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Adults, infants and some non-human animals share an approximate number system
(ANS) to estimate numerical quantities, and are supposed to share a second, ‘object-
tracking,’ system (OTS) that supports the precise representation of a small number of
items (up to 3 or 4). In relative numerosity judgments, accuracy depends on the ratio
of the two numerosities (Weber’s Law) for numerosities >4 (the typical ANS range),
while for numerosities ≤4 (OTS range) there is usually no ratio effect. However, recent
studies have found evidence for ratio effects for small numerosities, challenging the idea
that the OTS might be involved for small number discrimination. Here we tested the
hypothesis that the lack of ratio effect in the numbers 1–4 is largely dependent on the
type of stimulus presentation. We investigated relative numerosity judgments in college
students using three different procedures: a simultaneous presentation of intermingled
and separate groups of dots in separate experiments, and a further experiment with
sequential presentation. As predicted, in the large number range, ratio dependence was
observed in all tasks. By contrast, in the small number range, ratio insensitivity was
found in one task (sequential presentation). In a fourth experiment, we showed that the
presence of intermingled distractors elicited a ratio effect, while easily distinguishable
distractors did not. As the different ratio sensitivity for small and large numbers has been
often interpreted in terms of the activation of the OTS and ANS, our results suggest that
numbers 1–4 may be represented by both numerical systems and that the experimental
context, such as the presence/absence of task-irrelevant items in the visual field, would
determine which system is activated.

Keywords: OTS, ANS, subitizing, numerical cognition, non-verbal cognitive systems

INTRODUCTION

A large body of experimental evidence collected in cultural, developmental, comparative and
cognitive psychology supports the existence of numerical systems that are not related to language
and culture. For example, newborns are able to discriminate between 4 and 12 objects (Izard
et al., 2009), and 6-month old infants are able to distinguish between 6 and 12 objects well before
the emergence of language (Xu and Spelke, 2000). Sophisticated numerical abilities have been
described in animal species that lack a symbolic language, such as rodents and fish (reviewed in
Agrillo and Bisazza, 2014). Pre-verbal numerical abilities have been reported in an Amazonian
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population (Mundurukù) that proved able to discriminate
between large quantities even though they lack words for
numbers beyond five (Pica et al., 2004). Even after being trained
for many years in formal mathematics, the adults of Western
societies continue to use these abilities for solving many tasks
of everyday life, such as estimating the number of people in a
queue or number of food items in a plate. These abilities are
also supposed to be involved in laboratory studies in which
participants are required to estimate which group is more
numerous (e.g., 8 vs. 9 dots) in a short amount of time (e.g.,
200ms), an experimental condition thatmakes extremely difficult
the use of verbal counting (Halberda et al., 2008).

A common finding of experiments with adults and infants is
that performance in relative numerosity judgments decreases as
the numerical ratio between the smaller and the larger group
increases. For instance, adult humans and infants are better at
discriminating 8 vs. 16 items (0.50 ratio) than 8 vs. 12 items (0.67
ratio) (e.g., Xu and Spelke, 2000; Agrillo et al., 2012). However,
this ‘ratio dependence’ does not appear to be universal and in
particular several authors have reported that the performance
in the range 1–4 is often insensitive to numerical ratio (e.g.,
Feigenson et al., 2004; Revkin et al., 2008; Agrillo et al., 2013).
In other words, performance seems to be very similar when
discriminating 1 vs. 4 or 3 vs. 4 objects, whereas accuracy is much
higher when discriminating 5 from 20 objects (1:4 ratio) than 15
from 20 objects (3:4 ratio, Atkinson et al., 1976; Oyama et al.,
1981; Trick and Pylyshyn, 1993; Revkin et al., 2008). The rapid
and accurate enumeration of small sets is commonly referred as
‘subitizing’, a phenomenon widely investigated in the last century
(e.g., Jensen et al., 1950; Mandler and Shebo, 1982; Revkin et al.,
2008).

The behavioral difference between small (≤4) and large (>4)
numbers has suggested the existence of two different pre-verbal
numerical systems: one precise but operating only on small
numbers and one approximate, with virtually no upper limit
but whose discriminability is constrained by a ratio distance
(Feigenson et al., 2004; Cordes and Brannon, 2008).

To date, the exact cognitive system underlying subitizing
is unknown. Several authors believe that this phenomenon is
based on a process linked to a system for representing and
tracking individual objects (Trick and Pylyshyn, 1994; Feigenson
et al., 2002). Since this object-tracking system (OTS) keeps
track of individual elements, it would be precise but would
allow for the parallel representation of a small number of
objects (Pylyshyn and Storm, 1988). In support of this link
between human ‘subitizing’ and OTS, it has been noted that
the typical subitizing range of 3–4 (Trick and Pylyshyn, 1994;
Revkin et al., 2008) parallels the tracking limit of 4 (Pylyshyn,
1989). The second mechanism is an approximate number system
(ANS) for representing larger numerosities: this system encodes
approximate numerosities as (compressed) analog magnitudes
and it supports numerosity estimation (Dehaene et al., 2003).

Subitizing and numerical estimation of large numbers appear
to differ in many respects, such as speed, accuracy and cognitive
load (Kaufman et al., 1949; Mandler and Shebo, 1982; Logie and
Baddeley, 1987; Burr et al., 2010; Vetter et al., 2011). As noted
in literature, only the ANS would be indexed by a ratio effect

in numerosity comparisons (Trick and Pylyshyn, 1994; Xu and
Arriaga, 2007; Revkin et al., 2008).

