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1. Introduction

It is usually planned in sample surveys to estimate parameters not only for
the entire population but also for its subdivisions, which may be called subpopula-
tions, or domains of study. 1f the domains represent classifications by variables
such as income, expenditure., age, sex, and so on, the domain to which a par-
ticular sampling unit belongs is not known until the sample has been taken.
Thus, the number of sampled units falling into each domain is itself a random
variable. This will naturally affect the precision of estimates in the domain of
study and is perhaps the most characteristic difference between the estimations of

parameters in the domain of study and in the entire population.

For generality, we shall only consider the cluster units containing different

numbers of elementary units. Let M, be the number of elementary units in the
i-th cluster unit, and let Yik be the observed value on the k-th elementary unit

within the i-th cluster unit. Let YikJ denote the observed value which belongs.

to the J-th domain.

N: number of clusters in the population,
n: number of clusters drawn from the population,
NJ : number of clusters in the population that fall into the J-th domain,

. number of clusters in the sample of n that happen to fall into the J-th

nj
domain,

M= E M, - total number of elementary units in the population,
i=1

MiJ : number of elementary units in the i~th cluster that fall into the J-th

domain,




Ny

MJ =i2_)_1MiJ : total number of elementary units falling into the J-th domain in
the population,
M.y - ) ) L .
iJ=k§1yikJ =MiniJ : total of y-variates in the J-th domain within the i-th
cluster,
Ny . o .
YJ =iily“ : population total of y-variates in the J-th domain,

YJ =YJ /NJ ¢ population mean per cluster of the J-th domain,

Y, "=Y_] /MJ : population mean per elementary unit of the J-th domain,

n
yy = Ei yiJ/nJ : sample mean per cluster of the J~th domain.
1=

Various estimators of the domain mean and total will be derived in different
sampling schemes, and their precisions will be compared. An estimator of the
gain in precision in the estimation of the domain total due to the use of one
sampling scheme as compared to another sampling scheme will be constructed on

the basis' of the former sample itself.

. Sampling without Replacement with Equal Probability

A sample of n clusters is taken from a population of N clusters by simple
random sampling without replacement. Consider first the estimation of the popula-
tion mean per elementary unit of the J-th domain from the sample. We shall

consider a ratio estimator in which MiJ is taken as the auxiliary variate.

{I‘I / ;‘] M 1
Yy =% y. % M, (1)
J is1 iJ 121 iJ
In the notation of the ratio estimator the population ratio RJ =YJ /XJ =YJ /MJ

=?J. By theoram 2.3 given by Wey (1970), assuming that the number of

clusters in the sample is large, we have

1—f Q 1 1 Moz — o 2
IiPM(l-‘_T) TN _1_‘_2 MiJ(yiJhYJ) (2)
J I 52 J i=1

J

Var(y| )=-



where £=n/N, Pj =1-Q; =Nj /N, and ﬁj =Mj /Nj.

Since it is often not known the values of NJ and MJ, the population total YJ
of the J-th domain is estimated by

n
LN W

A
Y= 2y

with variance being the same as expression (1.6) given by Wey (1970),
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lll. Sampling with Replacement and with Unejual Probabilities

If all the cluster sizes M, are known, we may take a sample of n clusters
with probabilities proportional to their sizes M. In this case the probability that
the i~th cluster will be selected with replacement is z; =M, / M. This sampling
scheme is called sampling with probability proportional to size (pps sampling). In
some applications the cluster sizes arée known only approximately. In others the
“gize” is not the number of elementary units in the cluster but simply a measure of
its bigness that is thought to be highly correlated with the cluster total y;. Con-
sequently, we shall consider sampling with probability proportional to an estimate
or measure of size M”; (ppes sampling). The probability of selecting the i~th clus-

T

Il Id
ter in ppes sampling is z; =Mi / M”, where M7= ElMi .
1=
(A) Estimation of the Domain Total

Before the derivation of an unbiased estimator for the domain total, we define

that to each cluster in the population is attached a variate y"‘i for the character y
such that

*

Yi=‘

{yiJ if the i-th cluster is in the domain J,
(4)

O otherwise.

