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Abstract. Since decades, Flexible Manufacturing System (FMS) is a significant part of automated production and 
manufacturing. In the development of FMS, deadlock prevention becomes a crucial point. This paper present a critical-
siphon theory to demonstrate exactly one monitor for quality FMS is required for the set of siphons in the family of a 
2-compound siphons and how to assign its initial markings. The theory is aiming to avoid redundant monitors in FMS 
and the unnecessary associated computational burden so that the quality of a class of Flexible Manufacturing Systems 
can be assured latest in the run-time. Neither reachability graph nor minimal siphon needs to be computed achieving 
polynomial complexity- essential for large systems. This paper redevelops the theory more formally and further applies 
this approach to two well-known S3PR to obtain a controller full or near maximally permissive in the context of 
deadlock resolution and Quality Assurance. This paper further categorizes mixture siphons into partial and full ones 
and the sequence among them to add monitors associated with one or different 2-compound siphons. As a result, there 
is no need to enumerate all siphons and the time complexity involved is polynomial. This is the first of its kind of works 
among all current results on the benchmark.  

Introduction 
After the concept of Build-to-Order, FMS becomes the 
most important component of automated production and 
manufacturing. Deadlock-freeness is essential for the 
automation of a FMS as well as a CIM. Various deadlock 
resolution approaches [1, 2] have been proposed to tackle 
deadlocks. Deadlock prevention has been popular to avoid 
deadlocks in FMS and CIM since it runs fast and statically 
to avoid run-time detection and computation. Classical 
approaches either suffer from adding too many monitors 
or reaching too few states [1,2,3]. Recently, maximally 
permissive process control policies [4,5,6] with little 
redundancy have emerged. They however suffer from 
either complete state enumeration—based on region 
theory [4,5,6] or the concept of selective-siphons [6]. Both 
are NP-hard and take exponential amount of time.  

In obtaining PN based monitors for deadlock 
prevention (or liveness enforcing) there are three main 
issues tackled within the literature: behavioral 
permissiveness, computational complexity, and structural 
complexity. Behavioral complexity is related to the 
performance in terms of the reachable good states. In the 
context of FMS the number of good states in a Petri net 
model of an FMS, which can be provided under the 
deadlock prevention or liveness-enforcing policies, has 
been regarded as a “quality measure”. In terms of the 
practical implementation of these policies, this quality 

measure implies high efficiency, throughput, and 
flexibility [3]. The highest quality can be provided by the 
maximally permissive (optimal) control policies. 
Computational complexity is related to the computational 
cost paid in order to obtain a liveness-enforcing supervisor 
(LES) for a given deadlock prevention FMS problem. In 
this case it is desirable to obtain an answer for a given 
problem in the least time possible. Structural complexity 
means extra cost in system verification, validation, and 
implementation. It is related with two aspects of a LES: the 
number of monitors and the type of monitors. In the former, 
it is desirable to obtain the least number of monitors 
possible. In the latter, there are two types of monitors: 
ordinary and general. Ordinary monitors are the ones with 
no weighted arcs. General monitors are the ones with 
weighted arcs. It is obvious that ordinary monitors are 
preferable to general monitors due to verification, 
validation, and implementation issues. 

Classical approaches either suffer from adding too 
many monitors [4] (problematic siphons growing quickly 
with the size of the system) or reaching too few states [5, 
6]. Recently, maximally permissive control policies [7-11] 
with little redundancy have emerged. They however suffer 
from either complete state enumeration—based on region 
theory [7-11] or the concept of selective-siphons [10, 11]. 
Both are NP-hard and take exponential amount of time. 

We propose in [12] to optimize the number of monitors 
(good states as well) if one adds monitors in the normal 
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sequence of basic, compound, control, and other types of 
siphons. It is shown that among all 2-dependent siphons 
(depending on two component siphons), only one (called 
critical) siphon needs to be controlled by adding a monitor. 

