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This paper develops a two-stage estimation of a
dynamic panel quantile regression (DPQR) model with
individual fixed effects. The regressors in the model
include a lagged endogenous dependent variable and
other explanatory variables, which are correlated
with

the fixed effects. The estimation uses the fitted
value of the endogenous variable from the first
stage, and applies a penalized quantile regression
method for panel data in the second stage. The Monte
Carlo simulation shows that the proposed DPQR
estimation

effectively reduces the dynamic bias and performs
better than other estimators in finite samples. The
proposed approach 1s easy to implement and effective
in several practical applications.

Quantile regression, dynamic panel data, penalized
method



1 Introduction

Quantile regression (QR) for a panel data model has received wide attention in the-
oretical and empirical studies. Its advantages are that the QR reveals heterogeneity
effects of regressors on the dependent variable, and the panel data can control for
unobserved individual heterogeneity by including the individual effect. One issue
associated with the model is that demeaning or differencing techniques for the inci-
dental parameter problem cannot be used in the conditional quantile function. To
solve the incidental parameter problem of QR for panel data, Koenker (2004) first
proposes the penalized approach to estimate the QR for the fixed effect panel data
model where the penalty of the estimation serves to shrink a vector of individual
effects toward a common value. Lamarche (2010) further discusses the degree of
this shrinkage and shows that a suitable selected tuning parameter can reduce the
variability of the estimator. Recent papers on the QR for a panel data model include
Geraci and Bottai (2007), Abrevaya and Dahl (2008), Wang and Fygenson (2009),
Gamper-Rabindran et al. (2010), Canay (2011), and Kato et al. (2012).

The dynamic relationship of the panel data model is of great interest in empir-
ical applications. The correlation between the lagged dependent variable and the
fixed effect produces a dynamic bias in the estimation. Anderson and Hsiao (1982),
Holtz-Eakin et al. (1988), and Arellano and Bond (1991) present that the two-stage
least square estimation or the dynamic generalized method of moment (DGMM) in
the first-differencing model can be used to eliminate the dynamic bias and produce
consistent estimators. Such a first-differencing procedure is not feasible when ap-
plying the QR to a dynamic panel data model, and the model should be estimated
directly. It follows that the dynamic bias arises when applying QR to a dynamic
panel data model. Galvao and Montes-Rojas (2010) use the instrumental variable
quantile regression (IVQR) method of Chernozhukov and Hansen (2005, 2006, 2008)
to estimate the penalized QR for a dynamic panel data. Galvao (2011) also con-
siders the IVQR method for the dynamic panel model, without using the penalized
method. Other papers related to the QR for a panel data model with endogenous
variables are Arias et al. (2001), and Harding and Lamarche (2009).

This paper adopts a “fitted value” approach to eliminate the dynamic bias and
develops a two-stage estimation procedure for the dynamic panel quantile regression
(DPQR) model. The first stage consists of estimating a fitted value for the lagged



endogenous dependent variable. Under the assumption of independence between the
instrumental variable and the disturbance term of the DPQR model, the dynamic
bias can be eliminated by replacing the endogenous variable with its fitted value and
adding a constant term in the regression. Moreover, the fixed effect in this paper
is a pure location shift and does not depend on the quantiles. Specifying a dummy
variable that identifies individuals for the fixed effect is not available in this setting.
The fixed effects should be estimated directly, and this paper applies the penalized
QR of Koenker (2004) to improve the estimation of common model parameters by
controlling the variability introduced by the fixed effects. Therefore, the second step
is to replace the endogenous variable in the DPQR model by its fitted value and to
run a penalized QR for the panel data model to obtain the estimators.

The fitted value approach for the fixed effect DPQR model, by simply running
two-stage regressions, is appealing in that it is generally applicable and easy to
implement. The proposed estimator is extremely simple to compute and can be
implemented in standard econometrics packages. The estimators introduced in this
paper offers some computation advantages and should be viewed as a complement
to those in Galvao and Montes-Rojas (2010). This paper shows that the proposed
DPQR estimator is asymptotically normal with zero mean when both N and T are
large. In addition, we compare the bias and root mean squared error (RMSE) of
several estimators for the DPQR model under different scenarios. Using the Monte
Carlo simulations, in a finite sample the dynamic bias is effectively reduced under
the two-stage estimation. Comparing with the estimators of Koenker (2004), Gal-
vao and Montes-Rojas (2010), and Galvao (2011), the proposed estimator performs
better than the other estimators regarding the bias and RMSE. Thus, our estimator
competes efficiently with those methodologies applying to the DPQR model.