There is also dissociation in human ontogeny. Newborns can
discriminate 2 vs. 3 but not 4 vs. 6 items in a habituation task,
showing a different ratio-dependence in the two numerical ranges
(Starkey and Cooper, 1980). A study of event-related potentials
has provided the first neurophysiological evidence in the infant
brain for different neural responses to small and large numbers
(Hyde and Spelke, 2011). The authors recorded event-related
potentials of 6–7.5-month-old infants in the presence of arrays
containing either small (1–3) or large (8–32) sets of dots. Large
numbers evoked a mid-latency parietal response (P500) that
was dependent on the numerical ratio. On the contrary, small
numbers evoked an earlier peaking occipital-temporal response
(P400) that was dependent on the cardinal value and was not
influenced by the numerical ratio.

Other studies, however, report ratio sensitivity in the small
number range, challenging the idea of different mechanisms for
small and large numbers. For instance, participants required to
order two numerical values presented simultaneously showed
ratio dependence across the range of values from 2 through 30
in accuracy and reaction time (Cantlon and Brannon, 2006).
Developmental psychologists also reported data supporting one
general mechanism for small and large numbers. For instance,
3-year-old children were asked to match a sample stimulus to
one of two alternatives and a significant effect of numerical ratio
was found in discrimination of quantities 1–4, similar to the ratio
dependence reported with large sets (Cantlon et al., 2010).

To summarize, while the existence of the ANS is generally
accepted and supported by the universal ratio dependence
reported in large number discrimination, researchers tend to
disagree as to whether a distinct precise system operates for 3–
4 objects. This debate has been recently enlarged to encompass
non-human species. Some authors found evidence of a different
ratio dependence of the performance within and outside the
subitizing range in mammals, birds and fish (Hauser et al., 2000;
Hunt et al., 2008; Bonanni et al., 2011; Gòmez-Laplaza andGerlai,
2011; Agrillo et al., 2012), while other studies report a similar ratio
sensitivity in the two numerical ranges, supporting the idea of a
single ANS (Cantlon and Brannon, 2007; Ward and Smuts, 2007;
Tomonaga, 2008; Al Aïn et al., 2009).

It has proved difficult to resolve this issue with neuroimaging
studies. If observers always try to subitize whatever the number
of objects in the display, then there will be no distinctive signal
locus for stimuli in the subitizing range (Piazza et al., 2002).
One attempt to resolve this was to examine the time-course and
amplitude of the BOLD signal for stimuli within and beyond the
subitizing range (Piazza et al., 2003). This revealed that larger
numbers elicited a larger signal than smaller numbers in the intra-
parietal sulcus (IPS). By using a dual-task paradigm, Vetter et al.
(2011) manipulated attentional load in a numerical task requiring
them to assess whether the array contained one, three, five, or
seven targets. Participants were less accurate under high load
compared to low load (or single task). No interaction between
load condition and target number was found, meaning that the
presence of a concurrent task had the same impact in estimating
small (1–3) and large (5–7) numbers. However, the authors
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showed that manipulating attentional load modulated the neural
signal specifically in the subitizing range, and moreover, in the
right temporo-parietal junction, rather than in the IPS, the locus
for larger number estimation and discrimination (e.g., Piazza
et al., 2003). This study shows that far from being ‘pre-attentive,’
subitizing would be an attention-demanding process (see also
Burr et al., 2010). More recent psychophysiological and fNIRS
studies also suggest that the processes underlying small and large
number estimation are neurally dissociable (Vuokko et al., 2013;
Cutini et al., 2014).

The question therefore remains as to what determines
different ratio sensitivity in the small number range and, strictly
related to this issue, what triggers the supposed subitizing
response. Part of the problem is due to the fact that different
studies use very different experimental paradigms that are likely
to have a different impact on memory and cognitive load. For
instance, in some tasks stimuli are simultaneously presented
(e.g., Halberda et al., 2008), while in others stimuli are presented
sequentially and hence subjects have to remember the numerosity
of the former set (e.g., Ansari et al., 2007). Also, in some tasks
distractors were introduced – thus increasing the cognitive load
(e.g., Vetter et al., 2008) – while in others subjects have to solve
the numerical task without distractors (e.g., Revkin et al., 2008).

To explain the inconsistency reported in the literature, it
has been recently hypothesized that the ANS may sometimes
be recruited to represent numbers in the subitizing range
and the context in which the representation is elicited may
determine which of them is employed in the subitizing
range (Cordes and Brannon, 2008; Bisazza et al., 2010). If
activation of the ANS in range 1–4 depends on contextual
variables, such as the type of stimuli used, the method of
presentation or the sensory modality involved, contrasting
results may arise if different studies adopt different methods.
The type of stimuli and the methodology adopted, for instance,
seem to be able to affect even the range of subitizing itself.
Haladjian and Pylyshyn (2011) asked participants to indicate
locations of each item in a set of 2–9 disks that were displayed
briefly and masked: participants proved able to attend and
recall up to six items, in contrast with the four-item limit
typically found when using standard reporting methods
which often require to indicate how many items were
presented (Mandler and Shebo, 1982). Also, it was recently
demonstrated that the experimental procedure modulates
the ratio dependence of children’s numerosity judgments
for large numbers (Odic et al., 2014). The performance of
children significantly changed depending on whether the
previous history of numerical decisions was made with
high- or low-confidence (experimentally manipulated by
presenting to two groups of children either easier or harder
discriminations and providing them with positive/negative
feedback of their performance). If ratio dependence in the
ANS range is affected by the history of previous trials, it is
possible that different contextual factors may explain also
the heterogeneous pattern of data of ratio dependence in the
subitizing range.

Here we tested the hypothesis that the task context –
specifically, the type of stimulus presentation – could play a

decisive role in the different ratio effect observed in literature
in the small number range. To this end, we adopted three of
the most common procedures for investigating numerosity
discrimination: simultaneous presentation of intermingled
elements (e.g., Castelli et al., 2006; Halberda et al., 2008),
simultaneous presentation of separate groups (Hurewitz et al.,
2006; Piazza et al., 2010; Sasanguie et al., 2012, 2014) and
sequential presentation of separate groups (Shuman and
Kanwisher, 2004; Ansari et al., 2007).