This greatly simplifies the synthesis as well as 
minimizes the number of monitors required while making 
the controlled net near maximally permissive. Furthermore, 
the computational burden is much less since there is no 
need to enumerate minimal siphons, nor to build the 
reachability graph. It requires neither iterations nor the 
removal of redundant monitors. In addition, no control arcs 
are weighted. It scales well with the initial markings and 
the size of the nets. However, theorems in [12] are stated 
and proved based on non-formal concepts and symbols. 

This paper redevelops the theorems more formally by 
defining some new symbols so as to be able to show that 
for all the emptiable siphons derived from a 2-compound 
siphon, only one monitor is required. This paper further 
categorizes mixture siphons into partial and full ones and 
the sequence among them to add monitors associated with 
a or different 2-compound siphons. As a result, there is no 
need to enumerate all siphons and the time complexity 
involved is polynomial. We apply the above theory of 
sequence-control or critical-siphon to the control of 2 well-
known benchmarks with much less computational burden 
than other approaches, while achieving near or full 
maximal permissiveness. This is the first paper that is able 
to identify that each monitored siphon of the benchmark is 
either a basic one, or a compound one, or a mixture one. 
This is the first of its kind among all current results on the 
benchmark. 

The rest of the paper is organized as follows. Section II 
presents the preliminaries about types of siphons. Section 
II reviews the dependence relationship as well as the 
sequence of control to reduce the number of redundant 
monitors. It also develops new theories. Section III applies 
the theory to 2 well-known benchmarks. Finally, Section 
IV concludes the paper.  

Theory  
Due to the space limitation, we refer the reader to [12] for 
some basic terminologies in this paper. A core subnet can 
be obtained from an elementary circuit, called core circuit, 
by repeatedly adding handles. Details of handles and how 
an SMS is synthesized from a core subnet are in [8, 12, 13] 
and omitted here to shorten the paper.  

Theorem 1 (Theorem 1 in [20]): Let (N0, M0) be a 
marked S3PR and S1, S2,... , Sn. a set of SMS such that ∀i∈
｛1,2, …,n｝, Si∩Sj≠∅ if |i – j|=1 and Si is controlled 
(M(Si)>0). Each Si is a basic siphon synthesized from 
basic circuit ci. S0 is an SMS synthesized from c0= c1 o c2 
o…ocn and R(S0)= R(S1)∪R(S2)∪ …∪R(Sn) (R(S) is the set 
of resource places in S). c0 and S0 are called an n-
compound circuit and siphon respectively. Let Si∩[S0]=Ai 
∀i∈｛1,2, …,n-1｝. Then, (1) if ∃M∈R(N,M0), such that 
M(S0)=0, then M(A1)+ M(A2)+…+ M(An)≥n. (2) 
∀M’∈R(N,M0), M’(S0)>0, if M0(Si ∩Si+1)=1,∀i∈
｛1,2, …,n-1｝. 

 
Figure 1(a). Example partial-mixture. Figure. 1(b) Controlled 
model siphon. 

 
In Fig. 1(a), there are three SMS: S1={p3, p4, p7, p11, p12, 

p16}, [S1]= [VS1] ={p2, p8, p9}, S2 =}p5, p9, p12, p13}, [S2]= 
[VS2] ={p3, p4, p10}, and S0= S3= S1,2

m = {p9, p10, p6, p11, p4}. 
R(S3)= {p9, p10, p11}⇒R(S3)= R(S1)∪R(S2). S1 and S2 (resp. 
S0) are basic (resp. compound) siphons; both are controlled 
since M0(VS1)= M0(p14)=2 and M0(VS2)= M0(p15)=2. 
M0(S0)=3 and A1= S1∩[S0]={p4}, A2=S2∩[S0]={p9}, 
A1∪A2={p4, p9}=H(p12)=H(S1∩S2). Thus, S0 is controlled 
(no need for control elements) if b=M0(S1∩S2)= M0(p12)=1. 
On the other hand, if b>1, we need to add control elements 
for S0 to be controlled.  