The remainder of this paper is organized as follows. Section 2 introduces the
econometrics method, proposes the DPQR model with a two-stage estimating pro-
cedure, and provides the large sample properties of the proposed estimator. Section

3 shows a Monte Carlo simulation.



2 Dynamic Panel Quantile Regression

2.1 Fitted Value Approach

Consider a dynamic panel data model with individual fixed effects:
yit:ayit—l—f—x;tﬁ—’—ni—l_uita Vizl,"',N,t:]_,"',T, (1)

where y;; is a real-valued dependent variable, y;;_ is the lagged dependent variable,
xi is a (dx x 1) vector of real-valued, continuously distributed, exogenous explana-
tory variables, 7; is the parameter that represents the individual fixed effects, a
and ( are unknown parameters, and u; is the error term. The fixed effects n; in
(1) capture some source of variability, or “unobserved heterogeneity,” that is not
adequately controlled by other regressors in the model. When N is a large number,
the estimation of N + k41 parameters is complicated and suffers from an incidental
parameter problem. In addition, by construction, y;_; is a function of the unob-
served individual effect n; and is correlated with the error term. An endogeneity
problem thus arises in the dynamic panel data model. To eliminate the dynamic
bias, Anderson and Hsiao (1982) suggest a two-stage least squares estimation by
using further lags of the dependent variable as instruments for first-differenced lag
dependent variable. Moreover, Holtz-Eakin et al. (1988) and Arellano and Bond
(1991) suggest using the DGMM estimator, which is based on moment equations
constructed from the first-differenced error term and lags of regressors.

To capture the heterogeneous covariate effects of the dependent variable, this
paper applies the QR for the dynamic panel data with fixed effects. The DPQR
model is able to capture the dynamic relationship of variables of interest, control
for unobserved individual heterogeneity with 7;, and reveal heterogeneity effects of
regressors on the dependent variable. Since the first-differencing procedure is not
feasible in the conditional quantile function, the QR for dynamic panel data model
should be estimated directly, but the correlation between the lagged dependent
variable and the fixed effect in (1) produces a dynamic bias in the estimation. Several
studies propose to solve this endogeneity problem in the DPQR model. For example,
Arias et al. (2001), following the control function approach, suggest a two-stage
estimation. Harding and Lamarche (2009), Galvao and Montes-Rojas (2010), and
Galvao (2011) introduce the IVQR method for panel data model.



This paper proposes the fitted value approach to eliminate the dynamic bias
in the DPQR model, and develops a two-stage estimation procedure. First, let
the endogenous lagged dependent variable can be divided into two parts: one is a
function of exogenous and instrument variables ¢;;_1, and the other is the residual
between y;—1 and g;_1. Let z; be a (dz x 1) vector of the instrumental variable,

then we have
Yit—1 = Yit—1 + Vi, (2)

where ;1 = Ui—1(xi, 2i¢) is a function of instruments, and v;; = Yy — Ji—1. In
this setting, v; is a real-valued unobserved random variable and is independent
of both z;; and z;. Here, further lags of the first-differenced dependent variable,
Ayy—j,j = 1,2,--- T — 1, can be used as instrumental variables, since the fixed
effect is eliminated by construction. For example, Ay;;_1, Ay;;—o can be valid instru-
ments for y;; 1. In addition, the exogenous variable z;; is allowed to be incorporated
into the first stage.

To identify the estimation procedure used, we need the following assumptions.
First, we need the consistency of the fitted value: g;;_1 should be a consistent
estimator for y; 1. Second, we need an assumption for the independence between

u; and z; as well as v, and 7; to identify the model.

