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Abstract. In this article, we attempt to provide a review of the idea of granularity
in economic decision making. The review will cover the perspectives from differ-
ent disciplines, including psychology, cognitive science, complex science, and be-
havioral and experimental economics. Milestones along this road will be reviewed
and discussed, such as Barry Schwartz’s paradox of choice, George Miller’s magic
number seven, Gerd Gingerenzer’s fast and frugal heuristics, and Richard Thaler’s
nudges. Recent findings from human-subject experiments on the effects of granular-
ity on decision making will also be reviewed, accompanied by various learning mod-
els frequently used in agent-based computational economics, such as reinforcement
learning and evolutionary computation. These reviews are purported to advance our
thinking on the long-ignored granularity in economics and the subsequent implica-
tions for public policy-making, such as retirement plans. It, of course, remains to be
examined whether the good use of the idea of granularity can enhance the quality of
decision making.

Keywords: Granularity, Paradox of Choice, Chunks, Modularity, Heuristics,
Nudges, Reinforcement Learning, Evolutionary Computation.

1 Motivation and Background

While the idea of granularity is already rooted in Lofti Zadeh’s earlier work on fuzzy
sets and fuzzy logic, it is his article, “ Fuzzy Sets and Information Granularity,” [53]
that gives a formal notion of granularity. This notion serves as a foundation for
the later development in computing with words and granular computing. However,
Zadeh himself notices that the technical notion of information granulation employed
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in [53] is “in a strict and somewhat narrower sense...” (Ibid, p.3; Italics added). Very
slightly he did also mention its broad sense.

Taken in its broad sense, the concept of information granularity occurs under various
guises in a wide variety of fields. In particular, it bears a close relation to the concept
of aggregation in economics;... (Ibid, p. 3; Italics added)

Being economists or social scientists, our interest in granularity may not be so much
related to its strict and narrow sense of granularity; instead, what interests us is its
broad sense, and a more general notion given by Zadeh is as follows:

There are many situations, however, in which the finiteness of the resolving power of
measuring or information gathering devices cannot be dealt with through an appeal
to continuity. In such case, the information may be said to be granular in the sense
that the data points within in a granule have to be dealt with as a whole rather than
individually. (Ibid, p.3; Italics added)

Zadeh’s idea is novel and fundamental. He actually pointed out that the elemen-
tary unit of information processing is not a number (in the real space), neither a set
of real numbers, but a symbol, a concept, a feeling, a linguistic variable, a module,
or a chunk, a whole rather than individuals. For whatever other possible names, he
called it a granule. This granule stands at a higher level over its constituents and has
a command over them and can manipulate them.1 We consider the granule as a more
general concept than the fuzzy set. Although the fuzzy set is a way to deal with one
specific form of granule, namely, linguistic variables, not all granules are linguistic
variables and hence not of all them are fuzzy. For example, signs or symbols studied
in semiotics can be another type of granule, but they may have a precise definition
or meaning and are not fuzzy.

In this article, we shall argue that granularity, in its broad sense, bears a close
relation not just to the concept of aggregation in economics, but more to decision
making and policy-making in economics. In a nutshell, granules are what make our
decisions simple and efficient, having been coined the “fast and frugal heuristics”
by Gerd Gigerenzer [21]. Their formation, development, and evolution are what
enables human agents to effectively deal with the complex environment surrounding
them.

With this in mind, we shall provide a comprehensive review of the literature
which all points to the significance of granules as elementary units of information
processing. These include Barry Schwartz’s paradox of choice [44], George Miller’s
magic number ‘seven’ or chunking [35, 2, 45], and Herbert Simon’s hierarchial
modularity [4]. The use of granules in decision marking has far-reaching implica-
tions, as demonstrated in recent studies on the behavioral foundations of public poli-
cies, such as Gerd Gigerenzer’s fast and frugal heuristics [21] and Richard Thaler
and Cass Sunstein’s ‘nudges’ [48]. We also show that our understanding of human-
subject experiments can be dramatically different by using or not using the idea of

1 A typical example is the fuzzy set with its membership function. Through the membership
function, the constituents of the fuzzy set are coordinated in such a way that the set, as a
whole, can be presented.
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granularity in modeling their behavior [12]. In fact, granularity has been largely ig-
nored in experimental studies involving adaptive artificial agents. Many algorithms
for the designs of adaptive artificial agents, such as reinforcement learning or evolu-
tionary computation, when applied to mimic or to replicate human-subject behavior,
are often ignorant of the idea of granularity. We, however, demonstrate some excep-
tions in agent-based economic models which do take granularity into account when
designing their artificial agents.

The rest of the paper is organized as follows. Section 2 reviews the theoretical
foundations of granules. Section 3 shows their significance in regard to individuals’
decision making or institutions’ policy-making. Section 4 reviews the use of the idea
of granularity in recent economic models of learning and adaptation either when
applied to human subjects in the context of laboratory experiments or when applied
to artificial agents in the context of agent-based computational economics. Section
5 gives the concluding remarks.

2 Social Science Theory of Granularity

2.1 Granularity of the Set of Alternatives

The three essential pillars of microeconomics are the utility function (objective func-
tion), the set of alternatives, and, finally, choice-making. With the publication of
their magnum opus “Theory of Games and Economic Behavior” in 1944, John von
Neumann and Oskar Morgenstern introduced to economists a paradigm to explic-
itly structure the three pillars, which is known as the expected utility maximization
paradigm. This paradigm has repeatedly dominated the mainstream economics al-
ready for half a century. However, the reality of this paradigm has been constantly
questioned in economics; accordingly, the structure of the three pillars has been
incessantly given different conceptualizations. Among the three, maybe the least
addressed one is the set of alternatives or, more specifically, the cardinality or the
granularity of the set. While Barry Schwartz’s influential book “The Paradox of
Choice” [44] has already raised the possibility that a proper choice mechanism may
not exist when the set of alternatives is too large or too fine, the granularity issue is
still largely ignored in economic models of decision making.