In Fig. 1(b) (controlled model of that in Fig. 1(a)), 
S1={p3, p4, p7, p11, p12, p16}, [S1]= [VS1] ={p2, p8, p9}, S2 
={p5, p9, p12, p13}, [S2]= [VS2] ={p3, p4, p10}, and S3= S1,2

m 
= {p3, p5, p7, p11, p12, p13, p16}, S1,2

c ={p3, p4, p8, p9, p15, p14}, 
[S1,2

c] ={p2, p10}, b=M0(p12)=1. R(S1,2
m)= R(S1,2

c)={p11, p12, 
p13, p16}, R1

2={p16}, R2
2=Ø, R1

3={p11}, and R2
3={p13}.   

Furthermore, [S1,2
p]={p2, p8, p9, p10}=[S1,2

c]∪[VS1], 
[S2,1

p]={p2, p3, p4, p10}=[S1,2
c]∪[VS2], [S1,2

m]= [S1,2
f]={p2, 

p4, p8, p9, p10}, [S1,2
p]⊂[S1,2

m], [S1,2
f]=[S1,2

m], and R([S1,2
c])= 

R3=R1
3∪R2

3 as in the following lemma. 
In Fig. 2, R1

2={p12}, R2
2={p10}, R1

3=R([S1,2
c] 

∩[S1])={p7, p8} and R2
3=R([S1,2

c]∩ [S2])={p11, p13}.  
 
Mmax([S1,2

c])=M0(R3)=M0(p7)+M0(p8)+M0(p11)+M0(p13)
=a+c+d+g.                                                                       

(1) 
M0(VS1)=[M0(R1

2∪R1
3)+M0(R1)-1]=a+d+e+b-1.       

(2) M0(VS2)=[M0(R2
2∪R2

3)+M0(R1)-1]=c+g+f+b-1.        
(3) M0(VS1)+M0(VS2)=a+c+d+e+f+g+2(b-

1)>Mmax([S]). (4) 
 
Thus, S cannot become unmarked. Based on this 

theorem, one adds a monitor for a control siphon only if 
there are no non-sharing resource places (R1

2=R2
2=Ø) in 

the two basic siphons and the initial marking of S1∩S2 
equals one. For the example in Fig. 1(b), even if b=1, no 
monitor is needed for the control siphon due to the 
presence of non-sharing resource place p16. For the 
example in Fig. 1(b), b=1, R1

2= ｛ p16 ｝ ≠Ø (see the 
example after Def. 4), S1,2

c = ｛p3, p4, p8, p9, p14, p15｝, 
M(p14)+ M(p8) >0 ∀M∈R(N, M0). Hence, the control 
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siphon can never become unmarked since p14∈ S1,2
c and 

p8∈ S1,2
c.  

Theorem 2: If S=S1,2
c can become unmarked, and is 

controlled by adding a monitor, then any mixture siphon, 
partial or full, corresponding to compound siphon S1,2

m, is 
already controlled and needs no monitor. 

This theorem states that all mixture siphons are already 
controlled and need no monitors after I add a monitor upon 
the control siphon. If one follows [14] to add a monitor 
with WC arcs for the mixture siphon, the monitor is 
redundant. In Fig. 2, the control siphon S can become 
unmarked if b=1. For S’=S1,2

p,  A= H(R1
3) ∩ [S’]=｛p2｝, 

ρ(R1
3)= ｛p6, r1=p9｝ , ρ(R1

3)\A=｛p6, r1=p9｝ .  After 
adding a monitor for S so that M([S])< M0(R3)=a+c, S’ may 
become unmarked only if M(p2)=a-1. This sets M(ρ 
(R1

3)\A)=1 or M(S’)=1. Hence, S’ is already controlled. 
Similar conclusion applies to S’=S1,2

p. For S’=S1,2
f,  either 

Mmax(A1)= M0(R1
3) – 1, or Mmax(A2)= M0(R2

3) – 1. In either 
case, it is easy to see that S’ is already controlled. 

 
Figure 2. Example full-mixture siphon and non-redundant WC. 