EXPERIMENT 1: SIMULTANEOUS
PRESENTATION OF INTERMINGLED
ARRAYS

Participants
Twenty undergraduate students with a mean age of 23.3 years
(range = 20 years to 27, five males) participated. The experiment
was carried out at the Department of General Psychology,
University of Padova. All participants were selected with normal
or corrected vision.

All the experiments were approved by the ethics committee of
the Department of General Psychology of University of Padova.
Subjects gave written informed consent in accordance with the
Declaration of Helsinki.

Stimuli and Procedure
Stimuli consisted on 240 arrays of intermixed yellow and blue
dots and appeared on a gray background. Half of the trials
presented numerical contrasts with numerosities in the range
1–4 and half with numerosities in the range 6–24. In half of
the trials the larger set was composed by the yellow dots, in
the other half it was composed by the blue ones (diameter:
0.3–0.7 cm). We presented the same five numerical ratios,
0.25, 0.33, 0.50, 0.67, 0.75, in range 1–4 and in range 6–
24. In the former the numerical contrasts were respectively
1 vs. 4, 1 vs. 3, 1 vs. 2 or 2 vs. 4, 2 vs. 3, 3 vs. 4; in
the latter the numerical contrasts were 6 vs. 24, 6 vs. 18
or 7 vs. 21, 6 vs. 12 or 10 vs. 20, 6 vs. 9 or 12 vs. 18,
6 vs. 8 or 12 vs. 16. Yellow and blue dots were randomly
placed in the display, therefore continuous variables (see Gebuis
and Reynvoet, 2012a,b) such as density, inter-dot distance,
total envelope size of each set could not be used to select
the larger number of dots (minimum spacing between items:
0.4 cm). Half of the trials were controlled for cumulative
surface area. In particular, we matched the total number of
blue and yellow pixels, such that the total cumulative area
of the two sets was identical. However, when controlling for
cumulative surface area, smaller than average elements become
more frequent in the more numerous sets and participants
could have used this continuous cue instead of number. As
a consequence, in the second half of the trials, stimuli were
controlled for dot size (dots have different sizes but on the
average their size was identical within each pair). Dot sizes and
cumulative surface area were controlled by using TpsDig software
(Rohlf, 2004), software previously used in numerical cognition
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studies of human and non-human species (Agrillo et al., 2008,
2010).

Stimuli were displayed on a 17-inch monitor at a comfortable
viewing distance (60 cm), using E-Prime software. The
experiment was conducted in a quiet and dimly illuminated
room. Participants were presented with three blocks of 80 trials
each. All stimuli were randomly presented within each block. The
test was preceded by a short familiarization block of 20 trials with
feedback.

To prevent verbal processing of the stimuli, participants
were asked to select, as quickly as possible, whether there
were more blue or more yellow dots (Figure 1A). Each trial
began with a fixation cross in the middle of the screen
(1000 ms). This was followed by an array of blue and yellow
dots intermingled, displayed for 150 ms. After the array had
disappeared, participants had to respond by pressing a color-
coded keyboard button. To further prevent verbal counting,
a verbal suppression was introduced, in this and in the
following experiments, by asking participants to continuously
repeat “abc” during the whole trial (from fixation cross to
the response), a procedure commonly adopted in this research
field (Cordes et al., 2001; Beran et al., 2006; Frank et al.,
2012).

Proportion of correct choices was used as a dependent variable
to assess participants’ accuracy (Gilmore et al., 2010; Agrillo
and Piffer, 2012). As performance did not reach a ceiling effect,
reaction times were not analyzed. However, in order to minimize
the possibility that participants’ responses were determined by
verbal counting, trials with reaction times greater than 2000 ms
were not included in the analyses, a criterion previously used
to investigate pre-verbal cognitive abilities (e.g., Bharucha and
Stoeckig, 1986; Jager and Kliegel, 2008). Data were analyzed using
SPSS 20.0.

Results and Discussion
Trials with reaction times greater than 2000 ms (0.49% of
participants’ responses) were discarded. A repeated measure
ANOVA with Numerical Ratio (0.25/0.33/0.50/0.67/0.75) as the
within-factor was performed, separately for small and large
numbers.

In the small number range, participants’ accuracy was
influenced by Numerical Ratio [F(4,76) = 21.755, p < 0.001,
partial eta squared η2

p = 0.545]. A significant linear trend was
found [F(1,19) = 74.726, p < 0.001, η2

p = 0.797]. In the large
number range, accuracy was again affected by Numerical Ratio
[F(4,76) = 36.320, p < 0.001, η2

p = 0.657]. A significant linear
trend was also found [F(1,19) = 75.204, p < 0.001, η2

p = 0.798,
Figure 2].

To assess whether the control of continuous variables is a
potential factor that may affect the slopes of small and large
number discrimination, we analyzed, in this and in the following
experiments, whether there was a significant interaction between
Continuous variable control (number + continuous variables
vs. number only) and Numerical Ratio in a 2 × 5 ANOVA.
No interaction was found, either in the small [F(4,76) = 1.478,
p = 0.217, η2

p = 0.072] or in the large number range
[F(4,76) = 1.043, p = 0.391, η2

p = 0.052].
To verify whether the slopes for small and large numbers

differ statistically, we observed whether there was a significant
interaction between Range (Small vs. Large) and Numerical Ratio
in a 2 × 5 ANOVA. No interaction between the two factors was
found [F(4,76) = 0.590, p = 0.671, η2

p = 0.030], meaning that
numerical ratio had the same impact on the slopes of small and
large number discrimination.

