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Prevalent execution errors such as out-of-stock, inventory record inaccuracy, and product misplacement jeopar-
dize retail performance by causing low on-shelf availability, which discourages not only retailers who have lost
sales but also manufacturers who have worked hard to deliver goods into retail stores. Thus, external service
companies are hired by manufacturers to conduct manual inspection regularly. Motivated by the practical
need of shelf audit service providers, we use a general cost structure to develop a decision support model for
periodic inspection. Some qualitative insights about the intricate relationships among inspection efficacy, cost
factors, failure rate of shelf inventory integrity, and optimal decisions are derived from analytics assuming risk-
neutrality. From simulation experiments we also find that managers' risk preferences have non-trivial impacts
on optimal decisions. Based on a total cost standpoint high-quality inspection is predominantly preferred regard-
less of the level of risk aversion. Finally, we propose a Bayesian statistical model and aMarkov chainMonte Carlo
approach to estimatemodel parameters such thatmanagers canmake empirically informed decisions. Ourmajor
contribution lies in developing a mathematical model that is practically applicable and proposing a Bayesian
estimation approach to rationalize unobservable model parameters, which are influential to optimal decisions
but often arbitrarily assumed by decision makers.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Retail operations is composedof various tasks pertaining to assortment
planning, product pricing, inventory optimization, and store execution
[20]. Among those tasks, store execution is highly labor-extensive and
complicated because it involves people, processes, and technology. Thus,
execution errors such as shelf out-of-stock (OOS), inventory record inac-
curacy (IRI), and product misplacement have become norms rather than
anomalies even at financially successful retailers [47]. Store execution er-
rors jeopardize retail performance by resulting in low on-shelf availability,
which discourages not only retailers who have lost sales but also other
supply chain members who have worked hard to deliver goods into the
retail outlet. Beingwell-known for its operational excellence,Walmart re-
cently admitted to a low on-shelf availability issue and predicted a $3 bil-
lion opportunity in filling in empty shelves [13].

Facing prevalent issues pertaining to on-shelf availability, retailers
have gradually seen the need of allocating extra labor capacity to carry
out shelf audits in order to reach higher service levels [17]. However,
hiring more employees who are able to execute prescribed tasks and
fix shelf errors goes against the common practice in retailing to mini-
mize labor cost [22,46]. Since low on-shelf availability is a serious prob-
lem for retailers as well asmanufacturers [41], manufacturers search for
4.
alternative approaches (rather than retailers' regular operations) to
maximize the availability of their products [6,15].

A potential answer for manufacturers to fix low on-shelf availability is
to ask external companies who provide shelf audit services to correct
faulty items thatmay experienceOOS, IRI, ormisplacement [10]. Those ex-
ternal service agents are capable of working with different store formats
(e.g., grocery, club, drug, convenience). Their associates excel in re-
shelving or display maintenance to complement retailers' regular opera-
tions, and conduct other tasks such as placing promotional goods. More-
over, periodic shelf audits performed by those thirty party companies are
appealing tomanufacturers because they also solve the conflict of retailers'
potential bias to selectively report good audit outcomes [18]. Chuang et al.
[10] report a successful case inwhich they conduct a field experiment in a
U.S. retail chain and show that external audit services is a cost-effective
way for product manufacturers to improve on-shelf availability.

Even though external shelf audits seem to be a promising solution to
the recurring problem of low on-shelf availability, designing a cost opti-
mal inspection policy for those external service companies turns out to
be difficult because of two issues. First, information regarding inventory
transactions may not be available to the service companies who have
limited/no access to point-of-sale (POS) data. Second, it is nearly impos-
sible to achieve error-free shelf inspection because anordinary associate
usually has to audit multiple items at multiple stores within a limited
time. As a result, a certain amount of inspection error is inevitable and
needs to be considered by decision makers. In attempt to tackle the
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aforementioned issues, this paper presents a periodic inspection policy
that triggers physical audits to increase on-shelf availability.Wepresent
a normative analysis of inspection decisions while taking into account
inspectors' fallibility and managers' risk attitudes. Our paper addresses
the question: for external service providers with limited information
about on-shelf items' status, what is the optimal frequency of shelf audits
provided a level of inspection error and risk aversion? We answer
the question by deriving static analytics under risk neutrality and
performing simulation studies under risk aversion.

The notion of inspection error and risk aversion is critical to our in-
spection policy design and makes our modeling effort relevant. On the
one hand, as opposed to the commonly assumed “perfect inspection,”
we posit that any inspection in the real world can hardly be error-free.
The reality is that inspection errors vary with human efforts and signif-
icantly increase the level of complexity surrounding the design of
inspection policies [30]. Since the competencies, experiences, and
motivations of inspectors are different, the probability of making
mistakes will differ [5]. However, studies on the impact of error-prone
inspection are scant in the context of retail shelf audits. We fill in the
gap by explicitly incorporating human fallibility into our model and
assessing the impact of different levels of inspection error rates.

On the other hand, numerous studies on inspection policies assume
risk neutrality, which is valid only if optimal decisions are invariantwith
managers' risk attitudes [37]. Unfortunately, most of the earlier at-
tempts (e.g., [28,36]) to optimize inspection decisions have not taken
into account managers' risk preferences. Peecher et al. [42] point out
that audit initiatives are by nomeans risk-free and there are different el-
ements of risk– internal risk, control risk, anddetection risk– surround-
ing inspection policy design. Those elements of risk lead to uncertainties
in total cost of shelf audit efforts. Seeing that optimal decisions will
depend on the degree of risk aversion, we take a utility-based approach
to analyze how risk aversion affects the design of inspection policies.
The principle of maximizing expected utility has a rich theoretical
foundation [11] that enables us to explore the interaction between
risk preferences and optimal decisions.

Our study makes several contributions. First, our model has a fairly
general cost structure and it is built upon realistic assumptions of in-
spection efficacy and managerial risk preferences. Managers can adopt
the proposed model to achieve cost-effective inspection and recover
profit loss caused by low on-shelf availability. Our modeling effort is
particularly relevant for retail service providers who need to periodical-
ly send associates into retail stores tomaintain shelf inventory integrity.
Second, our model considers imperfect inspection and accommodates
two types of errors – the error of failing to correct faulty items and the
error of miscorrecting accurate ones. Further, we assess managers' risk
preferences that are found to have substantive impacts on optimal deci-
sions. We observe that from a cost standpoint high-quality inspection
(i.e., low error probability) is generally preferred regardless of the
degree of risk aversion. Third, our model also captures the random
degradation of on-shelf availability due to store execution errors. We
find interesting dynamics among inspection efficacy, failure rate of
shelf inventory, and cost factors. Our analysis shows that the ignorance
of imperfect inspection and random shelf error generation would result
in suboptimal audit decisions. Lastly, early papers make hypothetical
assumptions about the distribution of inspection error [5,14] because
noobservable data can be applied to directly estimate the error distribu-
tion in a non-experimental context. We address the issue by making
Bayesian inference about the level of inspection error instead of making
hypothetical guesses.We adopt Bayesian hierarchical modeling and use
a Metropolis-within-Gibbs sampling scheme to statistically infer unob-
servable human errors given observed inspection outcomes. To the best
of our knowledge, there is no similar attempt reported in the literature
of shelf inspection and inventory audits.