2.1.1 The Choice Overload Hypothesis

The paradox of choice originates from a series of human-subject experiments which
address the behavior related to choice conflicts, choice aversion or choice deferral.
Obviously, in this situation, the subject is not well motivated to make a choice and,
instead, prefers an indefinitely longer procrastination or simply not to make a choice.
In the literature, the paradox of choice is formally known as the choice overload hy-
pothesis. The hypothesis basically says that “an increase in the number of options to
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choose from may lead to adverse consequences such as a decrease in the motivation
to choose or the satisfaction with the finally chosen option” ([43], p.73). The choice
overload hypothesis was first proposed by Sheena Iyengar and Mark Lepper [31],
and they also tested this hypothesis with a series of three experiments.

In their series of choice experiments, Iyengar and Lepper distinguished the de-
signs with psychologically manageable numbers of choices (limited-choice condi-
tion), say, six, from the designs with psychologically excessive numbers of choices
(extensive-choice condition), say, twenty-four. In their famous jam promotion exper-
iment, different numbers of jam jars were displayed in two separate places (tables)
in a supermarket, one with six different types of jam and one with twenty four dif-
ferent types of jam. They found that while the 24-jam table was able to attract more
shoppers than the 6-jam one, it did not successfully beef up their purchasing will-
ingness. In fact, only 3% of the shoppers at the 24-jam table subsequently purchased
a jar of jam, whereas 30% of the shoppers at the 6-jam table did that.

In their two additional experiments, this ‘more is less’ result was also confirmed.
In one case, students who were offered more topics (30) to write their essays for
an extra credit did not show a higher interest to do so than students who were given
fewer topics (6); and for those who actually did so did not perform better as opposed
to that of the 6-choice group, in terms of the quality of the essay. In the other case,
subjects were either given 6 or 30 different chocolates to choose. It was found that
subjects with 30 choices might initially be more cheerful with this large assortment,
but the choice process turned out to be difficult and frustrating and the result was
that they were often not satisfied and felt regretful.

Since the freedom to choose is a cornerstone of any democratic society, the choice
overload hypothesis does lead to an upheaval among academics and the public,
which prompts more follow-up studies. Scheibehenne, Greifeneder, and Todd [43]
provided a meta-analytic review of 29 articles (published and unpolished) with 50
experiments, from 2000 to 2009, involving 5,036 subjects. Among these 50 exper-
iments, the minimum number for the limited-choice condition was 3, whereas the
maximum number for the extensive-choice condition was 300. Using a random ef-
fecte model, they found that the results were mixed, neither supporting the choice
overload hypothesis (“more is less”) nor its opposite (“more is better”).

In their meta-regression analysis, they, however, tended to suggest that the exper-
imental results may be sensitive to some control variables pertinent to the design.
Among them, maybe the most important one is the experience effect. If the subject
is very experienced with the choice problem presented to them, for example, living
in a town for years and having sufficient time to know all the restaurants around,
he/she may not have a hard time choosing a place for lunch. In this situation, more
choice can be better. In fact, this control variable was carefully fine-tuned when
Iyengar and Lepper [31] initialized this line of research.

In addition, to provide a clear test of the choice overload hypothesis, several additional
methodological considerations seemed important. On the one hand, to minimize the
likelihood of simple preference matching, care was taken to select contexts in which
most participants would not already have strong specific preferences. (Ibid, p. 996;
Italics added)
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This may justify the use of exotic products in testing the choice overload hypothe-
sis. What underlies the experience effect or the familiarity effect is the information
regarding each alternative and the mechanism used to process the supplied informa-
tion. The latter is further related to how the information is presented to the subject,
i.e., the structure of the information, to which we now turn.

2.1.2 Characteristic Analysis

While making a choice, subjects may have to ask how this alternative is different
from others. If their difference noticeably lies in one dimension, for example, 100
baskets containing different numbers of peanuts, then the choice overload issue may
not happen because consumers can at least identify exactly what they want, for ex-
ample, the basket with the maximum number of peanuts. Nonetheless, each alterna-
tive may have a number of attributes and they may differ in each attribute. This may
cause the information required to distinguish them overwhelming and make a selec-
tion hard. Of course, issues can become simpler if these attributes are not presented
in a wide flat, but can be endowed with a hierarchical structure.

In consumer theory, Kelvin Lancaster pioneers a different approach to the choice
problem, called characteristic analysis [29]. In characteristic analysis, commodities
(for example, different brands of toothpaste) are characterized by their attributes
(characteristics) and the density (quantity or the quality) of those attributes. When
presented with a set of alternatives, consumers search for the commodity which
is closest to their desired attributes after taking into account the price they are re-
quired to pay. Lancaster further assumed that there is a hierarchical structure of
these characteristics [30]. From an information processing viewpoint, this hierar-
chical structure enables decision makers to have a sequential decision process to
deal with complex choice problems.

A decision process in which a choice involving a restricted number of parameters is
made, after which a further choice is made from another restricted set of parameters,
and so on down the sequence, is necessarily hierarchical unless it is purely random.
The ordering of the hierarchy determines which set of parameters is considered first,
second, and on through the sequence. (Ibid, p.50; Italics added)

The implication of the quotation above is that the assortment structure is an impor-
tant control variable while testing the choice overload hypothesis. Findings related
to this observation are summarized well in [43]. For example, Mogilner, Rudnick,
and Iyengar [36] found that an increase in the number of alternatives decreased sat-
isfaction only if the alternatives were not displayed in categories.

To sum up, the paradox of choice, by and large, may exist only as a transition
process as a short-term phenomenon.2 Although humans are limited in their cogni-
tive capacity, they can learn, adapt and hence cope with complex decision problems
by developing decision heuristics to simplify hard choice problems. This adaptation
process is, in fact, a granulation process. This granulation process can happen for
both suppliers and consumers. For the suppliers, when a large number of options

2 See [24] for some related discussions.
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are displayed, these options will be ordered, categorized, grouped, and be given a
hierarchical structure. For the consumers, they can take advantage of the given hier-
archical structure or search with their own heuristics, for example, the elimination
strategy, to sequentially reduce the search space and locate what they really want.

While the granulation process in a hierarchical manner is a way to escape from
the paradox choice, how is the degree of granularity at each level determined? Why
intuitively must it have a coarse division instead of a fine division at each level, as
Lancaster has pointed out “a restricted number of parameters”? We shall address
this question in the next section.