Lastly, in order to assess whether the salience of the stimuli
was the same for yellow and blue dots, we contrasted the overall

FIGURE 1 | Procedures adopted in Experiments 1–3. Participants were required to estimate which array is more numerous in three different tasks: simultaneous
presentation of intermingled arrays (A), simultaneous presentation of separate arrays (B), and sequential presentation of separate arrays (C).
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FIGURE 2 | Results of Experiment 1. Accuracy is plotted against the
numerical ratio of the contrasts for both small (1–4) and large number range
(6–24). The performance of the participants showed ratio dependence for
both small and large numbers. Bars in this and the following graphs represent
the standard error.

accuracy when the larger group was composed by yellow dots
with that observed when the larger group was composed by
the blue dots: no significant difference was found, both in the
small [yellow dots: 0.913 ± 0.045; blue dots: 0.909 ± 0.043,
t(19) = 0.495, p = 0.626] and in the large number range [yellow
dots: 0.906 ± 0.036; blue dots: 0.906 ± 0.043, t(19) = 0.090,
p = 0.929].

Participants’ accuracy in this task was affected by the
numerical ratio, both for small and large numbers. As ratio-
dependence did not vary as a function of the numerical range,
these data are in line with the idea of a single system of numerical
representation below and beyond four units. To assess whether
the same results could be obtained if the arrays were spatially
separated we carried out Experiment 2.

EXPERIMENT 2: SIMULTANEOUS
PRESENTATION OF SEPARATE ARRAYS

Participants
Twenty undergraduate students with a mean age of 21.9 years
(range = 19 years to 32, 4 males) participated.

Stimuli and Procedure
We used the same numerical contrasts of Experiment 1,
both for small and large numbers. Stimuli were 240 pairs
of arrays of black dots of the same sizes presented as in
Experiment 1 on a white background. The two arrays were
displayed simultaneously, one set on the right side of the
screen and the other on the left side (average distance between
the two groups: 8 cm). The right–left position of the larger
set was randomized. Half of the trials were controlled for
continuous variables, namely cumulative surface area (summed
area of dots), overall space (space encompassed by the most
eccentric dots) and density of the elements (average inter-dot

distance). Since density and overall space are inversely correlated,
these two variables cannot be controlled simultaneously.
Therefore in half of these controlled trials we equalized the
overall space occupied by the arrays; in the other half of
controlled trials, we equalized the density of the items. In the
second half of the 240 trials stimuli were controlled for dot
sizes.

As in Experiment 1, the test phase was preceded by a training
phase with feedback. Each trial started with fixation cross in the
center of the computer screen (1000ms). Subsequently two arrays
of dots appeared on the two sides of the screen and remained
visible for 150 ms (Figure 1B). Participants were required to
estimate whether there were more dots in the right array or
in the left one, by pressing spatially congruent keys on the
keyboard.

Results and Discussion
Trials with reaction times greater than 2000 ms (0.37% of
participants’ responses) were discarded. As in Experiment 1,
accuracy was analyzed with a repeated measure ANOVA,
separately for small and large numbers. In the small number
range, participants’ accuracy showed a significant main effect of
Numerical Ratio [F(4,76) = 28.719, p < 0.001, η2

p = 0.602].
A significant linear trend was found [F(1,19)= 66.030, p < 0.001,
η2
p = 0.777]. In the large number range, Numerical Ratio was

statistically significant [F(4,76) = 28.276, p < 0.001, η2
p = 0.598].

A significant linear trend was found [F(1,19)= 51.021, p < 0.001,
η2
p = 0.729, Figure 3].
No interaction Continuous variable control × Numerical

Ratio was found, either in the small [F(4,76) = 1.286, p = 0.271,
η2
p = 0.063] or in the large number range [F(4,76) = 1.067,

p = 0.315, η2
p = 0.558].

No interaction Numerical Ratio × Range was found in the
2 × 5 (Range × Numerical Ratio) ANOVA [F(4,76) = 2.214,

FIGURE 3 | Results of Experiment 2. Accuracy is plotted against the
numerical ratio of the contrasts for both small and large number range. The
performance of the participants showed ratio dependence for both small and
large numbers.
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p = 0.075, η2
p = 0.104], meaning that the slopes of small and

large number discrimination did not statistically differ.
Thus, Experiment 2 confirmed the main finding reported

in the previous experiment: participants’ accuracy is set by
numerical ratio both for small and large numbers. In this
sense, the fact that stimuli are presented either intermingled
(Experiment 1) or separately (Experiment 2) does not appear
to have significant effect in terms of ratio dependence of
small and large number discrimination. In both experiments,
however, stimuli were simultaneously presented. In Experiment
3 we investigated whether performance can be affected by the
sequential presentation of the arrays.

EXPERIMENT 3: SEQUENTIAL
PRESENTATION OF SEPARATE ARRAYS

Participants
Twenty undergraduate students with a mean age of 19.6 years
(range = 19–22 years, two males) participated.

Stimuli and Procedure
Stimuli were identical to those used in Experiment 2, with the
exception that, in this test, the arrays were presented sequentially.
The test phase was preceded by a training phase with feedback.
Each trial started with a fixation cross for 1000 ms, followed
by the presentation of an array of dots at the screen center for
150 ms. After a delay of 500 ms, another group of dots appeared
for 150 ms (Figure 1C).

Results and Discussion
Trials with reaction times greater than 2000 ms (0.90%
of participants’ responses) were discarded. Accuracy was
analyzed with a repeated measure ANOVA, separately
for small and large numbers. In the small number range,
participants’ accuracy was not influenced by Numerical
Ratio [F(4,76) = 1.500, p = 0.211, η2

p = 0.073]. No
significant trend was found [F(1,19) = 1.249, p = 0.278, η2

p
= 0.062].