The rest of this article is organized as follows. Section 2 summarizes
the relevant literature related to our work; the formulation and analysis
of a periodic inspection model for shelf audit service providers under
risk-neutrality and risk-aversion are presented in section 3 and section 4
respectively. In section 5we propose a Bayesianmethodology to estimate
unknown model parameters that are crucial for optimal decisions. We
conclude by articulating practical implications and research limitations.

2. Related literature

A stream of literature has engaged in developing decision support
models for retail shelf audits. One of the seminal studies is by Hughes
[28] who formulates a Markov decision process to determine the opti-
mal timing of audits while considering the efficacy of auditing. Morey
and Dittman [36] further propose a model to calculate the optimal
timing of stock audits based on pre-specified goals of inventory accura-
cy. More recently, Sandoh and Shimamoto [45] devise a stochastic
model to find the optimal frequency of inventory counting in a super-
market. Kok and Shang [33] propose a joint inventory inspection and
replenishment policy that is capable of recovering a large proportion
of benefits brought by RFID adoption. DeHoratius et al. [12] develop a
shelf inspection policy based on expected value of perfect information.
Atali et al. [3] also work on the problem of inventory integrity within
periodic review inventory systems. Our model differs from previous
studies in two major aspects. First, neither sales quantity nor inventory
position is known to decision makers (i.e., managers of external service
firms) who typically have limited observations on on-shelf items from
periodic inspection. Second, we explicitly incorporate inspection effica-
cy and risk preferences into inspection policy design.

Extant studies on inspection assume risk neutrality, an assumption
that is not likely to be valid in our context of retail shelf audits. Peecher
et al. [42] define audit risk as the product of three underlying risks: in-
herent risk, control risk, and detection risk. Here inherent risk refers to
the fact that on-shelf availability could easily be compromised due to
various execution errors, which are likely to persist without internal
controls [43]. However, imposing internal controls (e.g., periodic in-
spection) has control risk that is related to two cost factors – a cost of
inspecting/correcting faulty items and a cost of leaving faulty items
unfixed. Thus, control risk involves optimizing inspection decisions to
minimize the sum of those costs. Lastly, detection risk refers to the fact
that human inspectors are not able to detect and fix all errors. More
often than not, inspectors contaminate inventory data as “large errors
often remain in the stock records because of inaccuracies in the
counting procedure” [29].

The three types of risks found in retail shelf audits shed light on the
need for incorporating risk aversion into decision supportmodels. How-
ever, most of the models discussed above focus on mitigating inherent
and control riskswithout explicitly examining detection risk. As opposed
to the commonly assumed “perfect inspection” in retail operations re-
search [33], we posit that any inspection in the real world can hardly
be error-free. The reality is that inspection efficacy varies with human
efforts and significantly increases the level of complexity surrounding
the inspection policy design. Since the competencies, experiences, and
motivations of individual auditor differ, the probability of their making
inspection errors will differ [5]. The impact of error-prone inspection
has been widely studied in a manufacturing environment [14,48]. That
said, studies on the impact of auditor error are scant in the context of
retailing. We fill in the gap by formally analyzing the costs and benefits
of different levels of inspection efficacy.

Aside from the above-mentioned studies on designing cost-
minimization inspection policies, our paper is related to studies that
apply statistical process control (e.g., [21,25]) or acceptance sampling
(e.g., [16]; [19]) approaches to improve inventory integrity. However,
most of the statistical approaches require actual and/or recorded inven-
tory levels that are not available in our setting. Moreover, with respect
to unobservable inspection efficacy, early papers make hypothetical
assumptions about the distribution of inspection error (e.g., [5,14])
because no observations can be used to estimate the distributions
directly in a non-experimental context. We address this limitation by
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developing a Bayesian estimation method model to estimate the distri-
bution of inspection error using limited data from periodic shelf audits.
Bayesian inference has been adopted by management scientists to infer
demand parameters [26] and inventory level [12] in order to improve
replenishment decisions. However, Bayesian hierarchical model is rare-
ly applied due to its computational complexities, which are less of an
issue nowadays due to recent advances in Monte Carlo methods [7].
Our paper stands for a compelling example of using Bayesian methods
to devise a statistically grounded model. This venue is promising as
the complementarity between Bayesian statistics and decision analysis
is instrumental in improving decision-making with consideration to
risk attitudes [11].

3. Model formulation and static optimization

We develop a cost-minimization model for external service compa-
nies who provide shelf audit services on a periodic basis (i.e., every τ
days). As explained in the introduction, our decision support model is
grounded on the reality faced by audit service providers (i.e., limited/
unavailable inventory information and error-prone inspection). Thus,
our model does not consider inventory dynamics that are entirely
unknown to decision makers. Under the periodic inspection scheme,
managers have to determine the optimal frequency (τ⁎) of sending
inspection associates into the retail store.

3.1. Model formulation

We begin with a simple discussion of the degradation in inventory
integrity and the dynamics attributed to inspection frequency (τ). Let
F j+1
b (where the superscript b means “before”) denote the number of

faulty items before the (j + 1)th inspection. F j+1
b is modeled as a sum

of two factors:

Fbjþ1 ¼ Faj þ Dj ð1Þ

The first factor in the right-hand-side (RHS) of Eq. (1) – F j
a (where

the superscript ameans “after”) – is the number of faulty items remain-
ing faulty after the jth inspection. We model the faulty items after an
imperfect inventory audit as:

Faj ¼ Fbj−K j Fbj ;α
� �

þMj n−Fbj ;β
� �

ð2Þ

where α denotes the probability that an inspector can identify an inac-
curate item as defective and correct it, and β denotes the probability
that the inspector erroneously modifies a non-faulty item. On the one
hand, shelf errors fail to be fixed with probability 1-α due to imperfect
inspection. Thus, the number of “properly corrected” items is a random
variable Kj ~ binomial(F j

b, α). On the other hand, accurate items are
mistakenly modified with probability β due to careless inspection. So
the number of miscorrected items is a random variable Mj ~
binomial(n-F jb, β), where n is the total number of items to be inspected.
We posit that a perfect inspection (i.e., α= 1 and β= 0) is next to im-
possible when there are numerous on-shelf items to be inspected.

The second factor Dj in the RHS of Eq. (1) denotes the number of
items that falls into inaccurate status between the jth and (j + 1)th
inspection. Dj accounts for the fact that the (n-Fja) correct items may
degrade by the time of the next inspection due to random execution
errors.

