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INTRODUCTION

Before considering the simplex method for quadratic programming problem, it
is necessary to learn how to find an optimal solution to non-linear programming
problem. There are the Kuhn-Tucker conditions (1] (2, P.723) which describe
such optimal solution as follows:

Let the maximizing objective function, f(x,,X,,Xg, - X,), and the constraint
functions g,(X;,X;,X3, -+ x,)«b,, for 1=1,2,3,------ m, be differentiable; but not
necessary linear, Then (x,’,X,",Xg/, X,’) can be an optimal solution to non-linear

programming problem if and only if there exist m values, v,,v,,v;,--+-v,, named

Lagrange Multipliers or dual variables, such that the following conditions are
satisfied:

of %y 9g
%, & e, = ¢
at x;=x,’, for j=1,2,3,---- Jn.
Jof = dg

ek 78V B, J=0 (2)
g (X7, X", Xg yoreees X,’)—b, L0 . : (3

Vl [glcxlf’le’xal’ ...... Xn/)—blj :0 } ’ fOI‘ 1*1’2,3, ceem, (4)
x,=20, for all j. (5)
vix0, for all i, (6

Of there existing algorithm for quadratic programming problem, let the
maximizing objective function be quadratic and the constraint functions be linear,
then the Kuhn-Tucker conditions can be considered as generalizations or extensions
of the simplex method for linear programming problem derived by P. Wolfe (3],
C. van de Panne and A Whinston [4] and others. The objective of this note is to
simplify algorithm steps of the simplex method for computing the maximizing
quadratic programming problem.

NOTATIONS



The following useful notations are through-out this note:
N, A is an m-by-n matrix.
N, C is an n-square symmetric matrix assumed to be positive definite,
N, I, is an identity matrix where r=m, n or m+n. B
N, p is a column vector with n components Di,Pz;Pss ="+ Da.

N, b is a column vector with m components by,bs,Ds, b,
Ng x is a column vector with n components X;,XzXgy " Xa.
N, v is a column vector with m components vy,V;, Vs, Ve
Ne u is a column vector with n components U;,uy,Us, -+ u,.
N, vy is a column vector with m components y.,¥z,¥s, - Ve
N,, z is a column vector with n components z,z;,Zs,"**** Za.

N,; The prime (’) indicates the transpose of a matrix or a vector
N,, X/p=p’x, u/x=x'u, v'b=b’v, and x’A’v=v’'Ax.
N, B is an (m+n)—square matrix ('C 'A/>
18. g A O .
-C-A"1, 0 E -p
N, A0 0 I, Db is called a simplex matrix(5, P. 375].
p’ b’ 0 0 | 2f

N.15 | indicates the pivot column,

N, <« indicates the pivot row.

N;; 0 indicates the pivot element.
N, b.v. represents the basic variable.

PRELIMINARIES
The general convex quadratic programming problem considered here is the
following form: ’

Maximize f=p/x— +x'Cx, ‘ N
subject to Ax £ b, (8
and XN 0. €D

The Kuhn-Tucker conditions,(1)(2)(3)(4)(5)(6), for an optimal solution to )
(8)(9) can be written in the forms

p—Cx—A’Vv +u=0, . . (10)
Ax+y=b, o (11)
u'x+v'y=0, (12)

and X0, ux0, vX 0, y2 0. (13)

A routine calculation shows that x, u, v, y satisfy (10)(11)(12) and N,,, and
then the result of the objective function (7) is
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f=2%4('x+b'v), (14)
2f=p’x+b’v, (15)
Thus, it is obvious that the quadratic programming problem (7)(8)(9) can be
changed into the followirig linear programming problem. '
Maximize  2f=p’x+b’v, (16)

subject to —Cx—A’v+u=—p, an
' Ax+y=b, (18)
u'x+vy=0, (19
and 20, ux0, v.0, v2.0. 20)
By use of Ny;, we have
é v u g | ‘
-C -A’ |- ,
O R 21)

p’ b’ 0 0 [ 2f ! »
where x, yare called the primal variables and u,v called the dual variables, whose
coefficients are all elements of the Ist, 2nd, 3rd, 4th colmuns in (21) respectively.
From (19), there is a property that if each primal variable is basic, then a
corresponding dual variable is non-basic and vice versSa,