Now, if a sample of n clusters is drawn with probabilities z; s and with replace~

ment, then a general linear estimator of the domain total Yy can be written as

Z

.\ ) .
Yyppes = 2q ' G 71 (5)



where c; ’s are unknown constants to be determined such that the estimator be
unbiased, and ti ’s are random variables defined as the number of times that the

i-th cluster appears in a specific sample of size n, where t. may have any of the

values 0, 1,-..... » 0. Obviously, the joint distribution of t; ’s is the multinomial
expression
!
f(tl’ ..... ’tN )= tl 1 tzn'ﬁ'tN [ 7;1‘ ztl
i=1 1
N
where Of;ftl, ------ sty =n and X ti =n. For the multinomial, the following proper-
i=1

ties of the distribution of the t; are well known:

5 = . \
E(ti ) nZl \

Var(ti )=nzi (1~zl- ) ' (6)

Cov(tl-, tj )=-—nzi Zj

Taking the expectation of the expression (5) with respect to the t.s we have

A N " N
Yppes ) = Elci yi E(t; )=ni£’ €2y

1=

E(

N
In order that YJppes be an unbiased estimator of YJ, we must have

(v Sk I\YJ
L(Y.Ippes )=i-—}-'1y' T Y=Y

which gives c; =(nzi )L,

Thus, an unbiased estimator of YJ is given by

5 1 XN * 1 2
YJppes =Ti§1ti i/ % = *}]‘iily”/ % 7

Py
The variance of YJppes is obtained as follows:

ar(d A Ny oot
\ar(YJppes )=iv Ei=21( 2 )* Var(t, )+2i<2k7-1 S Covitt )3
1
1 N Y? N y>!< yi’;
S L3 (-1, (1, )—2 % L koo
i1 7 " i<k % g 1k
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N Y (8)

N N
sincel = 3 z, =‘2 z. +(1——.E z; ).
= 1=

The foregoing can be summed up by the following theorem.
Theorem 1 If a sample of n clusters is drawn with probabilities z, and with
replacement, then

A 13
YJppes Y iilyiJ/Zi

is an unbiased estimator of the domain total YJ with variance

N y. N .
A 1 J i] J 2
Var(YJppes )=T Eilzl ( ?—YJ )2+(1—'1§121 )YJ ] (9)

Taking z; =Mi /M in theorem 1 gives the corresponding results for sampling

with probability proportional to size.

A
The next theorem shows how to estimate the variance of Y from the

Jppes
sample.

Theorem 2 Under the conditions of Theorem 1, an unbiased estimator of

A
Var (YJppes ) is provided by
var(¥ y= 1 [ z Vil -y ) + (n—n; ) Y2 3
Jppes n(n—1) 1 z; Jppes J Ippes (10)

Proof: We note that in sampling with replacement and with unequal probabilities the

— 5 —
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, n) are n independent unbiased estimaters of Y*

random variable y"{ / z; (i=1,
=YJ having the same variance, i.e. for each i (=1,------ , )
T N v N "
E(——)= z. (- )=y =Y
z, i1 1 j so1 1 1
yﬂi< i , N YT A
Var (— ) =FE(—- —Y*¥)*= 3 z. ( ——Y*)? =n Var (YJ )
z; z; j=11 i ppes
* %
i y
"ky20 for ixk.

and Cov ( Z—‘—
i %k

Ience, it is obvious that by setting w’;‘ =y’§ /Zi’ an unbiased estimator of Var (W’;< )

is given by

1 I -

oy 2wy wE)?

n-— i‘-=1

- 1 n A
where W =—h—l§1W1 =YJppes

\ (Q )= ! s (W —w#)?
art!yppes '~ n(n—1) ; 7
1 ny L, Yir 9 ro
_——n(n_l‘)— [1 El (?_Yjppes )2 4+ (n——nJ )YJppeS J

This completes the proof of the theorem.
Comparison with fampling with Equal Probability

(B)
. A
From the expression (8), it is clear that the variance of YJppes will be small

is roughly p-oportional to y? . In fact, the variance is zero when z. and y’;‘

if z,
i
are exactly proportional. Thus, it may be expected that if the regression of y’;‘

on Mi , the size measure is found to be a straight line passing through the origin,
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the ppes sampling will be very efficient. We define M’;‘ as M, if the i~th cluster

is in domain J and zero otherwise. Suppose the relationship between y’f and M’f is

of the form

* *
¥i —-A-I—BMi +ei (11)
where A and B are constants, and e; is a random variable with its conditional ex-

pected value and variance for a given M’; as

Fe; | M¥)=0, Var(e; | M} )=KM!E ' (12)

where K and g are constants, This model is based on the work of Des Raj (1958),
Zarkovich (1960), and Cochran (1953) who used the similar models.