Dj � binomial n−Faj ; P τð Þ
� �

ð3Þ

where the parameter P(τ) denotes the probability that an itemwithout
error turns faulty between an inspection cycle of τ days. Following pre-
vious studies (e.g., [45]), we model the probability of an item turning
faulty as time-dependent and following the exponential failure
distribution – P(τ) = P(T b τ) = 1-e−λτ where T is a random variable
denoting time to degrade and λ is a parameter denoting instantaneous
failure rate. This formulation is commonly used (e.g., see [1]) as it pro-
vides a parsimonious way to characterize the likelihood of shelf error
generation. A larger/smaller value of λ indicates that retailers have
lower/higher store execution quality. The probability (P(τ)) that an
itemwill turn faulty increases with τ and acts as a key input to generate
the binomial random variableDj. Eqs. (1), (2), and (3) jointly govern the
change in the number of faulty items before and after each inspection in
the system.

We follow O'Reagan [40] who proposes a cost structure of any error
detection program:

Total cost ¼ Inspection costs þ Correction costs
þ Uncorrected error costs

The cost structure is general and applicable to characterize cost of
shelf audits. Specifically, we assume the inspection costs to grow linear-
ly with the number of faulty items (n),

ci � n ð4Þ

where ci denotes inspection cost per inventory item. While inspection
costs might grow with n in a non-linear fashion, for simplicity we
adopt the widely used linear cost function (e.g., [33,34,40,48,49]). The
linear specification is also consistent with internal accounting of an
audit service provider whom we work with.

In addition to the time and efforts spent on inspecting on-shelf
items, costs are incurred by correcting the physical/information status
that the inspector finds erroneous. The correction costs come from
both proper and improper correction. As mentioned earlier, the proper
portion is incurred by the corrected number Kj and inspection efficacy
(α). The improper portion is caused by the miscorrected number Mj

and the rate of introducing errors (β). The correction costs are:

cc � K j Fbj ;α
� �

þMj n−Fbj ;β
� �h i

ð5Þ

where cc denotes correction cost per item.
The last piece of total costs is associated with the potential negative

impact of unfixed shelf errors. Thepenalty is composed of twoparts. The
first part arises from F j

a denoting the number of inaccurate items that
stay faulty after the jth inspection. F j

a is the sum of “truly” inaccurate
items that inspectors are not able to fix (i.e., F j

b − Kj(F j
b, α)) and

“false” inaccurate items that are miscorrected (i.e., Mj(n − F j
b, β)).

Under a periodic inspection scheme, we assume that the correction of
F j
a itemsmay happen no earlier than the next (i.e., (j+ 1)th) inspection

such that the penalty is proportional to τ, which accounts for the
elapsed time since previous inspection. The second part is attributed
to Dj, which denotes accurate items turning faulty between the jth and
the ( j + 1)th inspection. Since Dj ~ binomial(n-F j

a, P(τ)) and P(τ) is
the CDF of the exponential failure distribution, we can further derive
the average time of being faulty for the Dj items.

Proposition 1. Under the assumed exponential failure process, on average
the newly degraded items Dj have been inaccurate for τ þ τ

eλτ−1−
1
λ days.

Proof. Please see Appendix A.

While the exact time of being faulty for each of theDj items is subject
to random failure processes and cannot be known with certainty, the
expected time derived in Proposition 1 serves as a reasonable approxi-
mation for our penalty accounting. Taken together, the uncorrected
error costs that penalize poor inspections are:

cu � Fajτ þ Dj τ þ τ
eλτ−1

−
1
λ

� �� �
ð6Þ
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where we assume that an average cost of being inaccurate per item per
day is cu, which accounts for the economic impact of leaving errors
unfixed. Since in this model we only track the binary status of an item
(i.e., with or without errors), we consider the costs to be linear with re-
spect to the number of item-days for simplicity [34].

Eqs. (4), (5), and (6) constitute the total cost within an inspection
cycle of τ days. Eq. (7) illustrates the corresponding average daily cost
f(τ). A key challenge for managers who aim to minimize f(τ) is to
keep a balance between inspection/correction costs and the cost of
leaving uncorrected shelf errors. The total daily cost in the jth cycle of
a periodic shelf audit is:

f j τð Þ ¼
ci � nþ cc K j Fbj ;α

� �
þMj n−Fbj ;β

� �h i
þ cu � Fajτ þ Dj τ þ τ

eλτ−1
−

1
λ

� �� �

τ
ð7Þ

This function is calculated based on realizations of random variables
and returns a real number. Note that the two cost parameters ci and cc
can be estimated from the employee payroll and measured inspection
and correction standards adopted bymanagers. Estimating cu, however,
is more challenging because the extra stockout, shrinkage, or spoilage
costs induced by shelf errors are usually not observed. The audit service
providers need to work with product manufacturers to arrive at an
estimate for cu. A rudimentary approach to calculate cu is based on the
expected daily margin. While the estimate may not be perfect, experi-
enced managers should be able to derive a reasonable range (rather
than a precise point estimate) for each cost element. A range of plausible
values for cost factors should be sufficient for sensitivity analysis of
optimal decisions and practical use of the model.

Given our assumption of fixed inspection interval (τ), time-invariant
failure rate (λ), and stable inspection efficacy (α and β), the distribution
of F j

b soon converges to a steady state. That is, for any combination of
feasible model parameters there is a number of items for which the ex-
pected number of faulty items introduced within an inspection interval
is equal to the expected number of faulty items fixed. Since we model
inspection efficacy and cost factors as fixed parameters, index j can be
dropped when we substitute the steady state form of Fb and F a into
Eq. (1) and focus on the equilibrium condition.

Proposition 2. In steady state, the expected number of faulty items before
inspection is

E Fb
h i

¼ n β þ P τð Þ−βP τð Þð Þ
α þ β þ P τð Þ− α þ βð ÞP τð Þ

Proof. Please see Appendix A.

From Proposition 2, it is clear that the expected number of faulty
items E[Fb] before inspection is a function of inspection efficacy (α
and β), number of items to be inspected (n), and the decay probability
of on-shelf items (P(τ)).

Proposition 3. E[Fb] is non-increasing in α and non-decreasing in β, τ,
and λ.

Proof. Please see Appendix A.

After verifying that E[Fb] is well-behaved (according to
Proposition 3), we replace E[Fb] into the expectation of Eq. (7) and
yield the cost function to be minimized

E f τð Þ½ � ¼
cinþ cc

nα P τð Þ þ 2β−2P τð Þβ½ �
α þ β−P τð Þ α þ β−1ð Þ þ cun τ þ α P τð Þk−τð Þ

α þ β−P τð Þ α þ β−1ð Þ
� �

τ
ð8Þ
where k ¼ τ þ τ
eλτ−1−

1
λ and P(τ) is the exponential cumulative density

function.
The functional form of E[f(τ)] is analytically intractable but numeri-

cally solvable. We use a one-dimensional optimization routine that
searches over the positive real line to find a τ⁎ that minimizes the
total expected cost (Eq. 8). Specifically,

τ� ¼ ⌈ argmin
τ

E f τð Þ½ �⌉ ð9Þ

We apply the ceiling function to obtain an integer τ⁎ because in
practice those service companies can only trigger external shelf audits
on a discrete-time basis. In order to better understand the dynamics
among α, β, λ, and τ⁎, we perform an extensive numerical study in the
next section.