Assumption 1. Wp — 1, the function §;_1(z, 2) = yi—1 uniformly in (z, 2)

Assumption 2. wu; is independent of z;, and v;; is independent of 7.
Replacing y;;—1 in (1) by the function (2) yields:
Yir = a(Yir—1 + vir) + 23,8 + 1 + uy
= afi—1 + T + 1 + (owip + ug).
By construction of model (1), u; is the above model is independent of the exogenous
explanatory variable x; and the fixed effect n;. Also, vy is independent of z; and
zi in model (2). With the independence assumption (Assumption 2), we obtain
that the conditional quantile function of Quu,,+u, (7|, i, ;) equals an uncondi-

tional quantile function Quu,,+u;, (7). Let Qavyytuy, (T) be ¢(7). Therefore, the 7-th
conditional quantile function for the DPQR model is:

Quat (Tlzit, 2it, i) = a(T) -1 + 25, B(7) + ni + (7). (3)
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where Q,,, (7|2, zit, ;) is the 7-th conditional quantile function of the dependent
variable, and «(7) and (1) are parameters at the 7-th quantile. In this paper the
fixed effect n; is a pure location shift effect and does not depend on the quantile
7. The penalized QR approach of Koenker (2004) can then be used to obtain
consistent estimators of «(7) and 5(7) in (3), where ¢(7) is viewed as the coefficient
of a constant term. This suggests that the parameters of the DPQR model can be
estimated by a two-stage procedure. The first stage of the two-stage procedure is
to construct a regression of ;1 on z; and x; and obtain the fitted value ;1. In
the second step of the two-stage procedure, the fitted value ¢;_; is inserted in place
of the endogenous dependent variable y;;_1, and the penalized QR approach for the
panel data model is used for (3). Therefore, the two-stage estimation corrects for
endogeneity of the DPQR model by replacing y;; 1 by 9;;—1 and can be viewed as a
variant of the fitted value approach. One may note that Galvao and Montes-Rojas
(2010) and Galvao (2011) also study the estimation and inference for the DPQR
model. They consider using the IVQR method for the endogenous problem, whereas
this paper uses a two-stage fitted value approach for the endogenous problem and

can be viewed as a complement to their papers.

2.2 Estimation and Asymptotics

The estimation procedure consists of two-stages wherein the first stage estimates
the fitted value of y;;_1. A practical formulation for ¢; 1 is to use the least squares
projection of y; 1 on z; and z; and possibly their powers. Efficiency can be im-
proved by choosing 7;;_1 appropriately. In the second stage, we suggest using the
penalized QR of Koenker (2004) to improve the properties of the estimation of (3).
The penalized QR method for the conditional quantile function (3) is to estimate

(3) for several quantiles simultaneously with a penalty term, as characterized by:

K N T N

min DD wkpn (i — 2 B(7k) — a(T)i—1 — c(me) =) =AY |nil, (4)
k=1 i=1 t=1 i=1

where wy, is the weight for the 7-quantile, k = 1,--- |, K, p.(u) = u-(7—1(u < 0)) is

the check function as in Koenker and Bassett (1978), with 1(-) an indicator function,

and )\Zﬁil |n;| is an ¢; penalty term with tuning parameter A. The weights wy

control the relative influence of the ¢ quantiles, {7, -+, 7k}, on the estimation of

the n; parameters. The penalty term in (4) is designed to shrink the variability of a
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resulting estimator with A > 0, and the tuning parameter A controls the degree of the
shrinkage. As Tibshirani (1996), Donoho et al. (1998), and Lamarche (2010) point
out, when N is large relative to T', the ¢; shrinkage is advantageous in controlling
the variability introduced by the large number of estimated 7; parameters, since the
fixed effects are estimated directly in the penalized method. Note that since ¢(7) can
be viewed as the parameter of intercept, we therefore have ¢, T-specific, estimates
of the intercept in the estimation.

In addition to Assumptions 1 and 2, to obtain the asymptotic properties of the

proposed estimator, we need more assumptions as follows.

Assumption 3. The variables y;; are independent across individuals, stationary
with conditional distribution Fj;, and continuous conditional densities f;; are uni-

formly bounded away from 0 and oo, fori=1,--- /Nyandt=1,---,T.

Assumption 4. Let #;; = [1, 9;_1, 2},) and B(7) = [e(7), a(7), B(7)] be a (dx+2) x 1
vector of parameters. There exist positive definite matrices Jy(7) and S(7) such that:

Wi X' Mp(m) ®(r)Mp(m)X - 0
JO(T) - Nalén%aoo NT o
0 o wrg X' Mp(7r)'® (75 ) Mp(T50) X
QuX'Mp(ri)'Mp(r1)X -+ Qg X' Mp(m)' Mp(7x) X
S(T) - N—><£>I,1%—>oo ﬁ o ’
QKlX/MD<TK),MD(7'1)X ce QKKX,MD<TK>/MD(TK)X

where X = [i'it]a MD(Tk) =1- PD(Tk)a PD(ﬂc) = D(D/(D<Tk)D)_1D/(I)(Tk), @(Tk) =
diag(f,,, (#,6(7) +n;)) and Q= w;(1; A7 — 7;7)w;, with D = [dy] as an incidence
matrix of dummy variable, and d;; as a dummy variable that identifies the N distinct

individuals in the sample.

