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ABSTRACT

The goal of this paper is to construct a multiple fuzzy regression model by fuzzy parameters
estimation using the fuzzy samples. We propose an optimization model that provides fuzzy
coefficients to minimize the distance between the fuzzy regressands and the fuzzy regressors. It
concerned with imprecise measurement of observed variables, linear programming estimation
and non-parametric methods. This is different from the assumptions as well as the estimation
techniques of the classical analysis. Empirical results demonstrate that our new approach is
efficient and more realistic than the traditional regression analysis did.
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1. Introduction

Regression analysis has been a very popular method with many successful appli-
cations. And the problem of parameter estimation in the linear regression models
has been an important research topic for statisticians. Conventional study on the
regression analysis is based on the conception that the observed data are random
with certain measurement errors or noise. However, in the empirical study those
assumptions may hardly meet the realization. Since there are many observations
experience linguistic or vague data inside the classical type.

For example, the official record of exchange rate for Japanese Yen to US dollar
in January 1999 is 118.4. However, this exchange rate do only account for the last
exchange data, it can not exactly display the variation of exchange rate (Japanese
Yen to US dollar) during January 1999. Under such situation, it may have a great
chance of misleading if we try to apply this inaccurate data to fit a regression model.
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Tanaka et. al. [4] proposed the study in linear regression analysis using fuzzy
set theory. They consider the linear interval regression model as

Y = A0 + A1x1 + A2x2 + ... + Apxp, (1)

where parameters Ai are triangular fuzzy numbers and the explained variables
x1, x2, ..., xp are real value numbers. Therefore, the estimated value Y is also a
fuzzy number. Tanaka et. al. designed a useful technique to solve the estimation
problem by transforming the optimization problem of estimation into a linear pro-
gramming scheme. However, their method is a little complicated. Isshibuchi and
Tanaka [2] presented an interval regression analysis base on the back-propagation
neural networks. Their method is to obtain a nonlinear interval regression model
by identifying the upper bound and the lower bound of the data interval. Recently,
Yang and Ko [5] proposed a cluster-wise fuzzy in two approaches: the two stage
weighted fuzzy regression and the one stage generalized fuzzy regression. The two
stage procedure extends the results of Jajuga [3] and Diamond [1]. The one stage
is created by embedding fuzzy clustering into the fuzzy regression model fitting at
each step of procedures.

The regression analysis dealing with fuzzy data is usually called fuzzy regression
analysis. While a linear interval regression model with fuzzy parameters is called
fuzzy regression model. One advantage of using fuzzy regression analysis is that
it can process the fuzzy sample data such as: (xi, Yi), where Yi is a fuzzy number
and xi is the vector of the explained variables, in a way which is closer to the real-
ity. However, the estimation of fuzzy regression coefficients about fuzzy regression
models has not been studied very much. That is, when the parameters Ai in the
equation (1), exhibits a linguistics form, such as Ai contains five linguistic values
(vary low, low, medium, high, very high). In order to get an appropriate model to
exhibit the real case, we had better apply the concept of fuzzy theory as well as the
membership functions for these fuzzy sample data.

In this paper we propose a new approach to fuzzy regression models by using
fuzzy number and method of least square. It is connected with imprecise measure-
ment of observed variables, fuzzy least square estimation and non-parametric meth-
ods. This is different from the assumptions as well as the estimation techniques of
the classical analysis. A generalized least square method with nonparametric statis-
tics estimating the regression coefficients is derived. Empirical results demonstrate
that our new approach is efficient and more realistic than the traditional regression
analysis did.

2. Preliminary

Definition 1 A fuzzy set of X is a mapping ũ : X → [0, 1].
Definition 2 Let ũ be a fuzzy set of R. The α-level set of ũ, denoted [ũ]α,
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Figure 1. The graph of the fuzzy set ũ(x)

0 ≤ α ≤ 1, is

[ũ]α = {x ∈ R|ũ(x) ≥ α}.
For α = 0 the support of ũ us defined as

[ũ]0 = {x ∈ R|ũ(x) ≥ 0}.

Remark Let ũ be a triangle fuzzy set and 0 ≤ α ≤ 1. The α-level set of ũ can be
represented as

[ũ]α = (u, (1− α)u, (1− α)u),

where u is the center of ũ and (1− α) or (1− α)u are the length of the left or right
spread from the center. Without any confusion, the triangle fuzzy set ũ can now be
denoted as ũ = (u, u, u).
Example 1 Let ũ be a triangle fuzzy set with

ũ(x) =





0, if x < 0,
x, if 0 ≤ x < 1,
3−x

2 , if 1 ≤ x < 3,
0, if 3 ≤ x.