3.2. Numerical study

We set the number of items to 500 and the failure rate λ = 0.017/
day. Later on in Section 5 we will show how to jointly estimate the un-
observable λ, α, and β using a Bayesian hierarchical modeling approach.
FollowingO'Reagan [40], we set ci=0.05, cc=0.005, and further define
γ= cu/ci for ease of comparison. A full table of notation for model vari-
ables and parameters can be found in Appendix B.

Fig. 1 presents the optimized inspection frequency (τ⁎) and cost
(E[f(τ⁎)]) under various levels of inspection efficacy and γ = 1. Some
points are noteworthy. First, the optimal frequency of inspection is
strongly dependent on the accuracy of auditing. From the left panel of
Fig. 1we see that τ⁎ tends to increasewithα. That is, the optimal inspec-
tionswould be less frequent (i.e., higher τ⁎) when the efficacy of inspec-
tion increases (i.e., higher α). Second, τ⁎ also tends to increase with β
but the implications are different. Given the high probabilities of intro-
ducing unnecessary errors (i.e., higher β) after each inspection, aggres-
sive inspection can be harmful rather than helpful because high
inspection frequency results in higher costs thanwhatwould be obtain-
ed through correction. Lastly, the right panel of Fig. 1 shows that E[ f(τ⁎)]
decreaseswithα and increaseswithβmonotonically. Perfect inspection
(i.e., α= 1 and β= 0) results in the lowest daily cost. We also observe
that the most frequent inspection (α=0.6 and β=0) does not lead to
the minimal cost since there is wasted effort given the error-prone in-
spection process.

Fig. 2 presents the optimal frequency and costs given γ = 3. The
values of τ⁎ illustrated in the left panel are lower than those shown in
Fig. 1, whichmakes sense as managers would prefer relatively frequent
inspections when shelf errors become more costly (i.e., a higher γ). As
shown in the right panel of Fig. 2, β has substantial impacts on total
cost since introducing unnecessary errors undermines cost efficiency.
In addition, E[ f(τ⁎)] under poor inspection (e.g., α = 0.6 and β = 0.4)
is several times higher than the high-accuracy scenario. So, reducing
inspection errors is even more valuable provided higher uncorrected
error costs.

Given a fixed λ, the variations of τ⁎ with α/β shown in Figs. 1 and 2
are as expected and somewhat intuitive. Nonetheless, the failure rate
parameter (λ) moderates the solution behaviors of τ⁎ under different
levels of cost and inspection efficacy. Fig. 3 shows the optimal frequency
and costs given γ=1 and λ in [0.1, 0.5]. The left panel of Fig. 3 indicates
that when inspection efficacy is high (α = 1 and β = 0) or moderate
(α = 0.8 and β = 0.2), τ⁎ tends to decrease with λ. That is, when
store execution quality degrades (i.e., λ increases), inspection associates
should take more aggressive initiatives (i.e., a smaller τ⁎). However, τ⁎
stays constant when λ is even larger becausemore frequent inspections
(a smaller τ⁎) are too costly given low costs of not fixing errors (γ=1).
Interestingly, when inspection efficacy is low (α= 0.6 and β= 0.4), τ⁎
first decreases with and then increases with λ. Hence, under poor
store execution (λ N 0.35), managers would reduce inspection frequen-
cy (a larger τ⁎) to avoid side effects of low inspection efficacy



Fig. 1. τ⁎ and E[f(τ⁎)] given γ = 1 & λ = 0.017.
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(e.g., introducing more errors). The right panel of Fig. 3 illustrates
E[ f(τ⁎)] under different levels of λ and inspection efficacy. Not surpris-
ingly, E[ f(τ⁎)] increases with λ and the differences among E[ f(τ⁎)]
caused by inspection efficacy decrease with λ, suggesting that the λ
has more dominant impacts on costs when the retail store has a high
intrinsic failure rate (e.g., more prevalent execution errors).

Fig. 4 presents τ⁎ and E[ f(τ⁎)] given γ = 3 and λ in [0.1, 0.5]. Two
major observations are made from the left panel of Fig. 4. First, due to
the higher cost of leaving faulty items unfixed (i.e., γ = 3), managers
need to trigger shelf audits more frequently – overall τ⁎ becomes small-
er. Second, even though low inspection efficacy (α = 0.6 and β = 0.4)
still results in relatively infrequent inspection like the γ = 1 case
(Fig. 3), τ⁎ does not increase with λ in this γ = 3 scenario where man-
agers cannot bear with costs incurred by not fixing shelf errors and
need to be more aggressive (i.e., maintaining a small τ⁎) even under
poor store execution (λ N 0.35). The right panel of Fig. 4, similarly,
indicates that E[ f(τ⁎)] increases with λ and becomes higher than
under low inspection efficacy (α = 0.6 and β = 0.4).

Figs. 3 and 4 reveal intricate dynamics among inspection efficacy (α,
β), failure rate (λ), and cost ratio (γ). Apparently, ignoring human in-
spection error and random shelf error generation between inspections
would lead to suboptimal decisions. Unlike the observable cost ratio
(γ), the other three important parameters in our decision support
model – α, β, and λ – are unobservable. In Section 5 we will revisit the
key parameters and develop a Bayeisan estimation methodology for
external service companies who have limited knowledge about the n
items to audit and obtain inspection reports every τ days only.
Fig. 2. τ⁎ and E[ f(τ⁎)] give
4. Monte Carlo simulation for risk analysis

4.1. Stochastic efficiency with respect to a function

Although useful in helping us better understand the dynamics be-
tween model parameters and optimal decisions, the foregoing analysis
assumes risk-neutrality where the decisions just follow the expected
cost. However, Jensen's inequality [11] indicates E[U( f(τ))] ≤ U(E[ f(τ)])
for a risk-averse decision maker who has a concave utility function U
and faces stochastic costs f(τ). Since random shelf and inspection errors
lead to variability (i.e., risk) in total cost f(τ), the optimal audit frequency
may change with risk preferences [4]. We assess the impact of risk aver-
sion on τ⁎ through stochastic efficiencywith respect to a function (SERF)
[35]. SERF is rooted in subjective expected utility theory and orders a set
of risky alternatives in terms of certainty equivalent (CE) for a specified
range of attitudes to risk [24]. Moreover, SERF does not require a prior
distributional assumption on CE. Here, the risky choice is about selecting
a τ that minimizes CE as we are considering cost [32].