In contrast, in the large number range, participants’ accuracy
was affected by Numerical Ratio [F(4,76) = 18.037, p < 0.001, η2

p
= 0.487]. A significant linear trend was found [F(1,19) = 45.496,
p < 0.001, η2

p = 0.705, Figure 4].
No interaction Continuous variable control × Numerical

Ratio was found either in the small [F(4,76)= 0.297, p= 0.592, η2
p

= 0.015] or in the large number range [F(4,76)= 0.390, p= 0.816,
η2
p = 0.020].
A significant interaction Range×Numerical Ratio in the 2× 5

ANOVA (Range×Numerical Ratio) was found [F(4,76)= 8.132,
p < 0.001, η2

p = 0.300], meaning that the slopes of small and
large number discrimination statistically differ as a function of
numerical ratio.

One may argue that a lack of significance in accuracy within
the small number range was a consequence of a lack of power
due to the small sample size. To test for this hypothesis we
increased the sample size by adding 18 subjects tested in another

FIGURE 4 | Results of Experiment 3. Accuracy is plotted against the
numerical ratio of the contrasts for both small and large number range. The
performance of the participants showed ratio dependence for large numbers
and ratio insensitivity in the subitizing range.

study (Agrillo et al., 2012) that employed the same procedure.
Overall in the small number range, participants’ accuracy was
not influenced by Numerical Ratio [F(4,148) = 1.230, p = 0.301,
η2
p = 0.032]. In contrast, in large number range, participants’

accuracy was affected by Numerical Ratio [F(4,148) = 24.353,
p < 0.001, η2

p = 0.397].
Thus, participants’ accuracy is differently affected by

numerical ratio for small and large numbers. As suggested
by some authors (Feigenson et al., 2004; Revkin et al., 2008),
the different ratio sensitivity opens to the possibility that two
different cognitive systems are activated in processing small and
large numbers under specific circumstances.

Comparison of the Three Methods
Accuracy was analyzed with a 3 (Task: simultaneous presentation
of intermingled arrays/simultaneous presentation of separate
arrays/sequential presentation of separate arrays)× 5 (Numerical
Ratio: 0.25/0.33/0.50/0.67/0.75) ANOVA, separately for small and
large numbers (Figure 5).

In the small number range, the accuracy was influenced
by Numerical Ratio and Task [F(4,228) = 38.599, p < 0.001,
η2
p = 0.404; F(2,57) = 4.632, p = 0.014, η2

p = 0.140;
respectively]. The interaction between Numerical Ratio and Task
was significant [F(8,228) = 7.856, p < 0.001, η2

p = 0.216],
meaning that numerical ratio had a different impact on the slopes
of the three experiments in the small number range.

In the large number range, the performance was affected by
the Numerical Ratio [F(4,228) = 79.792, p < 0.001, η2

p = 0.583]
but not Task [F(2,57) = 1.445, p = 0.244, η2

p = 0.048]. The
interaction between Numerical Ratio and Task was significant
[F(8,228) = 4.204, p < 0.001, η2

p = 0.129, Figure 5], meaning
that, although in all tasks performance in the large number range
is affected by numerical ratio, the impact of numerical ratio on
the slopes of the three experiments is different.
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To assess whether the different ratio dependence could be
due to task difficulty, we performed a 2 × 3 (Numerical
Ranges × Experiments) repeated measures ANOVA on the
overall accuracy. Results showed a marginally significant effect
of Experiments [F(2,57) = 3.123, p = 0.052, η2

p = 0.099]. No
effect of Numerical Ranges [F(1,57) = 2.431, p = 0.125, η2

p
= 0.041] was found. Interaction was significant [F(2,57) = 3.574,
p = 0.034, η2

p = 0.111], meaning that participants were
more accurate to estimate small numbers in Experiment 2. As
participants showed ratio dependence in the small number range
of this experiment, it appears unlikely that task difficulty per se
could primarily explain the different ratio dependence reported
in our experiments.

One may argue that participants seeing a single dot in
the array might have used a non-numerical strategy (1 dot
is always the smaller number and participants could have
easily selected the second array as larger). In addition, the
control of density in numerical contrasts with a single object is
intrinsically problematic. Hence, we analyzed the performance
of the three experiments without the two numerical ratios
(0.25 and 0.33) involving the presentation of a single dot. We
also excluded 1 vs. 2 contrast from the 0.50 ratio. Repeated
measure ANOVA showed the same pattern of results (see
Table 1), suggesting that the presence of a single dot did not
significantly affect participants’ cognitive strategy to solve the
task.

The results from Experiments 1 and 2 show that the
simultaneous presentation of the arrays (either intermingled or
separate) determines a ratio effect in the small number range.

FIGURE 5 | Comparison of the three methods. When stimuli are
simultaneously presented (Experiments 1 and 2), ratio dependence of the
performance was observed also in the small number range. On the contrary,
when stimuli were presented sequentially (Experiment 3), participants’
accuracy did not vary as a function of numerical ratio in the small number
range.

This may imply that both experimental procedures automatically
activate the ANS. In particular we hypothesized that a number of
items exceeding the subitizing range might automatically activate
the ANS even if participants were required to discriminate
between small numerosities. In both experiments participants
were required to segregate two sets of dots (blue from yellow
dots, or right set from left set) under time constraints, which may
have induced an estimation strategy. By contrast, in Experiment
3 participants saw only one group at a time, and here no
ratio effect on accuracy was reported in the small number
range.

As a further test of this hypothesis, we set up Experiment 4.
Separate groups of dots in the range 1–4 were presented in
sequence as in Experiment 3, but a group of distractors were
also introduced into each array. We wanted to assess whether the
total number of objects or just the task-relevant objects trigger
the ANS response. Also, we investigated whether the ease of
visually segregating task-relevant from task-irrelevant elements
modulated the potential triggering effect of additional visual
elements. If the ANS is particularly activated when the task is
beyond the limit to encode items as individual objects, a ratio
effect is expected in the condition that requires higher attentional
resources.

EXPERIMENT 4. SEQUENTIAL
PRESENTATION OF ARRAYS WITH
DISTRACTORS

Participants
Twenty undergraduate students with a mean age of 21.81 years
(range = 21 years to 26, four males) participated.