ALGORITHMIC STEPS
Before defining the algorithmic steps for the simplex method, (21) can be
represented by the following form:

b.v. é v Iu y

u -C -A7 . 0 |-p

v A 0 0 I.!bf| (22)
0 p’ b’ 0 0 J2f

_where u, y along 3he left hand side of (22) are the basic variables, whose values
are equal to the corresponding elemznts in last column. From (18), 2f is equal to
0 under the basic solution, u=—p, y=b, x=0, v=0; where bX0 because the
basic solution can be used as an initial basic solution to the quadratic programming
problem for the simplex method. :

In the simplex method for computing the optimal solution, the iterative steps
consist of selecting a non-basic variable, that enters the basic variable; and a
basic variable, that leaves the basic variable. ACEording to (19) (20), the following
iterative steps can be defined: -

Step 1. Choose a pivot column to determine the entering basic variable,

(a) If the non-basic primal variable column has the greatest positive value
in the bottom row of (22), then this column becomes the pivot column,



(b) Until all bottom elements in the x-columns are non-positive, If the

non-basic dual variable has the greatest positive value, then
column becomes the pivot column.

Step 2. Choose a pivot row to determine the leaving basic variable,
Find the minimun ratio, such that
h,/k,=min., {h,/k:>0 | k.0, r - n or m},
where h, is the rth element of the last column of (22) and k. is the

ths

rth

element of the pivot column except the bottom row. Hence, the rth row

becomes the pivbt TOW,
Sten 3. Choose a pivot element.

The pivot element is at the ‘intersection of the pivot column and
pivot row. By use of the elementary matrix row operations (5, P.24],

the
let

this pivot element be eoual to 1 and the other elements in this pivot column

including the bottom element be equal to 0.

After this elementary matrix row opsrations, if all primal and dual variables
satisfy (19) (20), then the basic solution is optimizing the objective function (16);

otherwise return to the iterative steps.

NUMERICAL EXAMPLE

To illustrate the iterative steps, a numerical example can be calculated as

follows:

Example la. Consider the quadratic programming problem

Maximize f=10x, + 4x,—x?+ 4x,x,— 4x%, (23)
subject to X, X, L6, 4%, +X,L18, (24)
and %30, x,00; (25)

where p’ = (, 4>,'b=(:’8 ), A= (11) and C= (z :) . @6

This example can be changed into the following form by (16)(17)(18)(19)(20).

Maximize 2f=10x,+ 4x%,+6v,+ 18v,, 27)
subject to —2x1+.4x2—v1¥4v2+u1=—10, (28)
A%, —8%, =V, — Vo + U= —4, (29)

X1+ X +y;=6, (30)

A%, + X, +7,=18, 3L

U; Xy + UpX, + Vi X, + vy, =0, (32)

and x;20, x,20, 1;,N0, X0, v;x0, v;20, y;20, y.20. : 33

From (22), (26), we have
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bv.  x X2 Vi v, W Uy Ve

uy [ =2 4 -1 —4 1 0 0 0/|—-10

u, 4 -8 -1 -1 0 1 0 0| —4

Vi 1 1 0 0 0 0 1 0 61. (34)
y: | @ 1 0 0 0 0 0 1 18 | «—

0 10 4 6 18 0 0 0 0] 2f

Since x, has the greatest positive values 10 at the bottom, it becomes new
basic.~ Comparing the ratios 6/1, 18/4 (min.). From (34), y, must become
non-basic, and thus, the pivot element is 4. By use of the elementary matrix row
operations, the following simplex matrix is obtained |