2.2 Cognitive Foundation of Granulation

2.2.1 Chunking and Magic Numbers

In this section, we try to examine the psychological foundation of granulation in the
hierarchical form. A classic work which one cannot afford to miss is Miller’s famous
number seven [35]. Miller (1956) [35] is a celebrated contribution to psychology in
the discussion of short memory capacity or working memory capacity. In this regard,
it is about the number of items that an individual can discriminate or is about the
capacity to remember information over very short periods of time, say, seconds.
Based on a few experiments that he reviewed, Miller concluded that most people
can correctly recall about 7 ± 2 items. This is the origin of the magic number seven.

For the purpose of this chapter, the significance of this work [35] is three-fold.
First, it shows that through the granulation process a human can increase his memory
span. In other words, granulation can be understood as a psychological process to
enhance humans’ capability to deal with a complex environment characterized by a
large amount of information. This immediately brings us back to the early discussion
of humans’ capability to deal with the paradox of choice (Section 2.1). Second, it
shows that the granulation process proceeds in a hierarchical manner. Third, while
without being given an exact definition, the linguistic variables, as we shall see below,
play a pivotal role in the granulation process. Hence, even though we argue in the very
beginning of the chapter that a fuzzy set is only a special form of granulation, due
to the heavy reliance on linguistic terms in the granulation process, the fuzzy set is
clearly indispensable to the development of a general theory of granular computing.

Without rephrasing what he actually said and hence not distorting what he actu-
ally meant, we shall use two quotations directly from Miller’s article to point out
these connections. About the granulation process per se, he said the following.

In order to speak more precisely, therefore, we must recognize the importance of
grouping or organizing the input sequence into units or chunks.... In the jargon of
communication theory, this process would be called recoding. The input is given in a
code that contains many chunks with few bits per chunk. The operator recodes the input
into another code that contains fewer chunks with more bits per chunk. There are many
ways to do this recoding, but probably the simplest is to group the input events, apply
a new name to the group, and then remember the new name rather than the original
input events. ([35], p.93; Italics added.)
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Chunking is probably the most influential idea we learned from Miller’s studies
[35]. The quotation above makes a distinction between items and chunks. With this
distinction the granulation process can be regarded as a transition process from many
chunks with few bits per chunk (items) to fewer chunks with more bits per chunk
(chunks). This transition process is simply a process of information compression.
While Miller’s study was conducted in the middle of the 1950s, almost a decade
earlier than the advent of algorithmic information theory, independently founded
by Andrey Kolmogorov, Ray Solomonoff, and Gregory Chaitin in the mid-1960s,
the idea of information compression as formations of chunks is already in the paper,
as we quoted above. This helps clarify the subsequent discussions on what exactly
the magic number is.

In their recent article, Fabien Mathy and Jacob Feldman [34] reconcile two ver-
sions of the magic number using a notion of Kolmogorov complexity and incom-
pressibility. The two versions refer to the original seven (7 ± 2) and the later version
of four (4 ± 1) [18]. Mathy and Feldman [34] assert that four is the true capacity
of short-term memory in maximally compressed units, while Miller’s magic number
seven refers to the length of an uncompressed sequence. This number, seven or four,
gives us a cognitive reason for granulation. To use our limited cognitive capacity
more efficiently in order to increase our memory span, we tend to harness individ-
uals as granules (compress items into chunks), and as a maximum we are able to
have three to five chunks at a level.3 These magic numbers correspond well to the
choice overload hypothesis, which seems to indicate that if options are not arranged
into categories (not compressed into groups), then, when the number of options in-
creases beyond a threshold (the magic number), our motivation to make a choice or
the satisfaction resulting from the option chosen will decrease.

2.2.2 Hierarchical Structure of Granules

As to the hierarchical form of granulation, Miller emphatically involved the ideas
of what is currently known as encapsulation, which will also be discussed in
Section 2.3.

In my opinion the most customary kind of recoding that we do all the time is to trans-
late into a verbal code. When there is a story or an argument or an idea that we want
to remember, we usually try to rephrase it “in our own words.” When we witness
some event we want to remember, we make a verbal description of the event and then
remember our verbalization. Upon recall we recreate by secondary elaboration the de-
tails that seem consistent with the particular verbal recoding we happen to have made.
(Ibid, p. 95; Italics added)

Based on the quotation above, the details in secondary elaboration seem to in-
dicate what are inside the chunks. While Miller did not make the hierarchical or
recursive structure of chunks explicit, the subsequent interpretations of Miller’s work
do notice these branches. For example, Baddeley raises the following question [2].

3 As we shall see below, there will be a hierarchical structure of these granules.
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The situation is further complicated by the possibility of setting up hierarchical struc-
tures of chunks. If seven chunks can be held, can each one be divided into seven sub-
chunks? Presumably not, because that would suggest that one can hold 49 chunks.
Perhaps the number seven, itself, comes from chunking. ...My own view is that it is
unlikely that the limit is set purely by the number of chunks, independent of such fac-
tors as the degree to which material within each chunk is integrated as a result, for
example, of prior learning. (Ibid, p. 355; Italics added)

Although Baddeley [2] did not give a clear answer with regard to the hierarchi-
cal structure of chunks, he did correctly point out that it would be hard to count
the number of chunks independently of prior learning. In the following section, we
shall introduce another notion related to granularity from the complex system per-
spective. There we shall see the relationship between learning and the evolution of
the hierarchical granular system.

2.3 Hierarchical Modularity

Our discussion in the previous section indicates that what matters for the work-
ing memory capacity may not solely just be a number, 7 or 4. The question which
we should really ask is: what is inside the chunks?. According to algorithmic in-
formation theory, chunks are compressed messages like a program with minimum
description length [34]. How are these compressions actually made? Do they rely
on some other existing programs or building blocks to facilitate the compression?
If so, where do these building blocks come from? Has learning anything to do with
them? This series of questions leads us to a highly influential concept in complex
systems, namely, modularity. In this section, we shall first briefly review Herbert Si-
mon’s original work on modularity [46], and we shall then use LISP programming
and genetic programming to demonstrate the learning process as a development of
a hierarchical modular structure.