Then the α-level set of ũ can be represented as

[ũ]α = (u, (1− α), 2(1− α)).

Here, we say that [ũ]α = (u, uα, uα) is positive if u− uα > 0.
It is well-known that H-difference for fuzzy sets was initially introduced by

Hukuhara as follows.
Definition 3 Let ũ, ṽ be two fuzzy sets. If there exists a fuzzy set w̃ such that
ũ = ṽ + w̃, then w̃ is called the H-difference of ũ and ṽ and it is denoted by ũH ṽ.
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For any two fuzzy numbers, we define the following operations.
Definition 4 If [ã]α = (a, aα, aα) and [b̃]α = (b, bα, bα) are two fuzzy α-level sets,
then two operations, say addition and multiplication, are defined as

(1) Addition

(a, aα, aα)⊕ (b, bα, bα) = (a + b, aα + bα, aα + bα).

(2) Multiplication
If a > 0 and b > 0, then

(a, aα, aα)⊗ (b, bα, bα) = (ab, baα + abα, baα + abα).

If a < 0 and b > 0, then

(a, aα, aα)⊗ (b, bα, bα) = (ab, baα − abα, baα − abα).

If a < 0 and b < 0, then

(a, aα, aα)⊗ (b, bα, bα) = (ab,−baα − abα,−baα − abα).

So far, many papers are proposed to ranking the fuzzy sets. In this paper, two
triangle fuzzy sets are ranked by the following procedure.
Definition 5 Let ũ = (u, u, u) and ṽ = (v, v, v) be two triangle fuzzy sets. We say
ũ ≤ ṽ if they satisfy the procedure

If u < v,

Elseif u− u < v − v, (or v < u)
Else u + u < v + v, (or v < u).

On the other hand, the fuzzy matrix is defined as follows.
Definition 6 A matrix X̃ = (x̃ij) is called a fuzzy matrix if all element in Ã are
fuzzy sets.

If x̃ij are all triangle fuzzy sets, then the fuzzy matrix can be represented as

[X̃]α = ([x̃ij ]α) = ((xij , (1− α)xij , (1− α)xij)) or X = ((xij , xij , xij)).

Following the notation of Dehghan and Hashemi, the matrix X̃ can be repre-
sented as [X̃]α = (X, Mα, Nα) since X̃ = (x̃ij) and x̃ij = ((xij , (1−α)xij , (1−α)xij)).
There crisp matrices X = (xij), M = (xα

ij) and N = (xα
ij) are called the center ma-

trix and the right and the left spread matrices, respectively.
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Now, we consider the fully fuzzy linear systems (FFLS) as the form:

(x̃11 ⊗ ã1)⊕ (x̃12 ⊗ ã2)⊕ ...⊕ x̃1n ⊗ ãn = ỹ1,

(x̃21 ⊗ ã1)⊕ (x̃22 ⊗ ã2)⊕ ...⊕ x̃2n ⊗ ãn = ỹ2,

...
(x̃m1 ⊗ ã1)⊕ (x̃m2 ⊗ ã2)⊕ ...⊕ x̃mn ⊗ ãn = ỹm,

where x̃ij , ãi and ỹj are all fuzzy numbers. The matrix form of this linear system is
represented as

X̃ ⊗ ã = Ỹ ,

where X̃ = (X,Mα, Nα), is an m×n fuzzy matrix, ã = (a, aα, aα) and Ỹ = (y, y
α
, yα)

are n×1 and m×1 fuzzy matrices. As m = n, the solution of nonnative FFLS have
been proposed by Dehghan and Hashemi.

3. Fuzzy regression models

The equation

Yi = a1Xi1 + a2Xi2 + ... + anXin + εi, i = 1, 2, ...,m

is a multiple linear model, where Yi is the regressand and Xi1, Xi2, ..., Xin are re-
gressors. A disturbance terms εi is added to capture the influence of everything
else on Yi and Xi1, Xi2, ..., Xin. In general there are n parameters to be determined,
a1, a2, ..., an. In order to estimate the parameters it is often useful to use the matrix
notation

Y = aX + ε,

where Y is a column vector that includes the observed values of Y1, Y2, ..., Ym, ε
includes the unobserved stochastic components ε1, ε2, ..., εm and the matrix X the
observed values of the regressors:

X =




X11 X12 · · · X1n

X21 X22 X2n
...