bv. x %, Vi Ve U, U, Y1 Yz

u | 0 9/2 —-1 —4 1 0 0 1/21 -1

u, 0 9 -1 -1 0 1 0 -1 —22 -

vi | O ® 0 0 0 0 1 —1/4 3/2 |~ -~ (35)
x | 1 1/4 0 0 0 0 0 1/4] 9/21. o

0 0 3/)2 6 18 © 0 0 —5/2 2f—45 |

Since x, has the greatest positive value 3[/2 at the bottom, it becomes new

basic, Comparing the ratios%/%(min.), g/% . From (35), y, must become

non-basic, and thus, the pivot element is 3/4. Similarly, we have

b.v Xy Xz vy I Ve uy u; Vi Vi

u, 0 0 —1 @ 1 0 —6 2 =10 Je ,
u, 0 0 —1 -1 0 1 12 —4 |—4 '
X 0 1 0 0 0 0 4/3 —1/3| 2 |. (36)
x | 1 0 0 0 0 0-—1/3 1/3 2

0 0 0 3 18 0 0 —2 —2pf—481

In (36), all bottom elements in the x-variable columns are 0. Since the dual
variable v, has the greatest positve value 18 at thé'._jbovttom, it becomes new
basic. Comparing the ratios —10/—4(min.), —4/—1. From (35), u, must become
non-basic, and thus, the pivot element is —4. Similarly, we have '

bv. x Xz vy Va2 u; Ug Vi V2

V, 0 0 1/4 1 —1/4 0 3/2 —1]2 5/2 | .

U, 0 0 —& 0 —1/4 1 27/2 f9/2 —3/2 |« )

X, 0 1 0 0 0 0 4/3 -1/3 2 9. 37
Xy 1 0 0 0 0 .1 —1/3 1/3 4

0 0 0 3/2 0 9/2 0. =29 ° 712f-93

It is clear that v, must become new basic and u, must becom< non-basic,
because the minimum ratio is—%/~%. The pivot element is —3[4. Similarly,
we have



b.v X X Vi Vs U u, Vi Y2

v, 0 0 0 1 —1/3 1/3 6 —2 2

vio- |0 0o 1 0 1/3-4/3 —18 6| 2

X, 0 1 0 . 0 0 0 4/3 13} 2 . (38)
X1 1 0 0 0 0 0-1/3 13| 4

0 0 0 0 0 4 2 —~2 —=212f-096

© At last, the optimal solution to this example is 2f—96=0 or f=48, because
the basic solutxon X, =4, X2—2 v1_2 v,=2, u;=0, u,=0, y,=0,y,=0; satisfies (19)(20)
" or (32)(33)

REMARKS

(1) In accordance with the general linear programming technique, the qua-
dratic programming. (16)(17)(18)(19)(20) is not an obvious initial basic feasible
solution because u—,——p from (22) Hence, the artificial variables, zX0, must be
introduced and (17) can be 'ertten in the following form [2, P. 727],;

, - Cx+A’'v—u-+p’z=p. : (39)
This techmque prov1des an artificial basic fea51b1e solution to (18) (39), z=1,
y=b, x=0, v=0, u=0. The quadratic programmmg problem has “an optimal
solution if and only if z=0. Therefore z must be reduced to 0 to obtain the
other hasic feasible solﬁtion except u. We can start with the artificial basic
feasible solution as an initial basic solution -indicated above and then apply
two-phase method (6, P. 113] to find the optimal solution, The optimal solution
to the following problem will be obtained by the phase-I method.

Minimiie z :ZV‘_J zy, (40)
i=1

subject to Cx+A'vf—u+p’z=D, (41)
Ax+y=bh, ' (42)

and x20, v.0, ux0, y.0, zX0. ‘ (43)

And then the optimal solution to ‘the quadratic programming problem will be
obtained by the phase-I{ method, if (40) has an optimal solution, z=0,

Example 1b. The equations, (40) (41) (42) (43), are now applied to the
example la, (23) (24) (25)(26), and then we have

Minimize z2=2z,+2z,, (44)
subject to  2x;—4x,+v,+4v,—u, +10z, =10, (45)
—4X,+ 8%+ Vy+V, - —u, +4z,=4,- (46)