2.3.1 Modularity

This section is inspired by Herbert Simon’s work on near decomposability or mod-
ularity [46]. Modularity refers to a structural relationship between a system as a
whole and the constituent components which can function as independent entities.
The interactions of the elements within the same constituent component are strong;
however, the interactions of elements across different constituent components are
weak, but not zero. The latter property is known as near decomposability. The chunk
or granule, as a collection of items that have strong associations with one another
but have much weaker associations with other chunks concurrently in use, is a typi-
cal near decomposable system. As Simon has argued, near decomposability is a key
to harnessing a possibly unbounded complex system.

Simon [46] was probably one of the most influential pioneers inspiring many
follow-up works in various scientific disciplines [4]. In addition to near decompos-
ability, Simon viewed hierarchy as a general principle of complex structures. He
advocated the use of a hierarchical measure – the number of successive levels of
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hierarchical structuring in a system – to define and measure complexity; further-
more, he argued that hierarchy emerges almost inevitably through a wide variety of
evolutionary processes, for the simple reason that hierarchical structures are stable.

In addition to the depth of a hierarchy, Simon also noticed the span or the width
of a hierarchy at each level. He defined the span of a system as the number of sub-
systems into which it was partitioned. Although he did exemplify some hierarchies
with large or even indefinitely large spans, the so-called flat hierarchies, his atten-
tion was mainly drawn to the hierarchies of moderate span. While he did not give
an exact range for a moderate span, it is our conjecture here that the magic number
discussed in Section 2.2.1 can pinpoint a reasonable niche.

2.3.2 LISP

One example which is useful for us to think about the connection between the hi-
erarchies of moderate span and granules or chunks is the symbolic system. In a
symbolic system, the elementary units are alphabets (symbols). Using the grammar
applied to the system, one can, syntactically correctly, generate words, sentences,
books, and volumes. Each of these generated objects can be a granule or a chunk at
different levels of a hierarchy of moderate span. Each of them, in an encapsulated
form, may have some degree of independence, and can be reused as a chunk of other
hierarchies.

In computer science, this is basically what formal language theory is about.
Some computer languages clearly demonstrate this hierarchical structure, for ex-
ample, LISP.4 Each LISP program, regardless of its size, as a whole, is a list.5 How-
ever, it may have other (sub)lists as its constituents, and each of them is also an

4 LISP stands for List Processing, which is a high-level computer language invented by
John McCarthy (1927-2011) in 1958 at MIT as a formalism for reasoning about the use of
certain kinds of logical expressions, called recursion equations. This language is strongly
motivated as a practical implementation of the λ calculus or the recursive function theory
developed in the 1930s by Alonzo Church (1903-1995) and Alan Turing (1912-1954). See
[1] for details.

5 LISP S–expressions consist of either atoms or lists. Atoms are either members of a termi-
nal set, that comprise the data (e.g., constants and variables) to be used in the computer
programs, or they are members of a function set that consists of a number of prespecified
functions or operators that are capable of processing any data value from the terminal set
and any data value that results from the application of any function or operator in the func-
tion set. Lists are collections of atoms or lists, grouped within parentheses. In the LISP
language, everything is expressed in terms of operators operating on some operands. The
operator appears as the left-most element in the parentheses and is followed by its operands
and a closing (right) parenthesis. For example, the S-expression ( + X 3 ) consists of three
atoms: from the left-most to right-most they are the function “+”, the variable X and the
constant 3. As another example, ( × X ( − Y 3 ) ) consists of two atoms and a list. The
two atoms are the function “×” and the variable “X ,” which is then followed by the list
( − Y 3 ).
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Fig. 1 Hierarchy of Chunks and Automatically Defined Terminals

This figure exemplifies an example of a hierarchy of chunks (granules or modules) through
automaticaly defined terminals. Each chunk (granule or module), as represented by a LISP
parse tree, has a span of two (two terminals, entry 1 and entry 2). However, each entry itself
is also a chunk and has a span of two. This self-similarity can recursively go on and on for
many levels.

independently implementable program. The macro list can been encapsulated and
reused as a subroutine by other programs. This is what John Koza called the auto-
matically defined functions (ADFs) [28], or alternatively, automatically defined ter-
minals (ADT) [17] (see Figure 1 for a demonstration). Each automatically defined
function or terminal can contribute to information compression as we mentioned
in Section 2.2.1, i.e., they help reduce the otherwise more lengthy messages (codes)
into smaller ones. Hence, they are chunks used to construct other chunks (see Figure
2 for an illustration).

By presenting all these chunks together, we can see that there is an underlying
timeline as indexed by the generation number in Figure 2. To obtain more hierarchi-
cal chunks, some low-level chunks have to be developed first, such as ADT8, ADT9,
ADT10, and ADT12 (Figure 2). In other words, there is a time order connecting
these chunks, for example, ADT12 precedes ADT18 and ADT19. This timeline re-
alized into the real world is, in effect, what from George Miller to Alan Baddeley
has been called learning. This shows why Miller’s magic number seven is not that
absolute, because, at most, it only gives us the size of the span at each level. What
really matters is the depth of the hierarchy, which is a consequence of learning.
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Fig. 2 Information Compression through Existing Chunks and Learning

This figure demonstrates a development process of a hierarchy of chunks (granules, modules).
Here, some simpler automatically defined terminals (in terms of depth) are developed first,
and they are encapsulated and are used as chunks (building blocks) to form more complex
hierarchy. However, by using the existing chunks, the later derived hierarchies, no matter how
complex they are, have a depth of no more than two.

3 Policy-Oriented Applications of Granularity

3.1 Granular Decision Making

The previous section, based on psychology, information theory, and complex sci-
ence, has suggested a behavioral foundation of, as we shall coin in this section,
granular decision making. The granular decision making refers to a hierarchi-
cal decision-making procedure which organizes an entire decision problem into
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several levels (layers). At each level, only a few granules are presented and need
to be looked at; “coarser” granules are arranged at the higher level of the hierar-
chies, and “finer” granules are arranged at the lower level of the hierarchies. The
decision maker starts at the first level (the topmost level) of the decision hierarchy,
and stops at the level at which a decision has been made.