Assumption 5. max; ||zy|| = O(VNT), and max; ||z:|| = O(VNT).

Assumption 6. \y/vVT — \.

Assumption 3 is standard in the QR literature. Assumption 4 uses the defi-
nition of the positive definite matrices for the central limit theorem to obtain the

asymptotic normality. Assumption 5 imposes bounds on the variable x; and ;.
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This assumption ensures the finite dimensional convergence of the objective func-
tion. In Assumption 6, the shrinkage of the fixed effects toward a common value
can decrease the variability caused by the presence of unobserved individual het-
erogeneity. Similar assumptions can also be found in Lamarche (2010), Galvao and
Montes-Rojas (2010), and Galvao (2011). Note that Kato et al. (2012) also discuss
the asymptotics for panel data QR model, and use asymptotics that do not invoke
the Bahadur representation in Koenker (2004). However, Kato et al. (2012) should
impose substantially stronger conditions on the rate at which 7" is supposed to grow
to infinity relative to N, and we rely on results from Koenker (2004), Galvao and
Montes-Rojas (2010), and Galvao (2011). Under the assumptions above, we can

establish the asymptotic normality of the proposed estimator.

Theorem 1. Suppose that AssumptionsA 1-6 hold. When N — oo, T — o0, and
N¢/T — 0, for some a > 0, then VNT(B(r) — (1)) converges to a normal distri-

bution with mean zero and covariance matriz Jo(7)~1S(7)Jo(7)~?

An asymptotically valid standard error of the estimator for the second step re-
quires a correction for the first step estimation, which makes the variance function
of the estimator very complicated. Thus, the bootstrap method is considered to
calculate the standard error of the proposed estimator. Let y;. = {yi1, -, vir},
x;. = {xp, - ,xr}, and 2z = {zn, -+, zir} be T x 1 vectors that contain T" ob-
servations. For the bootstrapping procedure, first, a random sample {y}, z}, 2} is
randomly drawn from the data {y;., i, 2., =1,--- , N} to create a resampled data
set {yr,a%, 25 i=1,---,N}. The DPQR estimates, 3*(7), can be computed from
the resampled data. Second, the above procedure is repeated B times to obtain
DPQR estimates, 5(7), 35(7),--- , B5(r). Third and finally, a consistent variance

estimator is obtained by:
2 B z S z !
Vi) = g 2 () =) (i - i)

WlthﬂE ¥(1) = B! 25:1 55(7)



3 Monte Carlo Simulations

This section studies the Monte Carlo study to investigate the small sample prop-
erties of estimators for the DPQR model. We compare the bias and RMSE of the
following estimators: (1) the two-stage estimator for the DPQR model in this paper
(DPQR); (2) the penalized QR for panel data estimator in Koenker (2004) (PQR);
(3) the penalized QR for panel data estimator using the IVQR method in Galvao
and Montes-Rojas (2010) (PQR-IVQR); and (4) the fixed effect QR estimator of
Galvao (2011) (FEQR). The latter two estimators use the IVQR method to reduce
the dynamic bias. Three DPQR models are considered in this section: (A) the pure

location shift model,

Yit =i + aYir—1 + Bxi + Wir;
(B) the location-scale shift model T,

Yir =i + Wir—1 + B + (Yot )i
and (C) the location-scale shift model II,

Yir =i + i1 + B + (1 + 12 )i

In all cases, we follow Galvao and Montes-Rojas (2010), set y; 50 = 0 and gen-
erate y;; for t = —49,—48,--- T, and discard the first 50 observations, using the
observations ¢t = 0 through T for estimation. The error term u; follows the normal
distribution N(0,02) with 02 = 1,3,5, the heavy-tail ¢t-distribution with 3 degree
of freedom (t3 distribution), or the y?*-distribution with 3 degree of freedom (x3
distribution).