. . .
Xm1 Xm2 · · · Xmn




.
To determine the parameters, one possible method is to find the solution of the

minimization model

min||Y − aX||.
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In the following, we assume that the regressors and the regressand are all triangle
fuzzy sets. Let X̃ = (X, Mα, Nα), be an m × n fuzzy matrix, ã = (a, aα, aα) and
Ỹ = (y, y

α
, yα) are n×1 and m×1 fuzzy matrices. We shall propose an optimization

model that provides a solution ã = (a, aα, aα) to minimize the difference between
X̃ ⊗ ã and Ỹ , that is

min||X̃ ⊗ ã− Ỹ ||1,
where the fuzzy multiplication, H-difference and the ranking procedure are given in
the previous section. Since (X̃ ⊗ ã)i =

∑n
k=1 x̃ik ⊗ ãk,

||X̃ ⊗ ã− Ỹ ||1 =
m∑

i=1

|
n∑

k=1

(x̃ik ⊗ ãk)− ỹi|.

Since

X̃ ⊗ ã

= (X, Mα, Nα)⊗ (a, aα, aα)
= (Xa,Xaα + Mαa,Xaα + Nαa)

an optimization model can be formulated as follows.

min βh1 + γh2 + δh3

s.t. Xa− y = d+
1 − d−1

Xaα + Mαa− y
α

= d+
2 − d−2

Xaα + Nαa− yα = d+
3 − d−3

h1 =
m∑

i=1

d+
1i + d−1i

h2 =
m∑

i=1

d+
2i + d−2i

h3 =
m∑

i=1

d+
3i + d−3i

d+
1 , d−1 , d+

2 , d−2 , d+
3 , d−3 ≥ 0 i = 1, 2, ..., m

where β, γ and δ are given weighted coefficients.
Example 2 Let us consider the triangle fuzzy data shown in Table 1. A first order
linear regression is performed by modeling the data by a linear equation

Ỹi = ã⊗ X̃i + εi, i = 1, 2, 3, 4, 5.
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Table 1. Triangle fuzzy data.

X̃ Ỹ

A (0.6, 0.06, 0.06) (0.6, 0.04, 0.09)

B (0.8, 0.1, 0.1) (0.65, 0.06, 0.06)

C (0.4, 0.03, 0.08) (0.6, 0.08, 0.03)

D (0.3, 0.05, 0.05) (0.7, 0.05, 0.05)

E (0.9, 0.09, 0.04) (0.85, 0.06, 0.06)

The optimization model is formulated as

min βh1 + γh2 + δh3

s.t.




0.6
0.8
0.4
0.3
0.9




a−




0.6
0.8
0.4
0.3
0.9




= d+
1 − d−1




0.6
0.8
0.4
0.3
0.9




aα −




0.06
0.1
0.03
0.05
0.09




a−




0.04
0.06
0.08
0.05
0.06




= d+
2 − d−2




0.6
0.8
0.4
0.3
0.9




aα −




0.06
0.1
0.03
0.05
0.09




a−




0.09
0.06
0.03
0.05
0.06




= d+
3 − d−3

h1 =
5∑

i=1

d+
1i + d−1i

h1 =
5∑

i=1

d+
2i + d−2i

h1 =
5∑

i=1

d+
3i + d−3i

d+
1 , d−1 , d+

2 , d−2 , d+
3 , d−3 ≥ 0 i = 1, 2, ..., 5

When the weighted coefficients β, γ and δ are given as 0.5, 0.3 and 0.2, respectively.
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Table 2. Personal income, level of education and marriageable age for 12 females.

Number Personal Income Years of Education Marriageable Age

1 1.5∼2.5 6∼9 (high school) 26∼30

2 2.6∼3.5 12∼16 (college) 26∼30

3 1.5∼2.5 6∼9 (high school) 31∼35

4 2.6∼3.5 12∼16(college) 31∼35

5 1.5∼2.5 9∼12 (high school) 31∼35

6 2.6∼3.5 12∼16(college) 31∼35

7 1.5∼2.5 6∼9 middel high school 31∼35

8 2.6∼3.5 12∼16(college) 26∼30

9 2.6∼3.5 12∼16(college) 31∼35

10 2.6∼3.5 12∼16(college) 31∼35

11 3.6∼4.5 12∼16(college) 36∼40

12 3.6∼4.5 12∼16(college) 36∼40

The coefficient ã is (1.227273, 0.107692, 0.100000); i.e.

Ỹi = (1.227273, 0.107692, 0.100000)⊗ X̃i + εi.