Stimuli and Procedure
Target stimuli were identical to that used in Experiment 3,
with the exception that, in this test, six distractors were also
included within each array. Distractors were represented by
dots (diameter: 0.3–0.7 cm) presented in two different ways:
in the intermingled version (Figure 6A), each array included
yellow and blue dots on a gray background, only yellow
dots represented the target stimuli; in the separate version
(Figure 6B) target stimuli were inserted on a white rectangle
(3.2 cm × 5 cm) on a gray background while six other dots
where placed outside the rectangle. In both versions participants
were required to focus on target stimuli (yellow dots in the
intermingled version, dots within the rectangle in the separate

TABLE 1 | Results of the three experiments in the absence of arrays composed by a single dot [only 0.50 (2 vs. 4) / 0.67 and 0.75 numerical ratios].

Experiment Range Ratio effect (ANOVA) Linear trend

1 Small F (2,38) = 19.064, p < 0.001, η2
p = 0.501 F (1,19) = 29.838, p < 0.001, η2

p = 0.611

Large F (2,38) = 33.113, p < 0.001, η2
p = 0.635 F (1,19) = 52.798, p < 0.001, η2

p = 0.735

2 Small F (2,38) = 20.981, p < 0.001, η2
p = 0.525 F (1,19) = 34.751, p < 0.001, η2

p = 0.647

Large F (2,38) = 17.545, p < 0.001, η2
p = 0.480 F (1,19) = 36.227, p < 0.001, η2

p = 0.656

3 Small F (2,38) = 2.245, p = 0.120, η2
p = 0.106 F (1,19) = 0.065, p = 0.802, η2

p = 0.003

Large F (2,38) = 15.347, p < 0.001, η2
p = 0.447 F (1,19) = 17.799, p < 0.001, η2

p = 0.484
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FIGURE 6 | Procedure of Experiment 4. Participants were required to
estimate the larger group when other distractors were simultaneously
presented separately (B) or mixed together (A) to the target stimuli.

version) and have to choose the larger group. The two versions
were placed in two separated blocks. In addition a control
test without distractors was presented (the same condition
used in Experiment 3). The three blocks were presented in
a random sequence. We presented the five numerical ratios
only in the range 1–4. To avoid participants using a non-
numerical strategy in presence of one dot, we included also
arrays including 0 target stimuli (10 trials each block). Statistical
analyses, however, were performed only on the same five
numerical ratios used in Experiment 1–3. As participants were
not informed about the numerical range presented, participants
cannot use any non-numerical strategy in the presence of 4
objects, hence numerosities larger than 4 were not presented.
The test phase was preceded by a training phase with feedback.
Each trial started with a fixation cross for 1000 ms, followed
by the presentation of an array at the screen center for
150 ms. After a delay of 500 ms, another array appeared for
150 ms.

Results and Discussion
Trials with reaction times greater than 2000 ms (0.46%
of participants’ responses) were discarded. Accuracy was
analyzed with a repeated measure ANOVA (Numerical Ratio:
0.25/0.33/0.50/0.67/0.75), separately for the type of presentation
(control test with no distractors, separated arrays and arrays with
intermingled distractors).

In the control set, participants’ accuracy was not influenced by
Numerical Ratio [F(4,76) = 0.298, p = 0.878, η2

p = 0.015]. No
trend was found [F(1,19) = 0.034, p = 0.856, η2

p = 0.02].
Similarly with the separated arrays participants’ accuracy was

not influenced by Numerical Ratio [F(4,76) = 0.375, p = 0.826,
ηp

2 = 0.019]. No trend was found [F(1,19) = 0.414, p = 0.528,
η2
p = 0.021].
On the contrary, in the presence of the intermingled

distractors, the participants’ accuracy was significantly affected
by Numerical Ratio [F(4,76) = 3.687, p = 0.008, η2

p = 0.162].
A significant linear trend was found [F(1,19)= 20.848, p< 0.001,
η2
p = 0.523; Figure 7].

FIGURE 7 | Results of Experiment 4. Participants’ accuracy showed ratio
dependence when distractors were mixed together to the target stimuli. In
contrast when no distractors were presented (control group) or when
distractors were separated from the target stimuli, ratio dependence was not
observed.

EXPERIMENT 5: SIMULTANEOUS
PRESENTATION OF SEPARATE ARRAYS
FOR AN EXTENDED PRESENTATION

On the whole, results of our experiments suggest that sequential
vs. simultaneous presentation of target items significantly affects
ratio dependence in the small number range. However, in
the sequential task (Experiment 3) stimuli were presented for
150 ms, followed by a 500 ms break, and followed by 150 ms
for the second array, for a total of 800 ms processing time
of the first array. The longer amount of time – compared to
150 ms used in Experiments 1 and 2 – represents a potential
confound in our study. To dissociate the role of the type of
presentation (simultaneous vs. sequential) or time processing
of the stimuli, we set up a control experiment in which both
arrays were presented simultaneously but for an extended period
of time, 800 ms. If the numerical ratio continues to hold in
the small number range for these extended presentations, it
suggests that the format of the task, and not the presentation
time, was driving the different pattern of results observed in
Experiments 1–3.

Participants
Twenty undergraduate students with a mean age of 23.5 years
(range = 21 years to 26, six males) participated.

Stimuli and Procedure
The same stimuli used in Experiment 2 were presented, both
for small and large numbers. The two arrays were displayed
simultaneously, one set on the right side of the screen and the
other on the left side.

As in Experiment 2, the test phase was preceded by a
training phase with feedback. Each trial started with fixation
cross in the center of the computer screen (1000 ms).
Subsequently two arrays of dots appeared on the two sides

Frontiers in Psychology | www.frontiersin.org 8 October 2015 | Volume 6 | Article 1649

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


Agrillo et al. Ratio effect in small number discrimination

of the screen and remained visible for 800 ms. Participants
(tested in a verbal suppression condition) were required to
estimate whether there were more dots in the right array or
in the left one, by pressing spatially congruent keys on the
keyboard.

