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Abstract
The geoidal undulation of points can be derived from orthometric height and GNSS

geodetic height. The geometric method can produce geoidal undulation more accurate
and faster than gravimetric method in the area with GNSS data and levelling data. In this
research, we use different surface models to find out the best fitting surface based on
geometric method to interpolate geoidal undulation of unknown point. The result shows
quadratic surface method is the best one to solve regional geoidal undulation in terms of
both costs and benefits.
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1. Introduction

Taiwan is famous for its island-wide complex terrain. In the middle of the Taiwanese
island, the highest point (Mt. Jade) is 3952 m at altitude. In Eastern Taiwan, the
mountains a few kilometers away from the coast typically have 2000m in height. On the
other side, the western part is a flat plain. Thus, the geoidal undulation in Taiwanese
terrain plays an important role (You., 2006). The geoidal undulation can be computed
using several techniques. For example, the computation of geoidal undulation can be
done by using the numerical integration of Stokes’ formula directly, fast Fourier
transform, least squares collocation, spherical harmonic functions developed in a series,
or by direct calculation of the difference between the ellipsoidal heights (from Global
Navigation Satellite System — GNSS) and orthometric height (from spirit leveling).
Relationship of the three height types is given by the equation, as shown in Eq. 1 and
Figure 1:

H=h-N 1)

Where H is orthometric height above the geoid; h is geodetic height above reference
ellipsoid; and N is geoidal undulation.
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Figure 1 The geometrical relationship of three height types

Throughout this research, the geoidal undulation of points is derived from
orthometric height, GNSS geodetic height, and surface model. We utilize different
surface models to find out the best for Taiwan’s geoidal undulation.

2. Methodology

2.1 Surface fitting
This research is first to adopt different surface models to conduct our analysis. The
surface equation can be classified into many types including plane, quadratic, cubic,
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quartic and quintic surface (Lancaster and Salkauskas, 1986; Pottmann and
Leopoldseder , 2003). The plane surface equation is shown as equation 2.

N=ay+a;x+a,y+ aszxy (2

Where a,~azare unknown parameters; N is geoidal undulation; x and y are
coordinates.

The plane surface contains four unknown parameters. The meaningful solution can
only be found only if there are 4 points on the fitting geoidal undulation surface. The
quadric surface equation (as equation 3) has 6 parameters and needs 6 points to be solved.
The cubic surface equation (as equation 4) has 10 parameters and needs 10 points to be
solved. The quartic surface equation (as equation 5) has 15 parameters and needs 15
points to be solved. The quintic surface equation (as equation 6) has 21 parameters and
needs 21 points to be solved. Thus, the number of points within the fitting range has to be
considered in selecting to solve surface equations (Awange et al., 2010) .

N = ay + a;x + a,y + azx? + a,y? + asxy (3)
N =ay+ a;x+ a,y + azxy + a,x? + asy? + agx® + a,y3 + agx?y + agxy? 4)

N =ag+ a;x+ a,y + asxy + a,x? + asy? + agx® + a,y3 + agx?y + agxy? +

a1ox* + a;1y* + a;x3y + apzx®y? + aguxy’ (5)

N = ag+ ;X + a,y + asxy + a,x? + asy? + agx® + a;y3 + agx?y + agxy? +
aroxt + ap y* + a;x3y + ai3x?y? + agaxy® + agsx® + aey® + agpxty +

a18x3y2 + a19x2y3 + azox}’4 (6)

Also, a, indicates unknown parameters, N indicates geoidal undulation, and x and
y indicates the components on abscissa and ordinate, respectively.

To derive perfect fitting data, the precision after fitting should require to be
approximated to 0. We discuss the fitting result with simulated data, which are presented
in plane equation, cubic surface and quintic surface equations, respectively. In the
research, the simulation data are 9 by 9 grid points, and the z component is a random
number between 0 to 1 units. The content is detailed in Table 1. As shown in Figures 2, 3
and 4, the data are fit to a plane surface with precision of 0.2723 unit. The data are fit to
cubic surface with precision of 0.2703 unit. The data are fit to quintic surface with
precision of 0.2637 unit. From above data and graphs, higher order surface equations
may result in more fit data. However, higher order surface equations imply the risk of
overfitting, that is, the prediction error is relatively high.
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Table 1 Data Points of Surface Fitting Simulation (No Unit)