X +X; T +yr =6, 47)

4%, 4%,  +y.=18, (48)

and  x;20, X0, vi20, v,20, u,n0, U0, yi20, y.20,
_— 16 _



ZI;O’ 22;0. (_49)
Phase-I Method. ’
By use of the phase-1 method, the following simplex matrix is obtained
X X, vy Vs u, u, V1 Ve Z Z,
I 2 —4 1 4 -1 0 0 0 10 01 10
—4 8 1 1 0 -1 0 0 0 4 4
1 1 0 0 0 0 1 0 0 0 6 B0
4 1 0 0 0 0 0 1 0 0 18
70 0 0 0 0 0 0 O 1 I 2

From (50), z, and z, are really basic and then the elements 10 and 4 must be
equal to 1 and the bottom elements 1 and 1 must be equal to 0 respectively,
By use of the elementary matrix row operations, the simplex matrix (50) will be

written in the following form
b.v.

X, X, v, v, , u, vy Vs 2y Zs
z, 1/5 —2/5 1j10 ® —1/10 0 0 0 1 0, 1 |«
Zs -1 2 1/4 1/4 0 —1/4 0 0o 0 1 1
V1 11 0 0 0 0 1 0 0 0| 6 (51)
V2 4 1 0 0 0 0 0 1 0 o0 18
0 4/5 —8/5 =720 —13/20 1/10 1/4 0 O 0 O lx—2

In order to reduce z=0, z, and z, must become non-basic and then v, and v,
are selected to be basic.

Since v, has the smallest negative value

—13]20 at the

bottom, it becomes new basic. Comparing the ratios 1/ % (min.), 1/ %. From (51),
z; must become non-bhasic and thus, the pivot element is 2/5. Similarly, we have

b.v.
Ve
Z,
Vi

Ye
0

Xy X Vi A u, U, Y1 Ve Zy 2y
1/2 —1. 1/4 1 -—1/4 0 0 0 52 0 5/2
—9/8 9/4 & 0 1/16 —1/4 0 0 —5/8 1| 3/8 -
1 0 0 0 0 1 0 0 0 0 (52)
4 1 0 0 0 0 0 1 0 0 18
9/8 =974 —3J/16 0 —1]/16 1/4 0 0 13/8 01 z—3/8

It is clear that v, must bscome the new bsaic variable instead of the basic

variable z, because the minimum ratio is%/l%. The pivot element is 3/16. Simi-

larly, we have

b.v.
Vo
vy
A2

Y2
0

It will be observed that the optimal solution, z=0, is obtained and the

Xy Xe Vi Vs Uy U, Y Ve - Zp Zy
2 —4 0 1 —1/3 1/3 0 0 10/3 4/3; 2
—6 12 1 0 1/3—4[3 0-0 10/316/3| 2
1 1 0 0 0 0 1 0 0O 01| 6 |, (53)
4 1 0 0 0 0 0 1 0 0 | 18
0 0 0 0 0 0 o0 O I 1 [ z=0

useful

basic solution, v,=2, v,=2, y,=6, y,=18, x,=0, x,=0, u,=0, u,=0, z,=0, z,=0,

can be as an initial basic solution in phase-II method.
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Phase-II Method

The phase-II method can be used because the optimal solution is obtained by

Hence, from (53), the following simplex matrix can be
formulated by deleted the z; and z, columns, and the bottom row substituted

the phase-I method.

by (27).
X4 Xe Ve Ve u U, Vi Ye
2 —4 0 1 —-1/3 1/3 0 0
—6 12 1 0 1/3 —4/3 0 0
1 1 0 0 0 0 1 0
4 1 0 0 0 0 o 1 1
10 4 6 18 0 0 0 0

2
2
6
| 18
2t

(54)

From (54), v, and v, are really basic and then their bottom elements, 6 and 18,
must be equal to 0, By use of the elementary matrix row operatlons, we have

b.v.