 
Theorem 3: Let S=S1,2

p be a partial mixture siphon as 
defined in Def. 10, and no monitor is added for S1,2

c. 1) 
Mmax([S]) =M0(R1

2∪R3)+ b-1. 2) S can become unmarked, 
if i) R2

2=Ø. ii) b= M0(S1∩S2)=1.  3) S becomes unmarked 
when Mmax([S]) = M0(R1

2∪R3)+ b-1= M0(VS1)+ M0(VS2)= 
[M0(R1

2∪R1
3)+ M0(R1)-1]+ [M0(R2

2∪R2
3)+ M0(R1)-1]= 

M0(R1∪R2∪R3)+ b-2, Simplifying the algebra, we have 
M0(R2

2)+ b-1=0, which implies R2
2=Ø, and b= 

M0(S1∩S2)=1. Thus, S can become unmarked if R2
2=Ø, and 

b= M0(S1∩S2)=1.  
This theorem states that if no monitor is added for a 

control siphon, then a monitor is needed for partial mixture 
siphon S1,2

p if b= M0(S1∩S2)=1 and there are no non-
sharing resource places (in S2) whose holder places are in 
[S2]. For the example in Fig. 1(b), b=1, R2

2=Ø (see the 
example after Def. 4), S1,2

p = ｛p3, p4, p7, p11, p14, p15｝ 
and [S1,2

p]=｛p2, p8, p9, p10｝ . S1,2
p is unmarked when 

M(p8)= M(p9)=1 and M(p10)=M(p2)=2 even though there 
exists non-sharing resource place p16. If one follows [14] 
to add a monitor with WC arcs for the partial mixture 

siphon, the monitor is not redundant. We now extend the 
theory to full mixture siphons. 

Theorem 4: Let S=S1,2
f be a full mixture siphon 

corresponding to compound siphon S1,2
m. Then 1) Mmax([S]) 

=M0(R1∪R2∪R3)+ b-2. 2) S can never become unmarked if 
b>2. 3) S can become unmarked in the normal sequence, if 
i) R1

2≠Ø and R2
2≠Ø; and ii) b= M0(S1∩S2)=1.  

 From Part 1 of this theorem, if S becomes unmarked, 
then Mmax([S]) = M0(R1∪R2∪R3)+ b-2= M0(R1∪R2∪R3)= 
M0(R([S1,2

m])) since b=2  against the fact that Mmax([S])= 
M0(R([S1,2

m])) – 1 derived earlier. Thus, S can never 
become unmarked if b=2. Hence it must be that b=1. 
Assume that it does not hold that R1

2≠Ø and R2
2≠Ø. There 

are two cases:  
i) R1

2= R2
2=Ø. S1,2

c is not controlled since Condition 1 
(R1

2=R2
2=Ø) in Theorem 2 is satisfied and b=1. Adding a 

monitor to S1,2
c leads to the inequality M([S1,2

c])< M0(R3), 
which implies that M(H(R3) ∩S)+ M(R3)>0⇒M(S)>0.   

ii) Exactly one of R1
2 and R2

2 is a nonempty set. By 
Theorem 2, a monitor is added for a partial mixture S’ 
siphon such that M([S’]) cannot reach its maximum for S’ 
to become unmarked, neither can [S] since [S’]⊃[S] by 
Parts 2 and 3 of Lemma 1. Hence S cannot become 
unmarked. Both Cases i) and ii) contradict the assumption 
that S can become unmarked. Thus, if S can become 
unmarked, then b=1, R1

2≠Ø and R2
2≠Ø. If b=1. From Part 

1 of this theorem, if S becomes unmarked, then Mmax([S]) 
= M0(R1∪R2∪R3)+ b-2= M0(R1∪R2∪R3) -1 which is 
feasible since Mmax([S])<M0(R[S1,2

m]) (no monitor for S1,2
m 

by Theorem 1). Furthermore, by Theorem 2, S1,2
c is 

controlled (with no monitor) since R1
2≠Ø and R2

2≠Ø 
implies that Condition 1 (R1

2=R2
2=Ø) in Theorem 2 does 

not hold. Thus, it is possible that M([S1,2c])= M0(R3) (since 
no monitor for S1,2

c) and Mmax([S]) =M0(VS1)+ M0(VS2) (i.e., 
S can become unmarked), which is not possible if a 
monitor was added for S1,2

c.   This theorem states that a full 
mixture siphon S can become unmarked if and only if b=1 
and there are non-sharing resources in both R1

2 and R2
2. 