Y

1 2 3 4 5 6 7 8 9

0.706 | 0.0344 | 0.7094 | 0.3404 | 0.5472 | 0.35 |0.9172 | 0.7792 | 0.3112

0.0318 | 0.4387 | 0.7547 | 0.5853 | 0.1386 | 0.1966 | 0.2858 | 0.934 | 0.5285

0.2769 | 0.3816 | 0.276 | 0.2238 | 0.1493 | 0.2511 | 0.7572 | 0.1299 | 0.1656

0.0462 | 0.7655 | 0.6797 | 0.7513 | 0.2575 | 0.616 | 0.7537 | 0.5688 | 0.602

0.0971 | 0.7952 | 0.6551 | 0.2551 | 0.8407 | 0.4733 | 0.3804 | 0.4694 | 0.263

0.8235 | 0.1869 | 0.1626 | 0.506 | 0.2543 | 0.3517 | 0.5678 | 0.0119 | 0.6541

0.6948 | 0.4898 | 0.119 | 0.6991 | 0.8143 | 0.8308 | 0.0759 | 0.3371 | 0.6892

0.3171 | 0.4456 | 0.4984 | 0.8909 | 0.2435 | 0.5853 | 0.054 | 0.1622 | 0.7482

x
O | N OO0~ W|IN|F

0.9502 | 0.6463 | 0.9597 | 0.9593 | 0.9293 | 0.5497 | 0.5308 | 0.7943 | 0.4505

Figure 2 Result of Simulated Points from Plance Surfae Fitting with Precision of 0.2723
Unit

Figure 3 Result of Simulated Points from Cubic Surface Fitting with Precision of
0.2703 Unit
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Figure 4 Result of Simulated Points of Quintic Surface with Precision of 0.2637 Unit

The comparison chart (Figure 5) shows training sample errors and test sample errors
for different model complexities utilizing 100 groups of training data (there are 50
respective samples in each group of the training sets) (Hastie et al., 2009). The abscissa
indicates the complexity of the model, the ordinates the prediction error, the pale blue
curves indicate training errors, the reddish curves indicate test errors, and the solid lines
indicate the expectation values of training errors and test errors. From the graph, higher
complexity model result in lower training errors and test errors. However, as the model
complexity is higher, the difference between test errors and training errors increase
instead. As the complexity is increasing until the training error reaches zero, it indicates
the case of overfitting for training samples.
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Figure 5 Training Sample Errors and Test Sample Errors under Different Model
Complexities (Hastie et al., 2009)
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2.2 Cross Validation

Cross validation is probably the most widely used and the easiest tool for evaluation
prediction errors of model (Hastie et al., 2009). The cross validation is used to determine
prediction errors of model. It classified the original data into test data and training data,
followed by validating data quality with cyclic analysis and calculation. As shown in
Figure 6, total 20 data are assumed for model creation. At first, all data are classified into
5 subsets, each of which has 4 data. In cross validation, one subset is used as the
validation data after model creation and does not join training model for every
calculation. After 5 iterations, all subsets are used as validation data to evaluate
prediction errors of model. The data are classified into 5 subsets in Figure 6. Such
method of classification into multiple subsets is referred to as K-fold cross validation in
cross validation methods, wherein K indicates the number of subsets, which is 5 in the

example.

Part 1 Part 2 Part 3 Part 4 Part 5
Train Train Train Train Validation
Stepl | datal | data2 | data5 | data6 | data9 | datal0 | data13 | datal4 | datal7 | data18

data3 | data4 | data7 | data8 | datall | datal2 | datal5 | datal1l6 | datal1l9 | data 20

Part 1 Part 2 Part 3 Part 4 Part 5

Train Train Train Validation Train
Step2 | datal | data2 | data5 | data6 | data9 | datal0 | datal3 | datal4 | datal7 | data18

data3 | data4 | data7 | data8 | datall | datal2 | datal5 | datal6 | datal9 | data 20

Part 1 Part 2 Part 3 Part 4 Part 5
Train Train Validation Train Train

Step3 | datal | data2 | data5 | data6 | data9 | datal0 | datal13 | datal4 | datal7 | data18

data3 | data4 | data7 | data8 | datall | datal2 | datal5 | datal6 | datal9 | data 20

Part 1 Part 2 Part 3 Part 4 Part 5

Train Validation Train Train Train
Step4 | datal | data2 | data5 | data6 | data9 | datal0 | datal3 | datal4 | datal7 | data 18

data3 | data4 | data7 | data8 | datall | datal2 | datal5 | datal6 | datal9 | data 20

Part 1 Part 2 Part 3 Part 4 Part 5

Validation Train Train Train Train

Step5 | datal | data2 | data5 | data6 | data9 | datal0 | datal3 | datal4 | datal7 | data 18

data3 | data4 | data7 | data8 | datall | datal2 | datal5 | datal6 | datal9 | data 20

Figure 6 Example of Cross Validattion Flow

The cross validation is a relative conservative estimation method for evaluating
prediction errors of model, and would take considerable computation time. Since
advanced computing capability nowadays, the cross validation would not consume too
much cost with the reasonable amount of data number and the less complex model. Thus,
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the cross validation may be used to determine prediction errors of model in a relatively
simple manner.