Since the stochastic cost f(τ) in Eq. (7) is analytically intractable, we
use Monte Carlo simulation to investigate the sample paths of f(τ) and
feed the simulated f(τ) into a utility function that is monotonically de-
creasing in f(τ) and exhibits concavity within the risk aversion bounds.
We adopt an exponential utility function U(C)= -exp(C*ra), where C is
the monetary cost and ra is the coefficient of absolute risk aversion
(ra = 0 if risk neutral) [37]. The exponential utility function belongs to
the class of utility functions with constant absolute risk aversion
(CARA), and is appealing in our case because the cardinal coefficient ra
n γ = 3 & λ= 0.017.



Fig. 3. Impacts of λ on τ⁎ and E[ f(τ⁎)] given γ = 1.
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gives an effective measure of risk aversion. The expected utility E[U] is
calculated as:

E U C; rað Þ½ �≈
Xm
i¼1

U Ci; rð ÞP Cið Þ ð10Þ

To simplify the computation, we use a discrete approximation to
E[U] with m replications, where each run i has the same probability
P(Ci) in the Monte Carlo simulation [35]. After 1000 runs we elicit E[U]
and convert it into CE to find a τ that minimizes CE(τ) through numer-
ical search. For the sake of variance reduction, we replicate the compu-
tation 100 times and take the average of the 100 optimized τs to obtain
the final τ⁎ in a particular scenario.

We derive the functional form of CE, log(-E[U])/ra, using the proper-
ty: CE(C, r) = U−1(C, r) [35]. Although CE minimization is equivalent to
E[U] maximization, the CE is expressed in monetary terms and thus
much easier to interpret than the utility. If CE is known for different
risky alternatives (i.e., inspection frequencies), it is easy to make a
choice and estimate the risk premium, which is the difference between
the expected cost under risk-neutrality and the CE under risk-aversion.
Here themost preferred alternative is the one resulting in the lowest CE.

4.2. Simulation experiment

Weprogram themodel and performMonte Carlo simulation using R.
Fig. 5 exhibits optimal decisions (τ⁎) and CE given γ = 3 and β = 0.2.
The left panel of Fig. 5 suggests that no single τ⁎ optimizes the
Fig. 4. Impacts of λ on τ⁎ an
inspection policy across the whole range of ra. Interestingly, even
thoughwe expect that a risk-aversemanagerwould prefer intensive au-
dits (i.e., lower τ⁎), we find the opposite. For instance, when α = 1, τ⁎
increases from 9 in the risk neutral case (ra = 0) to 11 under high
risk-aversion (ra = 5). The finding implies that a highly risk-averse
manager would reduce audit frequency under error-prone inspection
(α b =1 and β = 0.2). In addition, we see that τ⁎ tends to increase
withα. This is consistentwith the risk-neutral analysis showing that au-
dits do not need to be so frequent provided better inspection efficacy.
Modifying the cost structure so that γ = 1, we find the impact of ra to
be weaker, resulting in a τ⁎ range of [14,16] (results not shown in
Figure). An explanation is that the decision-maker becomes less sensi-
tive to risks because the inspection process does not incur as many
costs as the large γ scenario (γ = 3).

Assuming γ = 3 and α = 0.8, Fig. 6 shows that optimal decisions
still vary with the degree of risk aversion. The left panel shows that
when β = 0.4, τ⁎ increases from 10 in the risk neutral case (ra = 0)
to 12 under high risk-aversion (ra = 5). A simple explanation for
this result is at a certain point the manager becomes concerned
about the negative consequences of frequent inspection (due to
high β) so that a larger τ⁎ is economically more favorable. Interest-
ingly, τ⁎ stays at 6 under β= 0 and risk aversion has no impact opti-
mal decisions. Hence, when there is no risk of miscorrecting non-
faulty items, managers need not be as concerned about negative out-
comes associated with β and τ⁎ becomes stable. The right panel of
Fig. 6 shows that high-quality inspection results in the minimum
CE, similar to the risk-neutral case where high α and low β are pre-
ferred in terms of total costs.
d E[ f(τ⁎)] given γ = 3.



Fig. 5. τ⁎ and CE(τ⁎) given γ= 3, λ= 0.017, & β = 0.2.
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As a final test, we explore the interaction between risk aversion and
shelf inventory failure rate under low (α = 0.6 and β = 0.4) and high
(α = 1 and β = 0) inspection efficacy. The left panel of Fig. 7 suggests
that τ⁎ tends to decrease in λ for slightly risk-averse managers (ra =
1). However, due to the low-quality inspection, managers with moder-
ate (ra = 3) and high risk aversion (ra = 5) become more concerned
about inspection efficacy and would not trigger as frequent audits
(i.e., a larger τ⁎) even when shelf error generates quickly (λ ≥ 0.2). The
right panel of Fig. 7 indicates that risk preferences have a comparatively
small impact on τ⁎ under perfect inspection (α=1 and β=0). Similar
to the risk neutral case in Fig. 4, τ⁎ first decreases in λ and then stays
constant when store execution quality is too low (λ ≥ 0.35). Also,
Fig. 7 suggests that regardless of the level of risk aversion, managers
are more willing to take shelf audit initiatives (i.e., a smaller τ⁎) provid-
ed error-free inspection processes.

Summarizing, our analysis reveals that τ⁎ is fairly sensitive to in-
spection efficacy, manager's risk preferences, and store execution
quality. So, optimal decisions for shelf audit service providers must
be a function of the foregoing factors. From a total cost standpoint
high-quality inspection is predominantly preferred regardless of
risk attitudes. Note that in the analysis above we take (α, β, λ) as a
given although those model parameters that significantly affect τ⁎
are not observable in the course of normal operations. In the follow-
ing section, we propose a Bayesian approach to more precisely
Fig. 6. τ⁎ and CE(τ⁎) given γ =
estimate the three parameters based on the directly observable
shelf audit reports.

5. Bayesian estimation of unknown parameters

In the foregoing analysis we set α, β, and λ as fixed parameters.
While critical to our modeling framework, those parameters, however,
are unobservable. Without experimental data, we cannot estimate the
three uncertain quantities using the frequentist methodology directly.
Nonetheless, our early analysis of both risk-neutral and risk-averse
cases shows that optimal decisions vary significantly with unknown in-
spection efficacy and failure rate of shelf inventory. Having a good
knowledge about (α, β, λ) will be highly helpful for managers to make
cost-effective decisions. Therefore, instead of imposing peculiar as-
sumptions on those unknown parameters ([5,19,38]), we propose a
method to derive statistical inferences about (α, β, λ) using the data
observed from error-prone periodic shelf-audits. The key idea is to
devise a hierarchical Bayes model that enables us to infer the posterior
distributions of α, β, and λ so that we can make our best guess about
the parameters.