Note that if one of R1
2 and R2

2 is empty, then by Theorem 
2, a monitor is added for a partial mixture siphon, which 
causes the complementary set of S not to reach its 
maximum. 

Hence, S cannot become unmarked. For the example in 
Fig. 2, R1

2={p12}≠Ø and R2
2={p10}≠Ø. S1={p7, p8, p9, p12, 

p4, p’2}, [S1] = {p2, p3, p’3, p’4}; S2= {p9, p10, p11, p13,, p6, 
p’4}, [S2] = {p4, p5, p’5, p’6}; S3= S1,2

m = {p7, p8, p9, p10, p11, 
p12, p13, p6, p’2}, [S3] = {p2, p3, p4, p5, p’3, p’4, p’5, p’6}. S1 
and S2 (resp. S3) are basic (resp. compound) siphons. 
S1,2

f={VS1, VS2, p7, p8, p11, p13, p6, p’2}can become 
unmarked when b=1 and monitors are added only for basic 
siphons. If one follows [14] to add a monitor with WC arcs 
for the full mixture siphon, the monitor is not redundant. 
No monitors are needed for the compound, control and 
partial mixture siphons. The following theorem guides us 
on how to add a monitor to a control or a mixture siphon. 

Theorem 5: Let VSi be the monitor added upon Si, i=1 
or 2, such that Si is controlled and S be a relevant control, 
or mixture, or full, or partial, unmarked siphon. A monitor 
V is added upon S such that [V]=[S] and M0(V)= M0(VS1)+ 
M0(VS2)-1. Then S can never become unmarked.  
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   For the example in Fig. 3, partial mixture siphon 
S=S1,2

p = ｛p3, p4, p7, p11, p14, p15｝ may become unmarked 
when b=1 in the normal sequence. S becomes controlled 
by adding monitor V such that [V]=[S]=｛p2, p8, p9, p10｝ 
(i.e., V●=｛t1, t10｝, ●V=｛t2, t7｝) and M0(V)= M0(VS1)+ 
M0(VS2)-1= M0(p14)+ M0(p15)-1=3+2-1=4. As mentioned 
earlier, the compound, and the control siphon, and S=S2,1

p 
are all controlled and need no monitor. Only three (two for 
basic siphons and one for S1,2

p) monitors are needed to 
control the net to make it live. 

 

 
Figure 3. First benchmark example. 

 
For the example in Fig. 2, S=S1,2

f can become 
unmarked when b=1 and monitors are added only for two 
basic siphons. S becomes controlled by adding monitor V 
such that [V]=[S]=｛p2, p3, p4 p5, p’3, p’4, p’5, p’6｝ (i.e., 
V●=｛ t1, t’6｝ , ●V=｛ t’2, t5｝ ) and M0(V)= M0(VS1)+ 
M0(VS2)-1= (a+b+d+e-1)+ (b+c+f+g-1)-1. Only three 
monitors are needed to control the net to make it live. For 
both examples, there is no need to add WC places 

Theorem 6: Let S3 =S1 o S2 in a marked S3PR (N0, M0), 
Si (i=1 or 2) is controlled by adding monitor VSi, S1∩S2={r}. 
Then exactly one siphon in the set of the compound siphon, 
control siphon and all mixture siphons is emptiable.  

Remarks: The resulting controlled model may not be 
maximally permissive since some live states are forbidden. 
For instance, in Fig. 1(b), M=2p10+p9+p8+p11 or 
2p10+p9+p8+p7 (as common practice, only operation places 
are included in M) is a live marking, yet forbidden by 
Monitor p17. However, if a monitor is added for each M to 
control smaller region of operation places (hence less 
disturbance to the original model), the controlled model 
becomes maximally permissive. We call {p8, p9} a 
refinement region. If a single monitor is added to cover a 
refinement region, some live states are lost. If for each 
place in a refinement region, a monitor is added 
accordingly (called refine operation), then no live states 
are lost. For the two examples in the next section, refine 
operations will be performed to reach more live states. 