4. Empirical studies

In this research, we attempt to figure out whether there is a relationship between
marriageable age and some special personal characteristics, such as personal income
and level of education. These data are obtained through random sampling of 24
marriageable people at Taipei area, including 12 females and 12 males. The variables
include: personal income, level of education, and marriageable age. Here, we define
the dependent variable Y as marriageable age, while two independent variables X1,
X2 are defined as personal income (monthly) and level of education, respectively.
These data are shown respectively in Table 2 and Table 3.

The ranges of marriageable age are respectively denoted as: 18∼20 years old;
21∼25 years old; 26∼30 years old; 31∼35 years old; 36∼40 years old; 41 years old
and older.

The ranges of personal income are respectively denoted as: NT$15,000∼25,000;
NT$26,000∼35,000; NT$36,000∼45,000; NT$46,000∼55,000; NT$56,000∼65,000;
NT$66,000 and more.

The level of education is defined as the number of school years. So, we denote
respectively as follows:
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Table 3. Personal income, level of education and marriageable age for 12 males.

Number Personal Income Years of Education Marriageable Age

1 1.5 2.5 6∼9 middel high school 35∼40

2 2.6∼3.5 12∼16(college) 26∼30

3 3.6∼4.5 6∼9 middel high school 35∼40

4 3.6∼4.5 12∼16(college) ≥ 41

5 2.6∼3.5 9∼12 (high school) 35∼40

6 3.6∼4.5 12∼16(college) 35∼40

7 3.6∼4.5 6∼9(college) 31∼35

8 2.6∼3.5 12∼16(college) 26∼30

9 2.6∼3.5 12∼16(college) 35∼40

10 3.6∼4.5 12∼16(college) 31∼35

11 ≥6.6 12∼16(college) 36∼40

12 4.6∼5.5 16∼18 (master) 31∼35

0∼6 years of schooling is denoted as the level of elementary school.
6∼9 years of schooling is denoted as the level of junior high school.
9∼12 years of schooling is denoted as the level of senior high school, including

vocational school.
12∼16 years of schooling is denoted as college graduate with a bachelor’s degree.
16∼18 years of schooling is denoted as holding a master’s degree.
18 and more years of schooling is denoted as holding a doctor’s degree.
Let personal income and level of education be two triangle fuzzy sets, and are

denoted as ũ = (u, u, u) and ṽ = (v, v, v), respectively. Let marriageable age be
a triangle fuzzy set with w̃ = (w,w, w). The equation for the regression line of
ũ = (u, u, u) and ṽ = (v, v, v) on w̃ = (w, w,w) is given by

w̃ = (5, 1, 0)⊗ ũ⊕ (1.214, 0, 0.071)⊕ ṽ

for the female, and is

w̃ = (6.239, 0, 0.278)⊗ ũ⊕ (0.806, 0, 0.155)⊕ ṽ

for the male. Here, the infinite symbol is replaced with a large number since age
and income are always finite in the real-world.
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5. Conclusion

In this research, we proposed a new method for parameters estimation of linear
regression models integrated with statistical theory and the concept of fuzzy logic.
The presented procedure to find the α-level of fuzzy parameter for a set of regression
data is carefully discussed. Experimental results show that the proposed method
of estimated fuzzy parameters is efficient and practical in explanation of the real
data with the significant α-level. The result in this research presented a feasible
application and new promising area for constructing regression models.

The conventional method for parameters estimation of linear regression rested on
concept of the linear programming. If we use fuzzy statistical concept to analyze the
relationships among the endogenous variables Y and exogenous variables X, we will
get a better explanation for those variables. Especially, from the statistical point
of view, using the least square method to estimate the boundaries of fuzzy variable
exhibits more appropriateness and its computation is also more efficient than the
traditional linear programming method. Though the least square method can be
infected by certain outliers, we placed the nonparametric technique to reduce the
influence of those data and make the estimator more robustic.

Finally, linguistic value estimation by the use of regression data is very com-
plicated, involving entities with many features and parts which interact with each
other and their environment in intricate ways. The proposed method is also suit-
able in dealing with historical data, which are linguistic values. The method of fuzzy
parameter estimation doesn’t require precise knowledge about the structure in the
data and can take full advantage of the model-free approach. However there still
remains many problems for future studies, such as:

(1) In the traditional regression models construction, the estimation based on
the least square is BLUE(Best Linear Unbiased Estimate). Is our estimator
BLUE? How to define the BLUE from the fuzzy statistics point of view?

(2) How to identify the fuzzy endogenous and exogenous variables as well as detect
the intervention among them?

(3) How to extend the estimated parameter methods to the seasonal regression
models?

(4) How much precision is required in constructing the fuzzy parameters under
the significant α level?
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