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Abstract 
The geoidal undulation of points can be derived from orthometric height and GNSS 

geodetic height. The geometric method can produce geoidal undulation more accurate 
and faster than gravimetric method in the area with GNSS data and levelling data. In this 
research, we use different surface models to find out the best fitting surface based on 
geometric method to interpolate geoidal undulation of unknown point. The result shows 
quadratic surface method is the best one to solve regional geoidal undulation in terms of 
both costs and benefits. 
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區域性大地起伏最佳曲面擬合之研究－ 

以台中地區為例 

甯方璽 1*  李文傑 2 

摘  要 

幾何法大地起伏可以由正高及全球導航定位系統的橢球高快速獲得，且其精度

較重力法所得到之大地起伏高，因此本研究於不同的曲面模型中尋求最佳的大地起

伏擬合曲面，利用此曲面能夠精確的內插出各未知點之大地起伏值，由研究結果顯

示在經費及精度上考量以二次曲面為最佳。 
 

關鍵詞：大地起伏、正高、擬合曲面 
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1. Introduction 

Taiwan is famous for its island-wide complex terrain. In the middle of the Taiwanese 
island, the highest point (Mt. Jade) is 3952 m at altitude. In Eastern Taiwan, the 
mountains a few kilometers away from the coast typically have 2000m in height. On the 
other side, the western part is a flat plain. Thus, the geoidal undulation in Taiwanese 
terrain plays an important role (You., 2006). The geoidal undulation can be computed 
using several techniques. For example, the computation of geoidal undulation can be 
done by using the numerical integration of Stokes’ formula directly, fast Fourier 
transform, least squares collocation, spherical harmonic functions developed in a series, 
or by direct calculation of the difference between the ellipsoidal heights (from Global 
Navigation Satellite System – GNSS) and orthometric height (from spirit leveling). 
Relationship of the three height types is given by the equation, as shown in Eq. 1 and 
Figure 1: 

H = h – N                                                             (1) 

Where H is orthometric height above the geoid; h is geodetic height above reference 
ellipsoid; and N is geoidal undulation. 

 
Figure 1  The geometrical relationship of three height types 

Throughout this research, the geoidal undulation of points is derived from 
orthometric height, GNSS geodetic height, and surface model. We utilize different 
surface models to find out the best for Taiwan’s geoidal undulation. 

2. Methodology 

2.1 Surface fitting 
This research is first to adopt different surface models to conduct our analysis. The 

surface equation can be classified into many types including plane, quadratic, cubic, 
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quartic and quintic surface (Lancaster and Salkauskas, 1986; Pottmann and 
Leopoldseder , 2003). The plane surface equation is shown as equation 2. 

N = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑥𝑥                                              (2) 

Where𝑎0~𝑎3are unknown parameters;  N  is geoidal undulation; x and y are 
coordinates. 

The plane surface contains four unknown parameters. The meaningful solution can 
only be found only if there are 4 points on the fitting geoidal undulation surface. The 
quadric surface equation (as equation 3) has 6 parameters and needs 6 points to be solved. 
The cubic surface equation (as equation 4) has 10 parameters and needs 10 points to be 
solved. The quartic surface equation (as equation 5) has 15 parameters and needs 15 
points to be solved. The quintic surface equation (as equation 6) has 21 parameters and 
needs 21 points to be solved. Thus, the number of points within the fitting range has to be 
considered in selecting to solve surface equations (Awange et al., 2010) . 

N = 𝑎0 + 𝑎1x + 𝑎2𝑦 + 𝑎3𝑥2 + 𝑎4𝑦2 + 𝑎5xy            (3) 

N = 𝑎0 + 𝑎1x + 𝑎2𝑦 + 𝑎3𝑥𝑥 + 𝑎4𝑥2 + 𝑎5𝑦2 + 𝑎6𝑥3 + 𝑎7𝑦3 + 𝑎8𝑥2𝑦 + 𝑎9𝑥𝑦2    (4) 