1 x4

X2 Vi Ve o U, Vi Ve
Vo 2 —4 0 1 -1/3 1/3 0 0 2
v, —6 12 1 0 1]3 —4/3 0 0 ] 2
VA 1 1 0 0 0 0 1 0 61. (55)
Vs @ 1 0 0 0 0 0 1' 18 | -
0 | 10 4 0 0 4 2 0 2f —48 |

Since x; has the greatest positive value 10 at the bottom, it must become

new basic,

Comparing the ratios,

6/1, 18/4 (min.).

non-basic and thus, the pivot element is 4,

From (55), y, must become

Similarly, we have

b.v. X; X vy Ve u, Ug Vi Ve

Vs 0 —9/2 0 1 —1/3 1/3 0 —=1/2} =7

Vi 0 27/2 1 0 1/3 —4/3 0 3/2 | 29

i 0 & 0 0 1 —1/4| 3[2 . (5%)
%, 1 1/4 0 0 ,0 0 o 14l 9l

0 . 0 3/2 0 0 4 2 0 —5/212f-931

From (568), x, must become new basic instead of the basic variable y, because

the minimum ratio 1s——/3 The pivot element is 3/4. Similarly, we have
b.v X, X v Y, Y U, Vi Ve
v, 0 0 0 1 —-1/3 1/3 6 —2 2
v, o o 1 0 1/3-—4/3 —18 6 | 2 l
X 0 1 0 0 0 0 4/3 —1/3 2 1. GID)
X, 1 0 0 0 0 0. —1/3 1/3 4
0 0 0 0 0 4 2 =2 2f—95

It is evident that the optimal solution to this example la is obtained by the
two—phase method because the simplex matrix (57) is indeed guite the same
simplex matrix (38).

(2) From (17) (18), We have the following matrix equation:
—C —A"\ [x TI. 0 u) _ (— P
< 0 (v> + (o Im><y> - b)’

(58)



or B3+ hn(3) = (D). (59)

The matrix equation. (58) or (59) is an obvious consistent and has a basic
solution, u=—p, y=b, x=0, v=0; but not feasible. From the Kuhn-Tucker
Conditions, if the optimal solution to the quadratic programming problem is
obtained, the x and v must be non-negative (5) (6). Hence, x and v are the
possible basic variables to optimize the quadratic programming problem and the
matrix equation (59) can be solved for x and v by use of the inverse of B; if
B is non-singular (7, P, 54) . If B is singular, then the optimal solution to the
Quadratic programming problem can be obtained by use of the revised simplex

method proposed by M.H. Rusin (8] .

Example lc. From example la, (28)(29)(30)(31), will be changed into the
following matrix equation form (59)

—i g —1 —4]x 1 i (1) 0 0 0 u, —10
4 -8 —1 —11lx 1 00 ul _ | —4
1 1 0 of|vi|Tioo10f|wn|l=| s]. (60)
t 1 0 0lv, (00 0 1 Va 18
—2 4 —1 —4
. _ 4 -8 —1 -1 . .
From (60), the matrix B= 1 1 0 o | 1s non-singular,

4 1 0 0
whose determinant value is equal to 9 and its inverse is
0 0 —1 1
1 0 0 4 —1
BY=%1 1 _4 54 13} (61)
—1 1 18 —6

Premultiply both sides of (60) by B! (61) and we have

0 1 00 X | 43 0 0 4 —1 ul| _t2
0 010 vy 1 —4 —54 18 w127
0 0 0 1 Vs —1 1 18 —6 Vs 2

It is obvious that the basic solution, x,=4, x,=2, v,=2, v,=2, u,=0, u,=0,
y1=0, y.=0, satisfies the conditions (19) (20) or (32) (33) and thus, the optimal
solution to the example la is equal to (23) or (27),

2f=10.4+4.2+6.2+18.2, |
or =48,

It is clearly observed that the two-phase method requires more iterations
than the simplex method for the quadratic programming problem, but the revised

simplex method is more efficient.
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