The regressor z; is generated according to z;; = u; + &, where the fixed effect:

Wi = ey + = szta i NN 0,0'61)

and &; follows the same distribution as u;;. The fixed effects, 7; are generated as:

=e9 + — Zezb €2; ™~ N 07062)



From the above specification of the fixed effect, there is correlation between the
individual effects and the explanatory variables, ensuring that the random effects
are inconsistent. In the simulation, 7"= 10, N = 50, and the number of replications
is 2000. We also compare different sample sizes, with 7" = {5,15,25}, and N =
{50,100, 150}. In addition, the parameters a = {0.3,0.4,0.5,0.6,0.7}, 5 = 1, and
0., = 0, = 1. For the location-scale shift models, we use vy = 0.5 and v; = 0.1.

The estimators are analyzed for three quantiles 7 = (0.25,0.5,0.75). For the
DPQR, PQR-IVQR and FEQR estimators, we consider instruments y; o and z;
for the lagged dependent variable. Tables 1 and 2 report the bias and RMSE results
for estimates of the autoregressive parameter values for the location shift and the
location-scale shift models, respectively. Both Tables 1 and 2 show that, under
the normal error distribution, the autoregressive coefficient is biased upward for the
PQR and PQR-IVQR estimations, and is slightly biased for the DPQR estimation.
Tables 1 and 2 present that the DPQR estimator has lower bias and RMSE of &
than those of the PQR and PQR-IVQR estimators. Thus, the DPQR estimator
performs best among the estimations for the three DPQR models. Tables 1 and 2
also shows that B is biased upward for all three estimators, except for some values of
the DPQR estimators. Regarding the bias and the RMSE of 3, in Table 1 and the
upper panel of Table 2, the DPQR estimator also performs better than the other
two estimators. In the lower panel of Table 2, regarding the bias and RMSE, the
DPQR estimator performs better than the other two estimators for the lower to
middle quartiles (7 = 0.25,0.5) and the PQR-IVQR estimator performs better than
the other two estimators for the higher quartile (7 = 0.75).

Tables 3 and 4 report the bias and RMSE results under the N(0,3), N(0,5), t3,
and x3 distributions, for the location and location-scale shift models, respectively.
In Table 3, the autoregressive estimates of PQR and PQR-IVQR are biased upward,
and those of DPQR are biased downward. Regarding the bias and RMSE, Table 3
shows that for the normal distributions N (0, 3) and N(0, 5), and ¢ distributions, the
PQR estimator performs best among the three estimators; for the x3 distribution,
the DPQR estimator performs best among the three estimators. Table 4 presents
that the PQR estimator has the lowest bias and RMSE for different error distribu-
tions except the x3 distribution. The DPQR estimator performs better than the
other two estimators for the x3 distribution for 7 = 0.5,0.75. Moreover, regarding
the bias and RMSE of B, both Tables 3 and 4 show that, in all three DPQR models,



the DPQR estimator of § has lower bias and RMSE than the other two estimators
for all error distributions and across all quartiles.

Table 5 reports the bias and RMSE results with different panel sizes. The au-
toregressive parameter and [ estimates are biased upward for all three estimators.
Both the bias and RMSE are larger for small 7" and decrease as T increases, but the
bias and RMSE do not depend on n. In addition, it is seen that the PQR estimator
performs better than the other two estimators for the autoregressive parameter; the
DPQR estimator performs better than the other two estimators for # in the loca-
tion shift model. Similar results can be found in the location-scale shift models in
the lower two panels of Table 5. In the final part of the simulation, we consider
different values of tuning parameter A\. It is noted that the special case A = 0 of the
PQR-IVQR estimator is the FEQR estimator of Galvao (2011).

Table 6 shows the bias and RMSE results for different lambda values. For A = 0,
the PQR, DPQR, and FEQR estimators of a and  are biased downward; for A = 0.5
and 1, the DPQR estimator of « is biased downward; for A = 0.5, the DPQR
estimator of § is biased downward. For other values of A, the three estimators of «
and [ are biased upward. In the location shift model the FEQR estimator performs
best among the three estimator when A = 0, and for other values of A the DPQR
estimator has a lower bias and RMSE values. In the location-scale shift models the
PQR estimator performs best for A = 0,0.5, while the DPQR estimator performs
best for A = 1, 1.5, 2 regarding the bias and RMSE of o and . The results suggest
that the DPQR estimator performs well in large values of A for all three dynamic

panel models.