Note that the variance of the estimator of YJ based on simple random sampling

with replacement is obtained by omitting the finite population correction term in

the expression (3) as

r Y . 2 N
A n;
where YJ = N 2 iy

and the variance of the estimator of YJ based on ppes sampling is given by

v Var (Y LI o+ Y42 3
ppes ar ( Jppes Y= [i=1 ?~ i
i *2
=Loiw 32 yey
21 M

The difference between the two variances is

: T
D=V__ —V N s 2
STSs ppes n . i \ 7



Substituting the value given in (11) for y"i‘ in the expression for D and taking its
expected value using (12), we get after simplification

N 2
n

. ’_ ’
E(D) = - [A’P, (1—23—' S M1 )48 Cov (MM )

Ny i
— —_ xg-1 o
4+ 2AB (M#¥ — M’PJ 1+ KCOV(Mi , Mi )]

where PJ =NJ /N, and

N
w47 y_ 1 N VT __};_v ’_’_/2\
Cov(Mi,Mi )~-ﬁi§ Mi (Mi —M7) = N = (Mi M7 )2>0

1 iel
Hence, ppes sampling will bte more efficient than srs, if

-1

KCov(M#ET vl ) =azp (M = M )
1 1 Ny ieJ
+2AB (/P —) —p2 Cov(M’f,M; ) (13)

From the inequality (13), it is clear that even if y* and M¥ are perfectly linearly
i i

related, that is, Var (ei | M;!‘ )=0, ppes sampling is not necessarily more efficient

than srs, for the inequality becomes

B2 Cov (ME,M, )-A2P (M » M7 1y Joan (WP, — i)
i’ J NJ i) b J

which may not be satisfied always. Thus, linearity of regressicn is not a sufficient
condition for ppes sampling to be better than srs. If the regression line passes
through the origin, that is,if A=0, the inequality (13) becomes

g-1
KCov(M¥ M D Cov(ME, V] ) (14)

*g-1
which is obvicusly satisfied if g>1, since K> 0 and Cov(Mi , M; ) > 0. Empir-

ical studies cenducted by different authors have shown that the value of g is likely

to lie between 1 and 2 in practice.

>



(C) Gain due to PPES Sampling

It is of interest to nate that it is possible to estimate unbiasedly the gain due
to ppes sampling as compared to “simple random sampling with replacement (srs
sampling )from the ppes sample itself. An unbiased-estimator of the variance of the

ppes estimator is already given in (10) as

L3 Y

. S _Y ;2
n{m—1) i1 % Jppes

N 2 2
var(Ylppes ) = ¥ o+ (n—nJ )Y.}ppes ] (15)

The variance of the estimator of YJ based on srs sampling with replacement is

1 Np2 o
n iJ 7]

A
Var (YJ )=

and an unbiased estimator of this on the basis of a ppes sample can be obtained by

. . . - 2 . .
noting that unbiased estimators of the terms % Y%J and YJ are respectively given

by

1 0 2 22 A
n ?"_ ¥i)/2; and Y-Jppes var (YJppes ).
i=1

A
Thus, an unbiased estimator of Var(YJ ) is given by

A

2
A 1 4y Yir 2 1
var(\_] )pres = 2 [N.E g Y ] +~n—var(Y

2

Jppes ) (16)

Jppes

i=1 %

By comparing this variance estimator with (15), we can make an estimator of the

gain Gppes due to the use of ppes sampling as follows:
n y2 1
A ” :
G =var(Y; ) —var (Y y= 1~2 J il (N— ") (17)
ppes I “ppes Jppes o’ 2 oz z;