 

Applications 

This section applies the developed theory to two well-
known S3PR. For example in Fig. 4, however, needs WC 
arcs to be maximally permissive. We add a monitor for 
each basic siphon. Among 12 compound siphons, We need 
only add one monitor for S15 (b=2) (Theorem 1) 
significantly reducing the total number of monitors 
required.  For the rest of compound siphons, we have b=1. 
Now consider 3-compound siphon Sijk=Si o Sj o Sk= Sij o Sk. 
Based on Theorem 1, all 3-compound siphons are not 
controlled. However, this ignores the fact that all 2-
compound siphons have been controlled. Note that Sij∩Sk=
｛r｝ and b=M0(r) =1 for all 3-compound siphons. Thus, 
by Theorem 1, they are all controlled and needs no monitor. 

In summary, there are only two 2-control siphons S’20 
and S’22 with no monitors for both the associated 
compound and control siphons. This implies that one of 
the associated mixture siphons (Theorem 4) is emptiable 
and needs a monitor. 

Now consider adding monitors for mixture siphons. By 
Theorem 4, no monitors need to be added for mixture 
siphons built from control siphon S19 since a control 
monitor has been added for S19. By Theorem 2, no 
monitors need to be added for any partial mixture siphon S 
built from control siphon S20 since b= M0(S1∩S16)>1 and S 
can never become unmarked. By Theorem 4, no monitors 
need to be added for the full mixture siphon S built from 
control siphon S20 since monitor VS7 has been added for 
compound siphon S15 where [S]=[S15]. 

However, monitor V11 is assigned for the full mixture 
siphon obtained by adding TP-handles [t3 p23 t2 p20 t19 V5], 
[t17 p26 t16 p22 t5 V2], and [t8 p25 t7 p20] upon the core circuit 
of control siphon S22 based on Theorem 3. Also monitor V9 
is assigned for the partial mixture siphon obtained by 
adding TP-handle [t17 V8 t16 p22 t10 V7] upon the core circuit 
of control siphon S21 based on Theorem 2. 

To reach more states, I consider possible refinement 
regions 1) for S21: ｛p12, p13｝and 2) for S22: ｛p8, p9｝, 
｛p12, p13｝, and ｛p16, p17｝. There are two unmarked 
sets of operations for S21: Ψ1=｛p11, p12, p18, p19｝ and Ψ2=
｛p11, p13, p18, p19｝; a monitor is added for each. Similarly, 
monitors are added for S22. The final controlled monitor is 
shown in [10], where a theorem is developed to show how 
a monitor becomes redundant after adding a monitor for 
the refinement region ｛p8, p9｝for S22. 

Conclusion 
For the FMS and CIM, I have redeveloped some theorem 
in the field of critical-siphon theory in a more formal 
fashion, further categorized mixture siphons, and analyzed 
their controllability (even among different 2-compound 
siphons). I have applied the theory of sequence-of-control 
or critical-siphon to 2 benchmarks without using weighted 
control arcs. The first one is maximally permissive. 
Although it may reach fewer states than the maximally 
permissive one for the 2nd benchmark, it suffers less 
computational burden since no reachability analysis is 
required and the enumeration of problematic siphons is 
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much more efficient. The controllability among different 
types of siphons implies that some problematic siphons 
can be skipped; thus relieving the need for complete siphon 
enumeration. The theory is able to avoid redundant 
monitors in FMS and the unnecessary associated 
computational burden so that the quality of a class of FMSs 
can be assured latest in the run-time. This is the first 
approach that is able to identify that each monitored siphon 
of the benchmark is either a basic one, or a compound one, 
or a mixture one. 
The results can only be applied to a class of S3PR, not any 
S3PR. The applied S3PR has 2-compound siphons. That is 
to say, if an S3PR has 3- or 4-compound siphons, the 
results may not be applicable. Future work should extend 
the theory to siphons calculated from an n-compound (n>2) 
resource circuit, to remove the assumption that any two 
core circuits are interconnected at a single resource place, 
and to extend the controllability theory to FMS with 
generalized arcs.  

 
Figure 4. 2nd well-known S3PR. 
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