Let Y = (Y1, Y2, …,Yn) be a data vector that contains observed out-
comes in shelf audit reports generated from a periodic inspection
cycle of τ days. Yi = 1 if the ith item is reported to be inaccurate and
Yi = 0 if no error is reported. For each observed Yi there is an
3, λ = 0.017, & α = 0.8.



Fig. 7. τ⁎ under different levels of risk aversion and inspection quality.
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unobservable variable Xi that reflects the “true status” of the item. The
variable Xi is equal to 1 (i.e., the item “really” is faulty) or equal to 0
(i.e., the item “really” is accurate) with probability 1−e−λτ and e−λτ ac-
cording to the exponential failure distribution. Assuming imperfect in-
spection, if Xi = 1, the corresponding Yi ~ Bernoulli(α). If Xi = 0, the
corresponding Yi ~ Bernoulli(β). In the context of Bayesian inference,
Xi is the upper-level latent variable. Conditional on Xi, the observable
Yi is independent of the failure rate λ. The Bayesian hierarchical model-
ing framework is:

α � f �ð Þ
β � g �ð Þ
λ � h �ð Þ
Xijλ ¼ 1 with probability 1−e−λτ

0 with probability e−λτ

�

YijXi;α;β � Bernoulli αð Þ if Xi ¼ 1
Bernoulli βð Þ if Xi ¼ 0

�
ð11Þ

The prior distributions of α, β, and λ (i.e., f(·), g(·), and h(·)) can be
any parametric distributions that reflect a manager's belief ex ante. We
adopt beta priors for α and β because they naturally fit error probabili-
ties ranging between [0, 1]. Moreover, the conjugacy between beta dis-
tributions and Bernoulli samplingmodels makes posterior distributions
analytically tractable. We adopt gamma prior for λ to account for strict
positivity of λ. The gamma prior is popular and useful due to its great
flexibility.

We first derive the full conditional distribution of Xi from the Bayes'
theorem:

P Xijλ;α;β;Yið Þ ∝ P YijXi;α;βð ÞP Xijλð Þ

⇒
P Xi ¼ 1jλ;α;β;Yið Þ
P Xi ¼ 0jλ;α;β;Yið Þ ¼

dbern Yi;αð Þ 1−e−λτ
� �

dbern Yi;βð Þe−λτ
from Baye0s rule
	 
 ð12Þ

where dbern(·) refers to the Bernoulli probability mass. We then de-
rive the full conditional distribution of α given a beta prior
(i.e., α ~ beta(a1, b1)).

P αjβ;λ;X;Yð Þ ∝ P Y1;…;Yn;X1;…;Xn;λ;α;βð Þ
∝ α

X
I Yi ¼ 1;Xi ¼ 1ð Þ 1−αð Þ

X
I Yi ¼ 0;Xi ¼ 1ð Þαa1−1 1−αð Þb1−1

� beta
X

I Yi ¼ 1;Xi ¼ 1ð Þþa1;
X

I Yi ¼ 0;Xi ¼ 1ð Þþb1
� � ð13Þ

The first line above states that the full conditional distribution of α is
proportional to the joint distribution of data (Y), latent variable (X), λ,α,
and β. After dropping out the distribution not involving α, it can be
shown that p(α|β, X, Y) conforms to a beta distribution.

Similarly, the full conditional of β given a beta prior (β ~ beta(a2, b2))
is:

P βjα;λ;X;Yð Þ � betað
X

I Yi ¼ 1;Xi ¼ 0ð Þ þ a2;
X

I Yi ¼ 0;Xi ¼ 0ð Þ þ b2Þ ð14Þ

Lastly, the full conditional of λ given a gamma prior (λ ~ gamma(a3,
b3)) is only known to a certain proportionality:

P λjX;α;β;Yð Þ ∝ P Xjλð ÞP λð Þ ð15Þ

To construct the posterior distributions numerically, one can use a
Metropolis-within-Gibbs sampler [27], which is a popular Markov
chain Monte Carlo (MCMC) algorithm because of its ability to accom-
modate a sampling scheme with high dimensionality. The Metropolis
steps for sampling λ are:

1: Define a proposal distribution J θλjθ sð Þ
λ

� �
2: Sample a proposal value θ�λ from J θλjθ sð Þ

λ

� �

3: Compute the acceptance ratio r ¼
P θ�λjθ sð Þ

X

� �

P θ sð Þ
λ jθ sð Þ

X

� � ¼
P θ sð Þ

X jθ�λ
� �

p θ�λ
	 


P θ sð Þ
X jθ sð Þ

λ

� �
p θ sð Þ

λ

� �

4: Let θ sþ1ð Þ
λ ¼ θ�λ with probability min r;1ð Þ

θ sð Þ
λ with probability 1‐min r;1ð Þ

�
ð16Þ

For the proposal distribution of MCMC, one can employ a random
walk proposal or others [7] to initialize the Bayesian simulation. The
other three full conditional distributions of Xi, α, and β jointly constitute
the Gibbs sampler that starts with the vector θ(s) = (θλ(s), θX

(s), θα(s), θβ
(s))

and transits to θ(s + 1) in the following way:

1: Sample θ sþ1ð Þ
λ from p θλjθ sð Þ

X ; θ sð Þ
α ; θ sð Þ

β ;Y
� �

2: Sample θ sþ1ð Þ
X from p θX jθ sþ1ð Þ

λ ; θ sð Þ
α ; θ sð Þ

β ;Y
� �

3: Sample θ sþ1ð Þ
α from p θα jθ sþ1ð Þ

λ ; θ sþ1ð Þ
X ; θ sð Þ

β ;Y
� �

4: Sample θ sþ1ð Þ
β from p θβ jθ sþ1ð Þ

λ ; θ sþ1ð Þ
X ; θ sþ1ð Þ

α ;Y
� �

ð17Þ

After S iterations, the sequences θ= {θ(1), θ(2),…, θ(S)} are expected
to form a stationary Markov Chain that has the desired Markovian
behaviors: irreducible, aperiodic, and recurrent [27]. The simulation
convergence can be evaluated by standard metrics for MCMC
(e.g., stationarity and no stickiness). For practical implementation of
Eq. (17), we recommend the use of thinning to improve the convergence
of theMarkov chain [27]. Specifically, one should assign a large number
to S toMCMC scans in which only every s scan is saved. For instance, a
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thinning of s = 80 would reduce the size of a 48,000-scan Markov
chain down to a quality sample of 600 observations. Then one can
drop the first 100 out of the 600 observations to account for the
burn-in period. A large S and a long burn-in period help achieve
convergence.