4 Conclusions

This paper has proposed a two-stage estimator for the DPQR model. In this paper,
the two-stage estimation method, adjusting the dynamic bias, depends crucially on
the assumption of independence between the instrumental variable and the distur-
bance term of the DPQR model. Thus, it would be useful to extend this assumption.
In addition, future research could also benefit by investigating the issue of efficiency

of the estimation, and the selection of .
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Table 5: Bias and RMSE results for different panel sizes (7 = 0.5)

T=5 T=15 T=25
N=50 N=100 N=150 N=50 N=100 N=150 N=50 N=100 N =150
The location shift model

PQR

& Bias 0.2134 0.2147 0.2157 0.0751 0.0749 0.0747 0.0400 0.0398 0.0400
RMSE 0.2174 0.2165 0.2169 0.0822 0.0785 0.0771 0.0467 0.0432 0.0424

ﬁ Bias 0.1477 0.1472 0.1468 0.0587 0.0595 0.0595 0.0314 0.0324 0.0321
RMSE 0.1713 0.1594 0.1552 0.0758 0.0680 0.0657 0.0482 0.0411 0.0383

DPQR

& Bias 0.1937 0.1978 0.1988 -0.1281  -0.1242 -0.1254  -0.1719  -0.1716 -0.1716
RMSE 0.2029 0.2023 0.2015 0.1349 0.1279 0.1279 0.1745 0.1729 0.1726

ﬁ Bias 0.0566 0.0584 0.0577 -0.0075  -0.0055 -0.0054  -0.0240  -0.0221 -0.0229
RMSE 0.1119 0.0899 0.0793 0.0490 0.0342 0.0275 0.0445 0.0345 0.0315

PQR-IVQR

& Bias 0.2947 0.2981 0.2998 0.1430 0.1697 0.1820 0.0881 0.1021 0.1089
RMSE 0.2988 0.2998 0.3008 0.1635 0.1813 0.1891 0.1059 0.1122 0.1160

ﬁ Bias 0.0641 0.0654 0.0639 0.0558 0.0558 0.0548 0.0327 0.0336 0.0338
RMSE 0.1141 0.0934 0.0842 0.0739 0.0651 0.0618 0.0491 0.0423 0.0398

The location-scale shift model I

PQR

& Bias 0.2284 0.2260 0.2274 0.0491 0.0476 0.0477 0.0220 0.0218 0.0216
RMSE 0.2309 0.2272 0.2282 0.0521 0.0493 0.0487 0.0242 0.0228 0.0224

B Bias 0.1142 0.1185 0.1179 0.0281 0.0280 0.0272 0.0133 0.0126 0.0123
RMSE 0.1345 0.1286 0.1244 0.0440 0.0363 0.0329 0.0277 0.0213 0.0187

DPQR

& Bias 0.2268 0.2274 0.2306 -0.1344  -0.1336 -0.1337  -0.1800  -0.1795 -0.1795
RMSE 0.2323 0.2303 0.2324 0.1383 0.1356 0.1351 0.1813 0.1801 0.1800

B Bias 0.0175 0.0202 0.0185 -0.0170  -0.0164 -0.0165  -0.0224  -0.0222 -0.0227
RMSE 0.0876 0.0631 0.0526 0.0431 0.0319 0.0279 0.0375 0.0305 0.0286

PQR-IVQR

& Bias 0.3125 0.3142 0.3160 0.0945 0.1166 0.1371 0.0625 0.0715 0.0726
RMSE 0.3148 0.3151 0.3166 0.1127 0.1330 0.1505 0.0716 0.0766 0.0761

B Bias 0.0526 0.0558 0.0548 0.0335 0.0346 0.0344 0.0159 0.0156 0.0153
RMSE 0.0918 0.0775 0.0690 0.0483 0.0426 0.0396 0.0298 0.0237 0.0212

The location-scale shift model 1T

PQR

& Bias 0.2129 0.2131 0.2137 0.0737 0.0732 0.0737 0.0389 0.0391 0.0387
RMSE 0.2167 0.2151 0.2149 0.0806 0.0766 0.0761 0.0453 0.0426 0.0411