N = 𝑎0 + 𝑎1x + 𝑎2𝑦 + 𝑎3𝑥𝑥 + 𝑎4𝑥2 + 𝑎5𝑦2 + 𝑎6𝑥3 + 𝑎7𝑦3 + 𝑎8𝑥2𝑦 + 𝑎9𝑥𝑦2 +

𝑎10𝑥4 + 𝑎11𝑦4 + 𝑎12𝑥3𝑦 + 𝑎13𝑥2𝑦2 + 𝑎14𝑥𝑦3                                (5) 

N = 𝑎0 + 𝑎1x + 𝑎2𝑦 + 𝑎3𝑥𝑥 + 𝑎4𝑥2 + 𝑎5𝑦2 + 𝑎6𝑥3 + 𝑎7𝑦3 + 𝑎8𝑥2𝑦 + 𝑎9𝑥𝑦2 +

𝑎10𝑥4 + 𝑎11𝑦4 + 𝑎12𝑥3𝑦 + 𝑎13𝑥2𝑦2 + 𝑎14𝑥𝑦3 + 𝑎15𝑥5 + 𝑎16𝑦5 + 𝑎17𝑥4𝑦 +

𝑎18𝑥3𝑦2 + 𝑎19𝑥2𝑦3 + 𝑎20𝑥𝑦4                                             (6) 

Also, an indicates unknown parameters, N indicates geoidal undulation, and x and 
y indicates the components on abscissa and ordinate, respectively.  

To derive perfect fitting data, the precision after fitting should require to be 
approximated to 0. We discuss the fitting result with simulated data, which are presented 
in plane equation, cubic surface and quintic surface equations, respectively. In the 
research, the simulation data are 9 by 9 grid points, and the z component is a random 
number between 0 to 1 units. The content is detailed in Table 1. As shown in Figures 2, 3 
and 4, the data are fit to a plane surface with precision of 0.2723 unit. The data are fit to 
cubic surface with precision of 0.2703 unit. The data are fit to quintic surface with 
precision of 0.2637 unit. From above data and graphs, higher order surface equations 
may result in more fit data. However, higher order surface equations imply the risk of 
overfitting, that is, the prediction error is relatively high. 
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Table 1  Data Points of Surface Fitting Simulation (No Unit) 

  
Y 

1 2 3 4 5 6 7 8 9 

x 

1 0.706 0.0344 0.7094 0.3404 0.5472 0.35 0.9172 0.7792 0.3112 
2 0.0318 0.4387 0.7547 0.5853 0.1386 0.1966 0.2858 0.934 0.5285 
3 0.2769 0.3816 0.276 0.2238 0.1493 0.2511 0.7572 0.1299 0.1656 
4 0.0462 0.7655 0.6797 0.7513 0.2575 0.616 0.7537 0.5688 0.602 
5 0.0971 0.7952 0.6551 0.2551 0.8407 0.4733 0.3804 0.4694 0.263 
6 0.8235 0.1869 0.1626 0.506 0.2543 0.3517 0.5678 0.0119 0.6541 
7 0.6948 0.4898 0.119 0.6991 0.8143 0.8308 0.0759 0.3371 0.6892 
8 0.3171 0.4456 0.4984 0.8909 0.2435 0.5853 0.054 0.1622 0.7482 
9 0.9502 0.6463 0.9597 0.9593 0.9293 0.5497 0.5308 0.7943 0.4505 

 
Figure 2  Result of Simulated Points from Plance Surfae Fitting with Precision of 0.2723 

Unit 

 
Figure 3  Result of Simulated Points from Cubic Surface Fitting with Precision of 

0.2703 Unit 
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Figure 4  Result of Simulated Points of Quintic Surface with Precision of 0.2637 Unit 

The comparison chart (Figure 5) shows training sample errors and test sample errors 
for different model complexities utilizing 100 groups of training data (there are 50 
respective samples in each group of the training sets) (Hastie et al., 2009). The abscissa 
indicates the complexity of the model, the ordinates the prediction error, the pale blue 
curves indicate training errors, the reddish curves indicate test errors, and the solid lines 
indicate the expectation values of training errors and test errors. From the graph, higher 
complexity model result in lower training errors and test errors. However, as the model 
complexity is higher, the difference between test errors and training errors increase 
instead. As the complexity is increasing until the training error reaches zero, it indicates 
the case of overfitting for training samples. 