Given the audit frequency of τ days, we can use the Bayesian es-
timation method to obtain the posterior distribution of λ fromθλ = (θλ(1), θλ(2), …, θλ(S)), which informs us the failure rate of on-
shelf items. Also, the sampled sequences θα = {θα(1), θα(2), …, θα(S)}
and θβ = {θβ(1), θβ(2), …, θβ(S)} constitute the posterior distributions
P(α|Y) and P(β|Y) that we are looking for. To sum up, the Bayesian
estimation methodology generates robust estimates of (α, β, λ) to
which optimal solutions are very sensitive. Obtaining robust esti-
mates of unknown parameters makes differences to total costs.
6. Concluding remarks

6.1. Validation

After obtaining a thorough understanding of model behaviors (in
Sections 3 and 4) and model parameters (in Section 5), here we de-
tail three major tasks involved in model validation, which helps de-
cision makers build confidence in the proposed model. In addition
to testing key model assumptions upon which the cost function is
built, the first and second tasks are aimed for validating important
model structures and parameters. The last task is focused on examin-
ing optimal decisions constructed from the model and cost implica-
tions pertaining to optimal decisions. Even though the three tasks
may not be exhaustive, they have already covered core assumptions
and purposes of our model. Finishing those tasks will be a crucial
step before the proposed policy can be applied to actual audit service
operations.

The first task is to validate the assumed exponential failure distribu-
tion that is critical to our penalty accounting for unfixed errors (Eq. (6))
as well as total cost function (Eq. (8)). The exponential distribution im-
plies a constant hazard rate. That is, conditional on that an item has
stayed accurate up to time t, the instantons failure probability between
time t and time t+ Δ is time-invariant. One quick and easy way to test
this modeling assumption is to apply time-to-event analysis techniques
to assess the hazard rate [31]. The decisionmaker can use available data
(e.g., historical audit reports) and calculate time-since-last-correction
for each observation. The censored time-to-failure observations then
can be used to estimate the hazard rate (through maximum likelihood
estimation) and assess the statistical significance of parameter esti-
mates. If one finds no evidence to reject assumed constant hazard
rate, our formulation predicated on exponential distributionwill suffice.
A more stringent test is to test other distributions with time-variant
hazard rate (e.g., Weibull) and assess differences (in terms of informa-
tion criterion) between the exponential and its alternatives. If the differ-
ences are not substantial, one should stay with the current formulation
based on the exponential distribution as other distributions with extra
parameters will lead to a complexed cost function that is less tractable
and applicable.

The second task is to validate estimation results of unknown yet im-
portant model parameters. After running the Bayesian hierarchical
model andMCMC (see Section 5), one is supposed to examining the ac-
ceptance ratio r (in Eq. (16)) of the proposal distribution. A rule of
thumb is that acceptance rates should fall between 25% and 50% [44].
If acceptance rates are too low or too high, parameters of adopted pro-
posal distributions need to be fine-tuned to ensure an effective transi-
tion of Markov chains. Moreover, the decision maker must examine
trace plots and autocorrelation of simulated distributions of (α, β, λ)
and ensure that no stickiness/high-order autocorrelation exhibits
given the nature of Markov chains [27]. Finally, the decision maker
ought to perform a visual comparison between prior and posterior
distributions. When the sample size for estimation increases, one
should expect to see tighter posterior distributions.

After model functions and parameters are validated, the last task is
to validate optimal decisions (τ⁎). The τ⁎ (computed from Eq. (9)) has
to be compared to τactual (i.e., actual audit cycle time of the audit service
provider), τmin (i.e.,minimum audit cycle time that could be executed by
the audit service provider), and τmax (i.e.,maximum audit cycle time that
could be tolerated by the audit service provider). Specifically, given es-
timated model parameters, decision makers are supposed to calculate
(E[ f(τ’)]-E[f(τ⁎)])/E[ f(τ⁎)] (where E[ f(τ)] is Eq. (8) and τ’∈{τactual, τmin,
τmax}). For instance, when τ⁎ is less than τmin, the ratio (E[f(τmin)]-
E[ f(τ⁎)])/E[ f(τ⁎)] allows decision makers to evaluate whether it is feasi-
ble/sensible to acquire extra labor capacity for shelf audits (as such τ⁎
can be executed). The cost differential will give managers a clear idea
of economic benefits (in terms of expected daily cost over an audit
cycle) and operational feasibility of τ⁎ constructed from the decision
support model.
6.2. Discussion

Retailers and product manufacturers have come to the realization
that store execution errors and the consequently low on-shelf avail-
ability hampers operational as well as financial performance. Practi-
tioners claim an urgent need for improved shelf audits/asset tracking
within retail stores [2]. When a shelf stock-out occurs, manufac-
turers typically lose a nontrivial fraction of their customers to their
competitors. Therefore, external service companies are hired by
manufacturers to conduct manual inspection regularly. Motivated
by the practical need of audit service providers, we adopt a fairly
general cost structure to develop a decision support model for peri-
odic inspection. Unlike prior studies that focus on deriving inspec-
tion policies for retailers, our policy for external audits is designed
to run alongside retailers' inspection effort and to address problems
that may not be fully eliminated by retailers.

The proposed decision support model not only captures random
failure of shelf inventory integrity but also considers human errors
in audit initiatives. The inspector fallibility deserves more investiga-
tion since inspection can hardly be perfect. By explicitly modeling
human errors in inspection processes, we allow decision makers to
adjust inspection frequencies under different levels of inspection ef-
ficacy. In addition to revealing a non-negligible impact of imperfect
inspection on optimal decisions, we uncover sophisticated relation-
ships among error-prone inspection, on-shelf items' failure rate,
and cost factors.

The notion of error-prone inspection is highly relevant to labor-
intensive service operations and has important implications for
managers. Human errors (i.e., α and β) are difficult to avoid due to
behavioral factors (e.g., training, experiences, and fatigue). In reality,
inspection associates may fail to do the job right simply because they
have to examine too many items during a limited time. As a result of
fatigue and pressure, employees may decide to cut corners and even-
tually cause operational quality erosion [39]. Researchers should
incorporate human fallibility into decision support models and in-
vestigate incentives that elicit human efforts to improve service,
conformance, and data quality.

Our analysis also investigates into the influence of risk prefer-
ences on optimal decisions. Grounded on subjective expected utility
theory and Jensen's inequality, our simulation analysis makes the
proposed decision support model more comprehensive and favor-
able to risk-averse managers. By using the CARA exponential utility
function, our model considers the level of risk aversion that does af-
fect the allocation of optimal audit efforts. Based on our findings
managers should realize that inspection decisions that merely con-
sider expected cost would be myopic and suboptimal. On top of
model analysis under risk neutrality and risk aversion, we employ
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Bayesian methods to derive statistical estimates of unobservable
model parameters (α, β, λ).

When the proposed model is implemented, under an audit cycle
of τ days, the decision maker (e.g., external audit service provider)
will execute shelf audits and collect audit outcomes (i.e., the ob-
served Y vector discussed in Section 5). After that he/she will
need to update decision criteria. Specifically, the decision maker
has to re-estimate P(α|Y), P(β|Y) and P(λ|Y) using collected audit
outcomes, and he/she can use the mode/mean of the posterior dis-
tributions as new model parameters. After that the decision maker
needs to re-assess cost parameters (ci, cc, cu) using the latest infor-
mation regarding employee payroll and loss of leaving shelf errors
unfixed (as discussed in Section 3). Given empirically grounded pa-
rameter estimates, new audit decisions will be computed and then
executed.

