

Inhibition of
nucleocapsid
assembly

Phenylpropenamide
derivatives
Heteroaryldihydropyrimidines
Sulphamoylbenzamide
derivatives

HBV RNA Knock down
HBV RNA,
viral proteins and
HBV DNA

RNA interference

Host
NTCP Entry inhibitor Myrcludex-B
Innate
immunity

Induce APOBEC3A
and APOBEC3B

Lymphotoxin-b receptor
agonist

Exogenous
interferon
stimulation

Toll-like receptor agonist

Adaptive
immunity

CD8 T cells
activation

Therapeutic vaccine
Programmed death -1
inhibitor

APOBEC, apolipoprotein B mRNA editing enzyme, catalytic polypeptide

3A and 3B; cccDNA, covalently closed circular DNA; CRISPR/Cas, clus-

tered regulatory interspaced short palindromic repeats (CRISPR) and

CRISPR-associated (Cas) systems; HBV, hepatitis B virus; NTCP, sodium

taurocholate cotransporting polypeptide; TALENs, transcription activa-

tor-like effector nucleases; ZFNs, zinc-finger nucleases.
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(69). Although reduction in the HBsAg and HBV DNA
levels was observed in mouse models, the extent of
reduction might not be enough to eradicate persistent
HBV or control viral replication in humans (70).

In addition to therapeutic vaccines, several alternative
approaches are proposed. In patients with CHB, high
viral load leads to exhaustion and dysfunction of T cells
by induction of inhibitory costimulatory molecules,
such as programmed death-1 (PD1) and cytotoxic
T-lymphocyte antigen 4 (CTLA-4) (71). HBeAg-positive
patients with high viral load show increased PD-1 and
CTLA-4 expression on HBV-specific CD8(+) T cells
(72). PD-1 blockade increased CD8(+) T-cell prolifera-
tion and enhanced HBcAg-specific IFN-c production in
intrahepatic lymphocytes (73–75). These results indicate
that blockade of immunoinhibitory signals through
these immune checkpoint inhibitors might restore
immune dysfunction and enhance antiviral T-cell
immunity. In the future, novel immune modulatory
agents could be combined with long-term NA therapy
to achieve protective immunity against HBV with a sub-
sequent cure of HBV (8, 65).

Conclusions and perspectives

Although long-term viral suppression significantly
reduces the degree of liver damage and risk of end-
stage liver disease, such as cirrhosis and HCC (76–78),
current antiviral treatments fail to cure most CHB
patients because of persistent HBV cccDNA. cccDNA
can be eliminated by non-cytolytic destruction of
cccDNA or immune-mediated killing of HBV-infected
hepatocytes (41). Several potential strategies to cure
HBV focusing on cccDNA and host targets responsible
for persistent HBV are under active development. By
combining these promising approaches we hope to
reach the ultimate goal of curing HBV in the near
future.
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