Similarly, it is also possible to estimate the gain in precision by estimating
,\ . .
unbiasedly \'ar(YJppes ) on the basis of a random sample selected with srs. Since

N
=1 03 g% e

A
Var (YJppes n

j=



and unbiased estimators of ¥ y /zi and ¥*2 based on n units selected with srs are

3 respectxvely g1ven by

N 2 x2, N I 2
EAR L el 65
A A A 2 n n
and Y? var (Y'J‘ Y ? -1—{(:1_1) [.E'llyl‘]*‘ — ( Jl yip*
1= =

- /\ . " : M .. .
Thus, an unbiased estimator of Var(YJppe$ ) on the basis of a srs sample is given

by

A

Var(YJppes srs- n - n ;2

ence, an estimator of the gain Csrs due to the use of srs sampling is as follows:

A N JJ 52 v
- — —- - 1
Csrs var (YJppes )srs var (Y ] ) vy IZ J( N) (19)

It should be noted that in the above estimation of the gain in precision due to
the use of ppes or srs sampling, the costs involved in conducting both methods of
sampling were assumed to be the same. We summarize the foregoing in the fol-

.

lowing theorem.

Theorem 3 Let a sample of n clusters be drawn with probabilities proportional to
estimates of size with replacement (ppes sampling). Then, an unbiased estimator
of the gain in precision in; the estimation of the domain total due“to the use of ppes
sampling as compared to simple random sampling with replacement (srs) is provided

by

2 v
1 21 ¥ 1
Coee= e = Nt
PPes  mj.q % - %
Conversely, if the sample is selected with srs, then, an unbiased estimator of the
gain in precision due to srs as compared to ppes sampling is given by
N J 2
Gsrs_ n® E J( 'W'-QN)

(D) FEstimation of the Domain Mean

If the total number MJ of elementary units belonging to the J-th dorﬁaih in the

— 10 —
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population is known, then an unbiased estimator of the domain mean ?J is'given by

n

-

prpes n\IJ = /MJ

A

¥;3/% =Y Ippes
However, since it is often not known the value of MJ, we shall use an alterrative
estimator that is a ratio estimator in which the MiJ are treated as auxiliary var-

iates.

o1 Xy va 1 jM
yJPP~‘ES - n : 1Fz;] / E—I;‘ 1—le YJppes/ Jppes (20)

In general, the estimator is biased. It can be shown that the ratio of the

absolute value of the bias to the standard deviation of the estimator is less than or

equal to the coefficient of variation of MJppes’ i.e.

1 .
- ——— TS #,,"é"f*‘ 1/ =CV( \1 )
v _ My Var(MJ ) Jppes (21)
V. ppes
ar(y Jppes
N
3
where Var(Myppes )= }f C Ejl (11‘:] 7 ) +(1-—- 2 25 )’\IJ B (22)
i= 1

This result is extremely useful in practice when it is considered important that the
bias of the estimator be negligibly small in order that proper confidence statements

be made. In that case the sample size n is to be so chesen that the coefficient of

A
variation of MJppes is less than 0.1 (Wey (1968), Qec. 6.30 .

In the derivation of an approximate variance of ;JPPES , we define analogously

to the variate y"i= given in (4) a new variate M’!l‘ on each cluster in the population

as follows:

ME = (23)

{M” if the i-th cluster belongs to the J-th domain,
i

0 otherwise.

Then, the deviation of the estimator ?lppes from the true mean TJ is given by

— 11 —



Assume the sample size n ig large enough so that the terms of. order n!

.in the
expansmn of MJppe by the Taylor s series around MJ are negligible, Thig giV¢s
= v ! - *' Y ¥
Tppes ™Y1 =y X (v Y, MY ) /z;
Ji=1
Therefore, by Theorem 1 an approximate variance of 7Jppes can be obtained ag
follows:
- 1 N y —Y MF
Var (y )= o ¥ g 7 SN Y | a5 2
Ippes n\1‘12 im1 i 721
1S 2 (24)
J
An alternative €xpression for the approximate variance is
ar(y Y LG T—=y*) ¥, - —M*)
Tppes MZ i i i
) A
=1\12 [ Var( Yjp s )+ YJ Var(MJ es )
J
= A A
— 2\ Cov(YJppes , Mjp-pes 1 (25)

We summarize the above result in the following theorem.