While we may have introduced a neologism, by no means do we want to claim
its novelty. In fact, some familiar hierarchical decision frameworks have already
existed, for example, the analytical hierarchy process.6 However, this hierarchical
decision framework is not necessarily applied in a way that is consistent with what
is discussed in Section 2. For example, the number of granules required to be given
at each level is not constrained by the ‘magic number’, and a decision cannot be
made until all the information in the hierarchy has been processed.

This decision process may sound more systematic, comprehensive, and rigorous,
but the fundamental question is: when can we trust the decision made through this
process, and when should we better trust our gut feeling? Needless to say, the res-
olution of the issue is beyond the scope of the paper. However, we would like to
point out that there are other hierarchical structures which are consistent with the
essence of the granular decision making. Their existence and prevalence can been
reviewed from two aspects. First, from the individual viewpoint (Section 3.2), we
want to show how the granular decision making has been substantiated into practices
to solve many of our daily life problems. Second, from the institutional viewpoint
(Section 3.3), we want to show how public policy can become more effective or
welfare enhancing if the choice architecture can be well taken care of in light of the
granular decision-making framework.

3.2 Fast and Frugal Heuristics

The fast and frugal heuristics is pioneered and advocated by the German psycholo-
gist and behavioral economist, Gerd Gigerenzer. Over the years, he and the research
that he had led at the Max Planck Institute have extensively studied how people ac-
tually make decisions when they are presented with complex, vague, and ill-defined
problems. It is found that many heuristics, while they may look simple, can effec-
tively solve problems in a fast and frugal manner, and even the results are some-
times better than those of deliberated complex models [23]. In the literature, there
is a glossary of such heuristics available, such as the recognition heuristic, fluency
heuristic, take-the-best heuristic, and one-good-reason heuristic.7

To give a highlight of these heuristics and their relationship with the granular
decision making, one needs to know that Gigerenzer considered himself to be a
behavioral economist following the legacy of Herbert Simon. Under the influence
of Simon’s notion of bounded rationality, behavioral economists characterize each

6 Due to the space limitations, we do not intend to give a review of the large body on litera-
ture in the analytic hierarchy process. The interested reader is referred to [40, 25].

7 For a review of these heuristics and many more, the interested reader is referred to [22].



Granularity in Economic Decision Making 59

 

Cue 1

D1

YESNO

Cue 2

D2

YESNO

Cue 3

D3

YESNO

D4

Fig. 3 Fast and Frugal Heuristics in the Form of Decision Trees

decision process with three main stays, namely, a search rule, a stopping rule, and
a decision rule. A simple but abstract example is the alphabet heuristic.

To use the alphabet heuristic, each alternative is presumably characterized by a
‘name’ (a series of letters). By means of this heuristic, we search through the name
of alternatives letter by letter in reading direction, and assess each letter’s position
in the alphabet (the search rule). If the letters in the first position differ among the
alternatives, we only keep those whose letters appear the earliest in the alphabet,
and remove the rest (the decision rule). If there is more than one left, we move to
the second position, and then ditto the above procedure until there is only one left
(the stopping rule). Then only the remaining one is chosen (the decision rule).

The alphabet heuristic has long been known as lexicographic ordering in eco-
nomics. Its lexicographic structure is generally shared by the aforementioned heuris-
tics, and is consistent with the granular decision making in the following regards.
First, it has a hierarchical structure, first letter, second letter, and so on. Second,
each letter actually has only two granules (a span of two), “the leading position in
the alphabetic order” or “the positions behind it”. Third, to make a decision, it is not
necessary to go through all levels (or to the last level), as long as a decision can be
made at an earlier stage. Fourth, learning plays a role in the formation of this hier-
archy. In the case of the alphabet heuristic, one still needs to decide the alphabetical
order: should it be ‘ABC’ or ‘CBA’. Psychologists call these cues. In principle, one
should prioritize those cues which are more informative or discriminating; for some
decision problems this order of cues can be determined easily, but for some decision
problems this order requires experience and learning.

The other hierarchical structure which is frequently used in machine learning, but
less in psychology or behavioral economics, is decision trees. In fact, the fast-and-
frugal heuristics reviewed above can be regarded as a special kind of decision tree,
a binary decision tree as shown in Figure 3. In structure, it is much simpler than
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the general decision trees. It has only two nodes at each level, and at least one of
the two is a terminal node. Because of this characteristic, each cue will appear only
once in the tree. However, for a general decision tree, the number of nodes at each
level varies, depending on the number of attribute values (not necessarily binary),
and each cue can appear more than once as long as it does not repeat itself in the
same subtree emanating from itself. Finally, the general decision trees are normally
built using statistical algorithms, such as the entropy maximization algorithm, in
the data mining context. Hence, learning in this situation is more formal and data-
oriented; less depends on personal experiences or memory. Despite these technical
differences, general decision trees, by and large, are also a kind of granular decision
making.

3.3 Nudges

Social science research reveals that as the choices become more numerous and/or vary
on more dimensions, people are more likely to adopt simplifying strategies. The im-
plications for choice architecture are related. As alternatives become more numerous
and more complex, choice architects have more to think about and more work to do,
and are much more likely to influence choices (for better or for worse). ([48], p. 95)

In Section 2.1.2, we have already mentioned that if options offered to decision
makers can be well structured, then choice overload can be alleviated. An implica-
tion of this is then the way in which we present the options may affect what is chosen
or not chosen. This lesson has already become known as the framing effect [49] for
three decades. It is about two essentially identical choices provided to subjects, but
one is presented in a positive frame, say, a bonus, and the other is presented in in a
negative frame, say, a penalty. Simply by these different “phrases” people will be led
to make a different choice. In a sense, the attention drawn to the choice-architecture
effect can be regarded as a more extensive awareness of this framing effect.

Before we proceed further, it will be useful to mention one recent influential
book in behavioral economics, entitled Nudges, authored by Richard Thaler and
Cass Sunstein [48]. In a nutshell, what a nudge does is to make a default option
available, and to use it to lessen the choice burden of people and to enable them
to make a good choice. Some studies have shown that, by properly designing and
incorporating a default option, we can have a choice architecture that can nudge
people towards good decisions on spending, saving, health care, borrowing patterns,
and organ donations. One of the most illustrative examples of the default option is
to make enrollment in 401(k) plans automatic for new employees with a form for
opting out so that if they do not wish to save they would have to register the desire
to opt out of the plans. This opt-out system with a reasonable default saving plan is
likely to result in greater retirement savings than an opt-in system [3].