In the research, LOOCV (Leave One Out Cross-Validation), one of cross validation
methods, is used to determine prediction errors of surface fitting model. LOOCYV is the
extreme form in K-fold cross validation methods, wherein K is the total number of data.
One datum is extracted to be validation datum every time, while other data are trained
and iterated until all data have been used as validation data for one time (Kearns, M. and
Ron, D., 1999).

The evaluation equation for prediction errors of cross validation is as shown in
equation 7 (Hastie et al., 2009):

V(D = Bl - el )

The data are classified into N subsets; f indicates fitting surface equation, while
f~1 is the model obtained by using the ith group of the subsets as validation data while
other data are trained; y is a dependent variable, which is the value of geoidal undulation
as surface fits geoidal undulation; while x is an independent variable, which is a plane
coordinate as surface fits geoidal undulation. Equation 7 is the prediction error formula
defined on the basis of K-fold cross validation. LOOCV is used in the research. The
prediction error evaluation of LOOCV may be calculated simply by setting N as the total
number of data.

3. Data and Results

In the research 78 level points in total comprising ellipsoid height surveyed in
Taichung City are utilized with the point distribution profile shown in Figure 7. The data
are used because the points are distributed rather uniformly in Taichung City, and are
ideal data for fitting geoidal undulation. The mean geoidal undulation is 19.798 m
(Maximum 20.818 m, Minimum 19.214 m).
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Figure 7 The distribution of leveling data

Plane, quadric, cubic, quartic and quintic surface equations are used to fit geoidal
undulations in Taichung experimental area. In addition, the precision of models are
evaluated by using LOOCV. The evaluation purpose of the experiment is to come out the
best surface equation for fitting. Furthermore, such surface equation has to control the

prediction errors in a reasonable range in order to prevent overfitting condition. The flow
chart of the research is as shown in Figure 8.
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The result of the experiments is shown in Figure 9: the model precision for the plane
surface is 5.57 cm, that for the quadratic surface is 2.25cm, that for cubic surface is
2.04cm, that for quartic surface is 2.01 cm, and that for the quintic surface is 1.91cm; the
prediction error (evaluated by LOOCYV) for the plane surface is 7.10 cm, that for the
quadratic surface is 2.42cm, that for cubic surface is 2.27cm, that for quartic surface is

Figure 8 The flowing chart of surface’s model analysis

A4

Compute the
internal precision

Estimate the
model precision
using cross
validation method
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Result

2.39 cm, and that for the quintic surface is 2.97cm.

The experimental result is nearly compliant with Figure 2. As the model complex
increases, the model precision decreases gradually, which might approximates to O;
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however, the prediction errors would bounce as valley is reached as the model complex
decreases. Although the most complex model in the experiment is only a quintic surface
equation, it is reasonable to estimate that the model precision of higher order surface
equation would be higher than 1.91cm, and its prediction errors would be higher than
2.97cm. From the figure, the model precisions and prediction precisions of model
complexity are most proximate between quadratic surface and quartic surface.

8.00
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£ \\
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1.00
0.00
Plane Quadratic Cubic Quartic Quintic
Surface Surface Surface Surface Surface
=== 00CV 7.10 2.42 2.27 2.39 2.97
== Model Precision 5.57 2.25 2.04 2.01 1.97

Figure 9 Comparison of Prediction Errors and Internal Precisions (Taichung

Experimental Area)
4. Conclusion

From the results, both training and testing error of the quartic surface equation are
smaller compared with the quadratic surface equation. However, the quartic equation
needs 15 necessary observations, which are far more than 6 and 10 necessary
observations for the quadratic surface equation and the cubic surface equation. In view of
the potential measurement errors generating from less density of levelling points
distributed in full Taiwan compared with Taichung experimental area, we need 15 or
more necessary observations in the fitting range to produce results with better accuracy.
This is more difficult. From the obtained fitting results, the increase is not large. Thereby;,
there is no reason to accept the quartic surface equation. Therefore, in terms of costs and
benefits, the quadratic surface method is the best one to solve regional geoidal
undulation.
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