B Bias 0.1493 0.1469 0.1481 0.0589 0.0579 0.0583 0.0340 0.0326 0.0326
RMSE 0.1714 0.1588 0.1563 0.0752 0.0665 0.0643 0.0492 0.0417 0.0384

DPQR

& Bias 0.1942 0.1946 0.1969 -0.1282  -0.1272 -0.1266  -0.1722  -0.1722 -0.1724
RMSE 0.2037 0.1992 0.1999 0.1352 0.1306 0.1290 0.1749 0.1735 0.1733

B Bias 0.0576 0.0578 0.0572 -0.0065  -0.0074 -0.0077  -0.0216  -0.0217 -0.0227
RMSE 0.1129 0.0885 0.0803 0.0488 0.0347 0.0291 0.0429 0.0343 0.0310

PQR-IVQR

& Bias 0.2948 0.2996 0.2993 0.1421 0.1654 0.1803 0.0881 0.1021 0.1063
RMSE 0.2989 0.3012 0.3004 0]1p18 0.1777 0.1878 0.1060 0.1120 0.1136

B Bias 0.0655 0.0637 0.0649 0.0560 0.0548 0.0551 0.0355 0.0344 0.0340
RMSE 0.1140 0.0916 0.0842 0.0734 0.0643 0.0616 0.0504 0.0430 0.0399




Table 6: Bias and RMSE results for different tuning parameter values (7 = 0.5)

A 0 0.5 1 1.5 2
The location shift model

PQR

& Bias -0.0755 0.0310  0.1234 0.1829 0.2173
RMSE 0.0860  0.0507 0.1293 0.1863 0.2198

B Bias -0.0098 0.0486  0.0943 0.1108 0.1078
RMSE 0.0625 0.0757  0.1113  0.1255 0.1243

DPQR

& Bias -0.3640 -0.2088 -0.0481 0.1031 0.1986
RMSE 0.3666  0.2147  0.0781 0.1198 0.2049

B Bias -0.0652 -0.0227 0.0189 0.0443 0.0385
RMSE 0.0841  0.0647 0.0656 0.0782 0.0773

PQR-IVQR; FEQR

& Bias -0.0719  0.0579  0.2127 0.2771 0.3003
RMSE 0.0932 0.0926  0.2260 0.2808 0.3024

B Bias -0.0172  0.0530  0.0687  0.0500 0.0307
RMSE 0.0646  0.0786  0.0925 0.0805 0.0723

The location-scale shift model I

PQR

& Bias -0.0234 0.0312 0.1003 0.1671 0.2110
RMSE 0.0298  0.0368  0.1048 0.1707 0.2135

B Bias -0.0046  0.0245 0.0568 0.0799 0.0851
RMSE 0.0424  0.0482 0.0712 0.0919 0.0983

DPQR

& Bias -0.3442 -0.1982 -0.0478 0.1113 0.2138
RMSE 0.3467  0.2018 0.0706  0.1279 0.2194

B Bias -0.0661 -0.0347 -0.0018 0.0199 0.0161
RMSE 0.0818 0.0596  0.0498 0.0573 0.0597

PQR-IVQR; FEQR

& Bias -0.0238 0.0540  0.1805 0.2787 0.3064
RMSE 0.0393  0.0717  0.2024 0.2841 0.3079

B Bias -0.0066  0.0312  0.0538 0.0420 0.0302
RMSE 0.0430 0.0529 0.0702 0.0642 0.0604

The location-scale shift model II

PQR

& Bias -0.0728 0.0291  0.1203 0.1820 0.2162
RMSE 0.0836  0.0490 0.1265 0.1855 0.2187

B Bias -0.0089 0.0491  0.0926 0.1085 0.1082
RMSE 0.0596  0.0746  0.1089  0.1235 0.1229

DPQR

& Bias -0.3643 -0.2114 -0.0510 0.1001 0.1964
RMSE 0.3669  0.2172  0.0785 0.1178 0.2030

B Bias -0.0647 -0.0230 0.0190 0.0433 0.0380
RMSE 0.0832  0.0627  0.0635 0.0773 0.0747

PQR-IVQR; FEQR

& Bias -0.0677  0.0558  0.2131 0.2770 0.3003
RMSE 0.0914  0.0909 0.2271 0.2807 0.3023

B Bias -0.0171 2 534  0.0681 0.0506 0.0324
RMSE 0.0623 20777 0.0901  0.0805 0.0719
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