 
Figure 5  Training Sample Errors and Test Sample Errors under Different Model 

Complexities (Hastie et al., 2009) 
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2.2 Cross Validation 
Cross validation is probably the most widely used and the easiest tool for evaluation 

prediction errors of model (Hastie et al., 2009). The cross validation is used to determine 
prediction errors of model. It classified the original data into test data and training data, 
followed by validating data quality with cyclic analysis and calculation. As shown in 
Figure 6, total 20 data are assumed for model creation. At first, all data are classified into 
5 subsets, each of which has 4 data. In cross validation, one subset is used as the 
validation data after model creation and does not join training model for every 
calculation. After 5 iterations, all subsets are used as validation data to evaluate 
prediction errors of model. The data are classified into 5 subsets in Figure 6. Such 
method of classification into multiple subsets is referred to as K-fold cross validation in 
cross validation methods, wherein K indicates the number of subsets, which is 5 in the 
example. 

 
Figure 6  Example of Cross Validattion Flow 

The cross validation is a relative conservative estimation method for evaluating 
prediction errors of model, and would take considerable computation time. Since 
advanced computing capability nowadays, the cross validation would not consume too 
much cost with the reasonable amount of data number and the less complex model. Thus, 

data 1 data 2 data 5 data 6 data 9 data 10 data 13 data 14 data 17 data 18

data 3 data 4 data 7 data 8 data 11 data 12 data 15 data 16 data 19 data 20

data 1 data 2 data 5 data 6 data 9 data 10 data 13 data 14 data 17 data 18

data 3 data 4 data 7 data 8 data 11 data 12 data 15 data 16 data 19 data 20

data 1 data 2 data 5 data 6 data 9 data 10 data 13 data 14 data 17 data 18

data 3 data 4 data 7 data 8 data 11 data 12 data 15 data 16 data 19 data 20

data 1 data 2 data 5 data 6 data 9 data 10 data 13 data 14 data 17 data 18

data 3 data 4 data 7 data 8 data 11 data 12 data 15 data 16 data 19 data 20

data 1 data 2 data 5 data 6 data 9 data 10 data 13 data 14 data 17 data 18

data 3 data 4 data 7 data 8 data 11 data 12 data 15 data 16 data 19 data 20
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Part 1 Part 2 Part 3 Part 4 Part 5
Train Train Validation Train Train

Part 1 Part 2 Part 3 Part 4 Part 5
Train Train Train Validation Train

Part 1 Part 2 Part 3 Part 4 Part 5
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the cross validation may be used to determine prediction errors of model in a relatively 
simple manner. 

In the research, LOOCV (Leave One Out Cross-Validation), one of cross validation 
methods, is used to determine prediction errors of surface fitting model. LOOCV is the 
extreme form in K-fold cross validation methods, wherein K is the total number of data. 
One datum is extracted to be validation datum every time, while other data are trained 
and iterated until all data have been used as validation data for one time (Kearns, M. and 
Ron, D., 1999). 

The evaluation equation for prediction errors of cross validation is as shown in 
equation 7 (Hastie et al., 2009):  

CV(𝑓) = �1
𝑁
∑ �𝑦𝑖 − 𝑓−𝑖(𝑥𝑖)�

2𝑁
𝑖=1                                           (7) 

The data are classified into N subsets; f̂ indicates fitting surface equation, while 
f̂−i is the model obtained by using the ith group of the subsets as validation data while 
other data are trained; y is a dependent variable, which is the value of geoidal undulation 
as surface fits geoidal undulation; while x is an independent variable, which is a plane 
coordinate as surface fits geoidal undulation. Equation 7 is the prediction error formula 
defined on the basis of K-fold cross validation. LOOCV is used in the research. The 
prediction error evaluation of LOOCV may be calculated simply by setting N as the total 
number of data. 