What is the relevance of granularity to defaults? The answer is that, based on what
we discuss in Section 2, defaults are a kind of granule. Depending on how a default
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is articulated, it can mean many different things with fine details. Using Miller’s
term (Section 2.2.1), it is a name or a verbal expression used for the information
compression purpose. Once after a name is given we do not look further into the
details being encapsulated until it is necessary to do so. Therefore, defaults share the
psychological, cognitive, information processing, and complexity nature of granules
(chunks, modules). The contribution of this chapter is to make their connection with
granules clear.

The purpose of this chapter is not to provide an economic analysis of defaults.
However, as Madrian [33] has pointed out, the economic studies on defaults is still
very limited. Obviously, the significance of defaults in public policy should not be
overrated. They are not panaceas. First, to make them work, they have to be properly
designed. In our early example, we can have ‘pop-in’ or ‘pop-out’ as the default, but
the latter (the automatic enrollment) is more effective than the former in increasing
the participation rate of the retirement saving plan. Second, the function of a default
or defaults should be evaluated in the hierarchy in which they are placed. Choosing
a default may not mean the end of the story. For example, after automatic enrollment
in the saving plan, the policy-makers can still offer few, but not many, options for
employees to choose from.8 In this situation, the default option can be applied again,
which may refer to an endorsed fund. Hence, the design should be continued through
the branch emanating from a default node. These additional layers certainly may
take better care of the heterogeneous needs of employees than just the one-layer
simple default.9 Hence, from the granularity point of view, good policy-making does
not rest upon a single default granule, but a granular hierarchy in which different
defaults may be present at different levels.10

4 Granularity in Economic Modelling

Based on Duffy [19] and Chen [10], the two major learning or adaptive algorithms
used in agent-based modeling are reinforcement learning and evolutionary com-
putation (genetic algorithms and genetic programming). While both of these algo-
rithms have been modified and extended into different forms, little attention and
effort have been directed toward the granularity issue involved in the operation of
the algorithms.

8 The consideration is mainly to avoid the paradox of choice. Iyengar et al. [26] show that
expanding the number of funds offered for the 401(k) contribution plan will lower the
participation rate, which drops from 75 to 60 percent when the number of funds offered
increases from only 2 to 59 options.

9 Caroll et al. [8] provide a similar discussion. They actually suggest applying an active
choice instead of defaults when there is substantial heterogeneity in consumer preferences.

10 In practice, Amazon, NetFlix and many of the like, have shown themselves to be the mas-
ters of choice architecture as their entire websites are geared to enabling consumers to
make desirable choices and continue transacting with them. As to the tools available for
choice architects, the interested reader is referred to [27].
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4.1 Reinforcement Learning

Let us first look at reinforcement learning. From [39], to [20], and further to [5],
we have already extended the simple reinforcement learning algorithm to its gen-
eralized version by taking into account various cognitive or mental considerations,
such as memory, consciousness, and reasoning. Nonetheless, the most fundamental
unit is the choice or the action being reinforced, and hence the set of alternatives is
the starting point for any version of reinforcement learning. From the granulation
viewpoint, a fundamental question is: to make reinforcement learning applicable
to understand a certain class of adaptive behavior, is there a granulation constraint
that is required to be satisfied with, for example, the size of the set of alternatives?
Although this question has been asked in a few studies, we believe that the granu-
larity issue has never been addressed explicitly in any application of reinforcement
learning known to us.

4.1.1 Beauty Contest Game

We shall illustrate this point by referring to some applications of reinforcement
learning models to human-subject experiments. The specific one considered by us is
the beauty contest game, which is also known as the guessing game. Players in the
beauty contest game compete with each other to win a prize by selecting a number
between [0,100]. The prize is given to the player whose guessed number is closest
to the target number, which is calculated by averaging all guesses that are then post-
multiplied by a factor p, say, p = 2/3. With this parameter, the game is called the
p-beauty contest game. This game implicitly requires each player to form his/her ex-
pectations of other players’ expectations. If other players are doing the same thing,
the game then suffers from the familiar infinite regress problem. Under the homoge-
neous rational expectations hypothesis, a Nash equilibrium will be reached where
everyone chooses an equilibrium of zero, which is the result of 50 (the middle point
between 0 and 100) post-multiplied by p∞. However, the resultant beauty contest ex-
periments have demonstrated great deviations from this game-theoretic prediction
[37, 38]. The application of reinforcement learning to the repeated beauty contest
game was initiated by [5]. In their study, reinforcement learning was applied to a set
of 101 alternatives.

In other words, each number that the subject can guess is an independent choice,
and by the operation of reinforcement learning in the end the strategies demon-
strating larger actual or simulated effects will be chosen more frequently. However,
Camerer and Ho [5] found a lack of ability in reinforcement learning for modeling
guessing dynamics in the beauty contest game, compared to other noncooperative
games which are surveyed in their article. This result was also replicated in [12].
One of the remedies suggested in [5] is to consider the learning when players so-
phisticatedly realize that other players are learning as well.

Sophistication is a central concept in the beauty contest game for producing level-
k reasoning and it has been put into practice in [6]. Chen and Du [12] also consid-
ered level-k reasoning during the learning process, yet the motivation and operation
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is different. In order to explicitly represent the granulation constraint imposed in
learning dynamics, they suppose that the basic granules used for learning are only
the six level-k rules instead of the 101 numbers. The learning model with these gran-
ules seems to be more descriptive than the one [5] which uses individual numbers
directly. This result may lead to a fundamental question concerning the applicabil-
ity of reinforcement learning to the situation when a large number of many possible
choices are presented.

4.1.2 Coordination Game

The granularity issue can also be found in the application of the reinforcement learn-
ing model to the experimental behavior in the coordination game. The analytical
framework was initiated by Van Huyck and his colleagues [51]. Let s j

i be the action
j of individual i and s j

i ∈ S = [0,1]. The game is defined by the following payoff
function π(·),

π(si,s−i) = 0.5−|si−ωM(s)(1−M(s)| (1)

where s−i denotes the actions of other players, s = (si,s−i) is one action combina-
tion, M(s) is the median of s and ω ∈ (1,4]. There are two strict Nash equilibria,
(s,M) = (0,0) and (1− 1/ω ,1− 1/ω).