Theorem 4 If a sample of n clusters is drawn with probabilities z. and with re-
placement, then the J-th domain mean ¥

] Per elementary unjt is estimated by

M
7Yl iJ
Y Ippes =1.z= /2

1 %; 1?12

with an approximate variance (to terms of order n

-1)
— 12 —



1 N

a2

J ——
- (v;)—Yy M7 -
nMJ

Vax(yjppes )= 2

Using Theorem 2, the approximate variance of —;prpes may be estimated by

var(y )=,,/1 ) (y:1—Y
Y Jppes 21 Y~ ¥ Ippes

2 2
s > ,\IiJ)/zi (26)
n (n—l)MJPpeS
We shall examine whether or not the ratio estimator ?Jppes should be used even
when M]’ the total number of elementary units belonging to the J-th domain in the

population is known. If My is known, then an unbiased estimator of the domain
mean —Y:J is given by

% I ;;J / Y /M
Yippes  nMj i___lyiJ z; =Yjppes /7

with variance
- A 2
; * Y
Var (y.lppes )y =Var( Y.Ippes ) /M_]

We assume that the sample size n is sufficiently large so as to make the bias of

Y Jppes negligible. Then, the approximate variance of Y)ppes given in (25) is valid.

1lence, ihe estimator ;Jppes will give a more precise result whenever
o T —— (27)

A A A
where p is the correlation coefficient between Y Ippes and MJppes , CV (M.lppes )

A A A
and CV (YJppes ) are coefficients of variation of Mlppes and YJppes respectively.

’ — N
Thus we see that it may be profitable to use the ratio estimator Yjnnes =YJppes /

N
MJppes , though biased, even in the case where the actual value of MJ is known,
provided the correlation coefficient between the estimator of the numerator and the

— 13 —



denominator satisfies the condition in (27). It may be mentioned from the expres-
sion (24) that the variance of ;Jppes would be small if the set of probabilities zy»

------ 2z used for selection is roughly proportional to both the numerator and the

denominator variables and if y’f / z, and M’f / z; are positively correlated.

V. Summary

1. If a sample of n clusters is drawn with probabilities z; and with replacement

{ppes sampling;, then

2 13
YJppes = n}il ¥i3/%;

is an unbiased estimator of the domain total YJ with variance

A
Var(YJppes — C 2'] IJ YJ 2 41— 2 z; ? J

i=1 i=1

A
and an unbiased estimator of Var (Y.Ippes ) is given by

A 1 nJ Yil

A
var (YJPPGS )= n{n—1) L "’1(’”“—

2 L2 -
; ) "l"(n“—!lj )YJppes J

Jpres
2. Under the model y’}‘ =A+BM’}< -l—ei where (e, | M’; )=0 and E(e:iZ | M’; ) =

KM’i"g, K(>0) and g are constants, a sufficient condition for ppes sampling with

A
replacement to be better than simple random sampling with replacement (YJ =

n
NSTy ) is that A=0 and g1,

D=1
3. An unbiased estimator.of the gain in precision in the estimation of the domain
total due to the use of ppes sampling with replacement as compared to simple

random sampling with replacement is provided by

y?
c 1 ZJ 4 1J _ 1 y.
PPeS n? i z;

— 14 —




4. In ppes sampling with replacemsnt, the domain mean \TJ may be estimated by

either

- ny Y; ny M:
v - ‘;J 7{J/ 5o il
ppes ;o1 %j i=1 *i

1 n
EJ yiJ/Zi

v = - _
or }Jppes :nMJ i=1

Buat . = . R . s . =% -
ut the estimator Yy peq will be more efficient than the estimator ¥ j,,eq if

the following condition is satisfied:

A
- cv (MJppes)

0 — —

A
2CV(Y Jppes)

. . . . ) A N
where p is the correlation coefficient between YJppes and MJppes , CV (YJppes Y and

¢ A Ay
( /[Jppes )y are cozffic ients of variation of Y.Ippes and MJppes respectively.
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