Results and Discussion
Trials with reaction times greater than 2000 ms (0.15% of
participants’ responses) were discarded. As previously, accuracy
was analyzed with a repeated measure ANOVA, separately for
small and large numbers.

In the small number range, participants’ accuracy showed
a significant main effect of Numerical Ratio [F(4,76) = 4.700,
p = 0.002, η2

p = 0.198]. A significant linear trend was
found [F(1,19) = 11.006, p = 0.004, η2

p = 0.367]. In the
large number range Numerical Ratio was statistically significant
[F(4,76) = 5.047, p = 0.001, η2

p = 0.210]. A significant linear
trend was found [F(1,19) = 8.781, p = 0.008, η2

p = 0.316;
Figure 8].

No interaction Numerical Ratio × Range was found in the
2 × 5 (Range × Numerical Ratio) ANOVA [F(4,76) = 0.386,
p= 0.818, η2

p = 0.020], meaning that the slopes of small and large
number discrimination did not statistically differ as a function of
the numerical ratio.

Thus, participants’ performance is close to ceiling in both
numerical ranges, due to the extended presentation time.
However, even in this experimental condition, numerical ratio
similarly affects the accuracy of small and large numbers.
It is worth noting that the two groups were simultaneously
presented in comparable time conditions of Experiment 3.
In this sense, we believe that the ratio insensitivity reported
in the small number range of Experiment 3 cannot be
due to longer presentation time, but instead is likely to
be due to the format of the task (sequential stimulus
presentation).

FIGURE 8 | Results of Experiment 5. Although participants’ accuracy is
close to ceiling, their performance showed ratio dependence for both small
and large numbers.

GENERAL CONCLUSION

Although studies generally agree that numerical ratio affects
discriminating large numerosities, they often disagree as to
whether the same ratio dependence exists in the 1–4 numerical
range. The exact nature of this different ratio dependence
reported in literature in the small number range is currently
unknown. In the present study we tested the hypothesis that
the presence/absence of ratio effect in the range 1–4 might
be due to the type of stimulus presentation. As the different
ratio sensitivity between small and large numbers have been
commonly interpreted as evidence of two separate numerical
systems (OTS and ANS, Feigenson et al., 2004; Revkin et al.,
2008), we supposed that the lack of ratio dependence in the small
number range was indicative of activating the OTS while ratio
dependence would reflect the activation of the ANS.

As predicted by the literature, the performance in the large
number range showed ratio dependence with all the types
of presentation. Participants became less accurate when the
numerical ratio was increased in Experiments 1, 2, and 3, a
condition that has been widely accepted as a clear signature of
the activation of the ANS (Beran, 2004; Feigenson et al., 2004;
Revkin et al., 2008; Agrillo et al., 2012). When we analyzed the
performance in the small number range, we found that ratio
dependence varied as a function of the type of presentation.
When both arrays of stimuli were simultaneously presented
(Experiments 1 and 2), ratio dependence was observed. By
contrast, when the two groups were sequentially presented
(Experiment 3), participants’ accuracy was not affected by the
ratio. A control experiment (Experiment 5) showed that the
different ratio sensitivity observed in Experiment 3 was not due
to longer presentation time of the first array presented. It is worth
noting that five or more objects were often presented in the visual
field during Experiments 1 and 2. In those circumstances (e.g., 2
vs. 3 and 3 vs. 4) participants’ performance appeared to be worse
compared to the other numerical contrasts involving a smaller
number of items (e.g., 1 vs. 2). It is possible that subitizing may
be affected or not existent when the total number of dots in the
visual scene are larger than 4. A number of items exceeding the
subitizing range may automatically activate the ANS.

Experiment 4 was devised to test this hypothesis. In two
conditions a group of distractors were introduced, either
separated from the target stimuli or intermingled with them.
Ratio dependence was observed only when target stimuli and
distractors were intermingled. Even though our data are not
fully conclusive on this issue, they suggest that it is not
only the total number of objects (specifically, more than four
items in the visual field) that would activate the ANS, but
probably a combination of different factors, such as total
number of items and the ease of visually segregating task-
relevant from task-irrelevant items. Indeed when target stimuli
and distractors were intermingled, participants firstly had to
dissociate relevant from irrelevant stimuli; on the contrary
when distractors were spatially separated, focusing attention on
task-relevant stimuli is supposed to be easier and presumably
the task required a lower visuo-spatial working memory
load.
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In accordance with this interpretation, Hyde (2011) has
argued that general constraints, such as attention and working
memory, might determine whether a group of items is
represented as individual object files in the OTS or as an
approximate numerical magnitude. Usually small numbers
would be represented distinctly from large numbers because
they fall within our capacity to individuate and track objects
simultaneously (Trick and Pylyshyn, 1994). By contrast, large
numbers of objects fall outside the limits of this capacity.
However, this does not exclude the possibility that small
numbers of objects might also be represented approximately
when the experimental procedure requires high attentional
resources, such as during articulatory suppression, attentional
blink, or in dual task paradigms (Hyde, 2011). Experiment 4
compared two conditions that are likely to involve different
attentional resources (intermingled / higher attentional resources
vs. separated distractors/lower attentional resources), and the
typical signature of the ANS was observed in the condition
which is supposed to be more cognitively demanding. This
is consistent with the finding that attentional load can affect
performance in the subitizing range (Vetter et al., 2008). This
finding, incidentally, casts doubt on the idea that subitizing is
pre-attentive (Trick and Pylyshyn, 1993), and is line with later
findings (e.g., Burr et al., 2010).