3. Data and Results 

In the research 78 level points in total comprising ellipsoid height surveyed in 
Taichung City are utilized with the point distribution profile shown in Figure 7. The data 
are used because the points are distributed rather uniformly in Taichung City, and are 
ideal data for fitting geoidal undulation. The mean geoidal undulation is 19.798 m 
(Maximum 20.818 m, Minimum 19.214 m). 
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Figure 7  The distribution of leveling data 

Plane, quadric, cubic, quartic and quintic surface equations are used to fit geoidal 
undulations in Taichung experimental area. In addition, the precision of models are 
evaluated by using LOOCV. The evaluation purpose of the experiment is to come out the 
best surface equation for fitting. Furthermore, such surface equation has to control the 
prediction errors in a reasonable range in order to prevent overfitting condition. The flow 
chart of the research is as shown in Figure 8. 
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Leveling data of 
Taichung City

Different surface models to fit 
goeidal height

Plane surface Quadratic 
surface Cubic surface Quartic 

surface
Quintic 
Surface

Compute the 
internal precision

Estimate the 
model precision 

using cross 
validation method  

Result
 

Figure 8  The flowing chart of surface’s model analysis 

The result of the experiments is shown in Figure 9: the model precision for the plane 
surface is 5.57 cm, that for the quadratic surface is 2.25cm, that for cubic surface is 
2.04cm, that for quartic surface is 2.01 cm, and that for the quintic surface is 1.91cm; the 
prediction error (evaluated by LOOCV) for the plane surface is 7.10 cm, that for the 
quadratic surface is 2.42cm, that for cubic surface is 2.27cm, that for quartic surface is 
2.39 cm, and that for the quintic surface is 2.97cm. 

The experimental result is nearly compliant with Figure 2. As the model complex 
increases, the model precision decreases gradually, which might approximates to 0; 
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however, the prediction errors would bounce as valley is reached as the model complex 
decreases. Although the most complex model in the experiment is only a quintic surface 
equation, it is reasonable to estimate that the model precision of higher order surface 
equation would be higher than 1.91cm, and its prediction errors would be higher than 
2.97cm. From the figure, the model precisions and prediction precisions of model 
complexity are most proximate between quadratic surface and quartic surface. 

 
Figure 9  Comparison of Prediction Errors and Internal Precisions (Taichung 

Experimental Area) 

4. Conclusion 

From the results, both training and testing error of the quartic surface equation are 
smaller compared with the quadratic surface equation. However, the quartic equation 
needs 15 necessary observations, which are far more than 6 and 10 necessary 
observations for the quadratic surface equation and the cubic surface equation. In view of 
the potential measurement errors generating from less density of levelling points 
distributed in full Taiwan compared with Taichung experimental area, we need 15 or 
more necessary observations in the fitting range to produce results with better accuracy. 
This is more difficult. From the obtained fitting results, the increase is not large. Thereby, 
there is no reason to accept the quartic surface equation. Therefore, in terms of costs and 
benefits, the quadratic surface method is the best one to solve regional geoidal 
undulation. 
  

Plane
Surface

Quadratic
Surface

Cubic
Surface

Quartic
Surface

Quintic
Surface

LOOCV 7.10 2.42 2.27 2.39 2.97
Model Precision 5.57 2.25 2.04 2.01 1.97

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

U
ni

t:c
m

 



國土測繪與空間資訊 第三卷第二期 

98 

References 

Awange, J. L., E. W. Grafarend, B. Paláncz, and P. Zaletnyik, 2010, Algebraic Geodesy 
and Geoinformatics, 2nd edition, Berlin Heidelberg : Springer-Verlag. 

Hastie, T., R. Tibshirani, and J. Friedman, 2009, The elements of statistical learning, 2nd 
edition, New York: springer. 

Kearns, M., and D. Ron, 1999, Algorithmic Stability and Sanity-Check Bounds for 
Leave-One-Out Cross-Validation, Neural Computation, 11(6), 1427-1453. 

Lancaster, P., and K., Salkauskas, 1986, Curve and Surface Fitting: An Introduction, 1st 
edition, London: Academic Press. 

Pottmann, H., and S., Leopoldseder, 2003, A concept for parametric surface fitting which 
avoids the parametrization problem, Computer Aided Geometric Design, 20(6), 
pp.343-362. 

You, R. J., 2006, Local Geoid Improvement Using GPS and Leveling Data: Case Study, 
Journal of Surveying Engineering, 132(3), pp.101-107. 

 