Van Huyck and his colleagues conducted the human-subject experiments for this
game [50]. The action space is discretized into a finite set containing 101 actions
such that S = {0,0.01,0.02, ...,0.99,1}. Subjects in the group of five enter each
session playing repeatedly for a total of T periods, where T = 40,70 or 75. This
experimental data offers an opportunity for researchers, not only Van Huyck and
his colleagues, to study the learning behavior by fitting various kinds of learning
models [16, 42, 50]. Reinforcement learning serves as a common algorithm fitted in
all of those studies.

Some authors have well recognized that the size of the set of alternatives might
be too large to be true, and they further suggested that the similarity among strate-
gies should be used to simplify the decision problem [16, 42]. They assume that
the strategies are ordered numbers and s j < sk if j < k. The common similarity
function being considered in those studies is the Bartlett similarity function, which
supposes that the degree of similarity decreases linearly as the distance between the
chosen strategy sk and other strategies s j, ∀ j �= k, increases. The similarity function
is defined as follows:

f (s j ,sk;h) =

{
1−| j− k|/h if | j− k| ≤ h,

0 otherwise.
(2)

where h determines the h − 1 unchosen strategies on either side of the chosen
strategy. The updating rule for the propensity or attraction of strategy j, R j(t), is
governed by
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R j(t) = rR j(t − 1)+ f (s j,sk;h)πk(t) (3)

where πk(t) is the payoff of chosen strategy k in round t.
The incorporation of strategy similarity into the operation of reinforcement learn-

ing grasps the idea that the neighborhood of actions or strategies (within a granule)
should be dealt with as a whole rather than individually. On the one hand, we might
argue that what makes a granule is not explicitly defined here. On the other hand,
if we could consider each chosen case as a centroid of a granule, the number of
granules might grow throughout the action space as the game is played repeatedly.
In the extreme case, the number of granules will be equal to the number of strategies
bringing in another granularity issue needing to be solved.

4.1.3 Market

Previous mentioned applications of reinforcement learning, including the guessing
game and the coordination game, are both examples of strategic games which are
simpler. Market participants usually encounter a more complex learning task. Even
though the rules and settings can be controlled and simplified in the laboratory, the
time spent for instruction is usually longer and the practice session is always re-
quired to insure their comprehension of the experimental markets. It is also more
difficult to identify what or to characterize how the subjects learned. Give those
complexity , it seems that the issue of granularity, even though not been mentioned
explicitly, was naturally and inevitably considered when applying reinforcement
learning to model the adaptive process in experimental markets.

Chen and Hsieh [13] apply reinforcement learning to an order book-driven ex-
perimental prediction market. They assume that the mental representation of the
decision problem has been simplified to the choice of the intensity of limit order
submission. It is found that the intensity of limit order submission is positively cor-
related with the profit earned. They further assume that a ternary choice problem to
reduce the possible dimensions of learning. In particular, the reinforcement mecha-
nism takes effect on updating the propensity of three alternatives including increase
the use of limit orders, decrease it, or keep it unchanged. In fact, it assumes what
really matter is not a precise degree of intensity but a rough class with a coarse
granule.

The second example is an application of generalized reinforcement learning to
the adaptive process in bilateral call market [7]. In this market, a buyer and a seller
are randomly matched each other and privately informed about their values or costs
of the goods. They submit bid or ask anonymously and a trade is made at the mid-
point when the buyer’s bid is higher than the seller’s ask. Subjects need to learn how
to submit a desirable bid/ask conditional on his private value/cost on hand. For a
buyer i, the strategy si being considered is the combination of the assigned private
value vi, vi ∈ [0,200], and his submitted bid bi, which will be determined by the
choice of markdown ratio from 0 to 1. In order to implement reinforcement learning
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model, Camerer, Hsia, and Ho [7] discretize vi into 10 equal intervals and 16 evenly
spaced markdown ratios from 0 to 75%. We might consider this discretization as
necessary although the resulting strategy space with 160 alternatives seems to be far
from the range of the ‘magic number’ (Section 2.2.1).

In addition to discretization, Camerer and his colleagues introduced a parameter
τ into the generalized reinforcement learning model to characterize the similarity-
based generalization of learning, which shares the common motivation with other
work introduced in Section 4.1.2 [16, 42]. The τs are different for each strategy and
are sensitive to the distance between the strategy being considered and the chosen
strategy. The definition of τ is given as follows:

τ = e−ψ|v−vi(t)|−ω|b−bi(t)| (4)

where vi(t) is the realized private value and bi(t) is the chosen bid of buyer i at time
t. For the chosen strategy si(t) = (vi(t),bi(t)), τ is equal to its maximum 1 because
v − vi(t) and b − bi(t) are equal to zero. On the other hand, for the non-chosen
ones, τ can be close to zero depending on the magnitude of ψ and ω . The influence
of parameter τ is so overwhelming that it can turn on/off the updating process of
strategy attraction11:

Ai(t) =
φτ N(t − 1)Ai(t − 1)+ τπi(bi,vi,v−i(t))

φτ (1−κ)τN(t − 1)+ τ
(5)

Notice that when τ = 0, Ai(t) is equal to Ai(t − 1) indicating all adaptive mecha-
nisms/parameters take no effect.

We have discussed and commented the incorporation of strategy similarity into
the operation of reinforcement learning in Section 4.1.2. We would like to make a
final remark on it by first quoting a paragraph from [7].

Similarity-based learning is also arguably a “cognitively economical” heuristic be-
cause scarce attention is allocated where it is likely to be most useful - namely, in the
vicinity of the current valuation and bid. (Ibid, p. 257)

In other words, subjects may focus only on the chosen strategy due to limited at-
tention, and the other unchosen strategies are reinforced by the “spillover effect”
generated from an automatic, unconscious process of having less requirement of
cognitive load. This attention-based similarity learning further alleviate the dimen-
sionality problem when updating the attraction levels. However, the further cal-
culation of choice probability is still based on the strategy attractions of 160 finer
granules (after disctretization), which implicitly assumes that subjects, in each round
of their choice making, are still required to distinguish the attraction of each of this
overwhelming number of alternations. Hence, we arrive the same conclusion that we
have indicated in Section 4.1.2: this similarity device alone is not sufficient enough
to solve the granularity issue.