The fact that the ANS could be activated when the task is
beyond the limit to encode items as individuals objects may imply
that subitizing would be the default; if the number of items (or
the attentional resources) exceed a threshold, ANS would be then
activated. Of course it is theoretically possible also the opposite:
ANSwould be the default and, if the number of items falls into the
small number range, subitizing mechanisms would be recruited.
However, while the one-to-one correspondence between items
and object-files represents in our view a potential explanation on
how to assess whether the number of items exceeds the limit of 4,
it appears difficult to theorize a precise mechanism that allows the
ANS to assess whether or not this limit was crossed. With respect
to this topic, Chesney and Haladjian (2011) asked participants to
simultaneously track objects while noticing a set of objects for
enumerating and found a nice tradeoff between tracking load and
subitizing performance, with a reliance on the ANS for small sets
when tracking load was at maximum. A possible interpretation is
that the indexingmechanism helps keep track of what “enters” the
ANS (when available for smaller sets), hence reducing response
variability for small sets.

Some authors have raised the question whether it is necessary
to postulate the existence of two different systems on the basis
simply of ratio dependence (Gallistel and Gelman, 1992; Ross,
2003). According to Gallistel and Gelman (1992) the different
ratio dependence in the small and in the large number range
would occur because scalar variability implies little error (noise)
in the analog magnitude representations of 1, 2, 3, and 4, but
increasingly more noise as the numbers get larger. Without
postulating scalar variability, Ross (2003) has argued that the
just noticeable difference (JND) for numerosity discrimination
is about 0.25 for both small and large numerosities. All the
comparisons in the subitizing range have a ratio greater or equal
to 0.25. However, if Ross’s (2003) argumentation were correct, we

should have found no ratio dependence in the large number range
in the presence of the same ratios tested in the range 1–4, which
is clearly not the case of the data reported in Experiments 1, 2, 3,
and 5.

Also, some authors hypothesized that pattern recognition may
be the main reason about why we often improve the performance
in the small number range, reaching a ceiling effect (Neisser,
1967; Mandler and Shebo, 1982; Ashkenazi et al., 2013). In two-
dimensional displays, small randomly arranged sets of objects
form recognizable geometric patterns (i.e., 1 item = a dot; 2
items = a line; 3 items = a triangle, 4 items = a quadrilateral),
which is not the case for random sets larger than 4 items.

Within the theoretical framework of a single system, one
may argue that the results of our study may be due to a
variation in task difficulty only. The harder the task, the
less optimal is the performance in the small number range.
We cannot entirely exclude this hypothesis, as we found
a marginally significant effect of Experiments (p = 0.052).
However, we do not feel this is the main explanation of
our results, as participants showed ratio dependence in the
small number range of Experiment 2, despite the fact that
they exhibited a better performance in that experiment. In
addition, the results of Experiment 5 showed ratio dependence
in the small number range. Provided that participants had
a longer presentation time of the stimuli (800 ms), it
appears difficult to explain the ratio dependence observed in
Experiment 5 (and not Experiment 3) just on the basis of task
difficulty.

With respect to the ‘one vs. two-system’ debate, it is worth
noting that data in favor of two distinct systems do not come
exclusively from different ratio dependence. Indeed a potential
prediction of the single-system hypothesis is that manipulation
of physical properties of the stimuli should never have opposed
effects on small and large number estimation, while the two-
system hypothesis would allow for this possibility. Trick (2008)
tested the role of item heterogeneity in the small and large
number range in adult humans, finding that heterogeneity slowed
enumeration in the subitizing range and sped-up enumeration
in the large number range, a dissociation that is more in line
with the two-system hypothesis. Moving vs. static items represent
another variable that seems to affect numerical estimation
differentially. As subitizing is supposed to be based on an
OTS originally devoted to track and store in memory moving
objects, it is supposed to be particularly activated by moving
objects (Trick and Pylyshyn, 1994). Trick et al. (2003) observed
that even very slow motion reduced enumeration speed for
stimuli containing 6–9 items, while the enumeration of 1–4
items was not affected by moving objects. Similarly, Alston
and Humphreys (2004) presented static and moving items,
finding a faster and more accurate enumeration in the subitizing
range in the presence of moving items. These results cannot be
explained with the pattern recognition hypothesis: with moving
objects, the general configuration of the arrays is continuously
dynamic and no stable pattern can be recognized. Instead, the
superior performance in the small number range is more in line
with the idea of separate systems for small- and large-number
enumeration.

Frontiers in Psychology | www.frontiersin.org 10 October 2015 | Volume 6 | Article 1649

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


Agrillo et al. Ratio effect in small number discrimination

In conclusion we are aware that other factors should be
investigated in details before drawing firm conclusions. The
absence of masking of Experiment 3, for example, was necessary
to have a precise comparison with Experiments 1 and 2 in
similar conditions, but in Experiment 3, we cannot exclude
the possibility that an afterimage of the first array seen
might have introduced a confound when comparing the three
experiments. The focus of researchers should be also enlarged
to encompass the effects of task paradigm. As studies on
animals, infants and adults used very different stimuli – i.e.,
food, social companions, tones, dots (Feigenson et al., 2002;
Ward and Smuts, 2007; vanMarle and Wynn, 2009; Agrillo
et al., 2012) – and procedures – preferential looking time,
free choice test, training procedure, sequential vs. simultaneous
stimulus presentation (Castelli et al., 2006; Ansari et al.,
2007; vanMarle and Wynn, 2009; Bisazza et al., 2010; Agrillo
et al., 2013) it is extremely difficult to have a systematic
comparison of the existing studies. Ratio dependence of the
performance might appear more different than it is in human

and non-human species because of very different experimental
designs adopted in cognitive, developmental and comparative
psychology.

The differences in ratio dependence reported here in the small
number range are due to the differences in the experimental
paradigms, but the debate about how many systems account our
pre-verbal numerical estimation extends far beyond the aims
of our work with human adults into studies of infants and the
numerical abilities of non-human species.
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