While analytical modeling approaches ensure cost optimality,
parameters of analytical models may not be entirely observable or
estimable, and hence heuristic approaches are seemingly more useful
for supporting shelf audit decisions [41]. Despite taking an analytical ap-
proach, our model is still practically applicable and resulting decisions
from our model are empirically informed. The aforementioned tasks –
execute shelf audits, collect audit outcomes, and update decision criteria
– constitute a continuous improvement process that can be incorporat-
ed into a decision support system for error-prone shelf audits. Different
from RFID-enabled cases with perfect information (e.g., [9]), our case is
under limited information and nonetheless, all parameters of our deci-
sion model can be empirically rationalized and continuously updated
when it comes to practical implementation.

Several limitations of our study pinpoint opportunities for future re-
search. First, we adopt a linear inspection cost specification in line with
previous studies and the accounting scheme of practitioners we work
with. Subsequent studies can explore the impact of a nonlinear inspec-
tion cost function on optimal decisions. Second, due to information
availability, ourmodel does not consider the number of inventory trans-
actions between inspections and applies the exponential distribution to
capture the degradation of shelf inventory integrity over time. If manu-
factures or retailers are willing to share POS/inventory data to external
service providers, inventory dynamics could be further incorporated
into our model. Third, for the simulation analysis under risk aversion
we adopt a CARA exponential utility function. Future studies could em-
ploy utility functions that exhibit constant relative risk aversion to as-
sess whether the functional form for utility makes results of analysis
qualitatively different. Last, we propose a Bayesian model and a
MCMC scheme to infer unobserved human error that contaminates
data generated fromerror-prone inspection processes. A potentially in-
teresting extension would be to compare and contrast our Bayesian
statistical model to the set of measurement error models – most of
them are rooted in the frequentist paradigm – developed by statisti-
cians [23].

Despite these limitations, our work delivers a pragmatic decision
model to managers who have a strong interest in fixing shelf errors
through inspection or launching periodic shelf audit services. Even
though RFID-enabled automatic counting seems to be an attractive
alternative to error-prone manual counting [8], a full deployment of
item-level RFID is still hard to achieve for numerous retailers due to
various concerns related to cost, privacy, etc. For firms that may not be
willing or able to adopt RFID, periodic inspection is still the most com-
mon and effective approach to fix execution errors and increase product
availability. With appropriate modification, our decision support model
is potentially applicable to manufacturing, healthcare, and military
(where inventory integrity is paramount). In short, our modeling effort
hopes to remind researchers and practitioners of the importance of
high-quality shelf inspection that could potentially recover a significant
amount of unnecessary loss. The goal of improving on-shelf availability
cannot be overemphasized given the critical role inventory plays in
retail operations.
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Appendix A. Proofs

Proof of Proposition 1. By construction, the Dj inventory items are ac-
curate after the jth inspection and turn faulty before the (j + 1)th in-
spection. We first define a random variable T that denotes the time to
fall into inaccurate status between the time interval (0, τ). So, the ex-
pected time of being inaccurate during an inspection cycle of τ days is
τ-E[T], which can be derived as follows. Given the exponential failure
process, the cumulative density of T is

F tð Þ ¼ P T ≤tj0 b T b τð Þ ¼ P T ≤t ∩ 0 b T b τð Þ
P 0 b T b τð Þ ¼ 1−e−λt

1−e−λτ ; 0 b t b τ

Accordingly, the probability density of T is

f tð Þ ¼ dF tð Þ
dt

¼ eλ τ−tð Þλ
eλτ−1

; 0 b t b τ

E T½ � ¼
Z τ

0
1−F tð Þdt ¼

Z τ

0
t � f tð Þdt ¼ 1

λ
−

τ
eλτ−1

∴ The expected timeof being inaccurate isτ−E½T� ¼ τ þ τ
eλτ−1−

1
λ □

Proof of Proposition 2.

E Fbjþ1

h i
¼ E Faj

h i
þ E Dj

� � ¼ E Faj
h i

þ n−E Faj
h i� �

P τð Þ ¼ nP τð Þ þ 1−P τð Þð ÞE Faj
h i

E Faj
h i

¼ E Fbj
h i

−E K j Fbj ;α
� �h i

þ E Mj n−Fbj ;β
� �h i

¼ E Fbj
h i

−E Fbj
h i

α þ n−E Fbj
h i� �

β ¼ 1−α−βð ÞE Fbj
h i

þ nβ

∴E Fbj
h i

¼ nP τð Þ þ 1−P τð Þð Þ 1−α−βð ÞE Fbj−1

h i
þ nβ

n o
In steady state E Fbj

h i
¼ E Fbjþ1

h i
¼ E Fb

h i
and solve for E Fb

h i

⇒E Fb
h i

¼ n β þ P τð Þ−βP τð Þð Þ
α þ β þ P τð Þ− α þ βð ÞP τð Þ □

Proof of Proposition 3.

∂E Fb
h i
∂α

¼ −
n −1þ eτλ þ β
	 


−1þ eτλ þ α þ βð Þ2
where the denominator is non‐negative:

Since eτλN1; the numerator is also non‐negative ⇒
∂E Fb

h i
∂α

≤0:

∂E Fb
h i
∂β

¼ nα

−1þ eτλ þ α þ βð Þ2
where the denominator is non‐negative:

The numerator is also non‐negative ⇒
∂E Fb

h i
∂β

≥0:

∂E Fb
h i
∂τ

¼ nαλeλτ

−1þ eτλ þ α þ βð Þ2
where the denominator is non‐negative:

The numerator is also non‐negative ⇒
∂E Fb

h i
∂τ

≥0:

∂E Fb
h i
∂λ

¼ nατeλτ

−1þ eτλ þ α þ βð Þ2
where the denominator is non‐negative:

The numerator is also non‐negative ⇒
∂E Fb

h i
∂λ

≥0 □
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Appendix B. Table of notations

Variables and parameters
τ
F
F
τ
n
λ
α

Frequency of inspection
 Kj
 Number of corrected items

b
 Faulty items before inspection
 Mj
 Number of mis-corrected items

a
 Faulty items after inspection
 Dj
 Number of newly degraded items

⁎
 Optimal frequency of inspection
 γ
 Ratio of cu-to-ci
Number of items to be inspected
 ci
 Inspection cost per item

Exponential failure rate
 cc
 Correction cost per item

Probability of correcting an item
 cu
 Cost of not fixing errors per item/day

Probability of mis-correcting an item
 ra
 Coefficient of absolute risk aversion
β
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