11 In order not to distract the attention of the readers, more details of the updating rule refer
to [7].
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4.2 Evolutionary Computation

Evolutionary computation involves populations of programs, strings of symbols, or
candidate solutions. In agent-based economic models, sometimes the entire pop-
ulation is used to represent a whole society in a one-to-one mapping, known as
population evolutionary computation; sometimes, the whole population is used
to represent a single individual, known as individual evolutionary computation.
Economists have frequently used social learning and individual learning to distin-
guish the former from the latter in their agent-based modeling [52]. The granularity
issue does not appear in the former case where each individual agent is only associ-
ated with one single strategy and hence no choice. However, it may occur in the case
of individual learning where each agent is endowed with a population of strategies
and each time upon making a decision or taking an action he/she needs to choose
one from them. Will they encounter the issue of the paradox of choice when the
population size gets big? Will they need a proper choice architecture to deal with
the large population of options? Will they need a search strategy to limit their search
efforts. This issue, to the best of our knowledge, has never been raised.

In early days when evolutionary computation had only just been introduced to
economics and applied to build agent-based economic models, the idea of ‘more is
less’ had not even been formally proposed. Barry Schwartz’s book was available
only after 2003, and before 2003 economists were not fully aware of the issue of
choice overload. On the other hand, one may argue that the choice overload problem
does not apply because in most applications alternatives differ in a single dimension
only, namely, fitness or performance. In this case, like the early example which we
mention, one only needs to search for the basket with the maximum number of
peanuts. Without too many additional attributes, making comparisons among these
alternatives is straightforward. Hence, even though some economists may still be
concerned with the parameter of population size, they are motivated by different
reason [32].

After the middle of the 2000s, some economists started to notice the connection
between cognitive psychology and population size, and even Miller’s magic number
has also been cited as a reference to determine the population size [9]. A research
agenda developed along this research line is to use agent-based modeling to address
the effect of cognitive capacity on earnings performance under a competitive market
environment, and population size is used as a proxy variable for cognitive capacity
[14, 15]. Even up to this step, whether or not our artificial agents are overloaded
with too many choices is not a concern.

Exceptions do, however, exist. In a follow-up study of the Santa Fe artificial stock
market, Tay and Linn [47] state:

[S]ome might question whether it is reasonable to assume that traders are capable of
handling a large number of rules for the mapping of market states into expectations,
each with numerous conditions, ... We show this by allowing agents the ability to
compress information into a few fuzzy notions which they can in turn process and
analyze with fuzzy logic. (Ibid, p. 322; Italics added.)
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Indeed, the above quotation echoes well with the discussion in Section 2.2.1 as well
as with the quotation which we cite from Lofti Zadeh at the beginning of the chap-
ter. It makes little sense of the large set of alternatives when they are presented in
continuous fashion by rational numbers. It would be more sensible to add a name
to some of them and treat them as a whole (as a granule). In this way, the effective
strategy space can be substantially reduced. What Tay and Linn did was to use lin-
guistic variables to group the strategies in such a way that one will not overburden
their decisions with just number-crunching trivialities.

A similar approach has also been adopted by Chen and Chie [11] in an
agent-based lottery market. In this study, they want to model agents’ decision rules
regarding lottery participation, and the decision rule depends on the lottery mar-
ket condition characterized by the Jackpot size. Like Tay and Linn [47], they did
not directly use rational numbers to define the market condition; instead, the fuzzy
sets and linguistic variables were applied to give different states of the market. The
Sugeno style of fuzzy rules was then applied to form the lotto participation rules.

5 Concluding Remarks

Generally speaking, the concept of granularity has been largely ignored by
economists in their models of decision marking. However, thanks to the recent in-
terdisciplinary research joining economists and psychologists, which enables us to
realize the possible implications of Shannon information capacity for the human
mind and to cast doubt on the fundamental assumption of economics: more options
can only do good, or at least no harm. This gives us a psychological foundation of
the granule (from fuzzy mathematics), chunk (from cognitive psychology), or mod-
ule (from complex science) as an elementary unit of information processing and
decision making. Moreover, through learning and constant information compres-
sion, these elementary units are accumulated and arrayed in a hierarchical form so
that our memory capacity can be less constrained. Experimental studies with human
subjects also find that subjects’ learning behavior can be well captured by the rein-
forcement learning model if the size of the set of alternatives is restricted to a small
number, say, 6, and not 101 [12]. In other words, when agents are presented with a
large number of individual options, they group them as granules and mentally work
with these granules (as a whole) rather than with the constituent individuals.

This chapter just serves as the beginning of a new research direction for both
experimental economics and agent-based computational economics. As for the for-
mer, it prompts us to design laboratory experiments or field studies to address the
effect of the number of options on choice behavior, with or without the choice archi-
tecture. The role of defaults and their possible forms can be closely scrutinized in
these experiments. As for the latter, it motivates us to apply the granular information
processing scheme to modeling artificial agents. In this case, the default at the very
top of the hierarchy may mean the status quo heuristic.

The status quo heuristic has been well studied in psychology and behavioral eco-
nomics [41]. It means that in many choice situations, people value the status quo,



68 S.-H. Chen and Y.-R. Du

and will forego the opportunity to switch to an alternative unless it is really necessary
to do so. The status quo heuristic has been applied in agent-based models in differ-
ent forms, the threshold width in the threshold model, the intensity of choice in the
stochastic choice model, and even the steady-state replacement used in evolution-
ary computation. To some extent, all try to give a weight for the inertial tendency.
However, few have explicitly acknowledged the underpinning psychological force.

Finally, given the hierarchical structure of granules (or granular information pro-
cessing), it is important to take a further look at the neologism. If granules have to
be named verbally, then the evolution of ‘names’ (still using Miller’s term) should
give us a footprint of a hierarchy from its primitives to the holistic one. For example,
in considering ‘happiness’ as a granule, what inside this is granule may differ over
time; at one time, it can mean homeland security, and at another time, it may mean
finding a real job. Therefore, it opens a new navigation in the literature.
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