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# % # & : In the past years we have explored Woodroofe-Stein ‘s
identity and its applications to sequential analysis
and Bayesian statistics. This project focused on its
application to dynamic models and relation to Kalman
fileter. We provide a new approach to obtain the
Kalman gain. A by-product of this project is to take
the present Woodroofe-Stein ‘s identity one step
further to obtain the multivariate Gram-Charlier

series.

#~ M4 ¢ Bayesian inference, dynamic systems, Kalman filter,
Woodroofe-Stein ‘s identity



Final report for project: Bayesian inference for some
dynamic systems

1 Introduction

The present project explored Woodroofe-Stein’s identity and its applications to dynamic
systems. First, it is shown that the current version of Woodroofe-Stein’s identity can be
taken one-step further to a series, from which a Gram-Charlier type expansion for multivari-
ate densities can be obtained. This result has appeared [3]. Secondly, for the applications
to dynamic systems, it is shown that this identity can give a novel derivation to the Kalman

gain. The details are given in next section.

2 Kalman filter revisited

The Kalman filter [2] is a recursive method that estimate the latent state of a linear dynamic

system. Consider the following linear dynamic model:

Xy = AXy 1 +Wi (1)
Y = HX;+V; (2)

where X; is unobserved state variable and Y; the measurement variable, both at time ¢.
Suppose that X; and W; are n-dimensional vectors, Y; and V; are m-dimensional vectors, A
is an nxn matrix, H is an mxn matrix, Wy ~ N(0,Q), V; ~ N(0, R), Q isnxn, R is mxm,
and both W; and V; are independent of X;, A, H,Q, R are known. Let D, = {Y1,...,Y}},
the collection of data up to time t. The state of the system can be represented by the
conditional mean and conditional covariance. Before observing the measurement Y;, the a

priori estimate of X; and the error covariance matrix are defined as

~

X; = E(X¢|D¢—1)
P = B[(X; — X)) (X — X)) [Di . (3)
Given knowledge of Y;, the a posteriori state estimate and the a posteriori estimate error
covariance are
X; = E(X|Dy) (4)
P, = B[(X; — X)(X; — X;)"|Dy), (5)



Update step

K, =P HT (HP HT + R) '
X=X, + K(Y; — HX])

P, = (I, — K:H)P[

Prediction step
X, =AX;
Pti = APtflAT + Q

Table 1: Kalman filter

The Kalman filter propagates the state variable from time ¢ — 1 to time ¢. The filter
consists of two steps: the prediction step and the update step. The prediction step infers from
(Xt_1,Pi_1) to (X;, P,7), and the update step from (X;, P;") to (X;, P;). The prediction
and update equations are given in Table 1. The n x m matrix K; in the update step is called
the Kalman gain. From the state equation (1) and the prior knowledge (Xt,l, P,_1)on X4,
the prediction equations can be easily obtained. The derivation of update equations are
more complicated. It can be derived by first applying Bayes rule to the posterior density
of X; given Dy, expanding the numerator and denominator in the expression, rearranging
all the terms, and employing the Matrix Inversion Lemma. Another approach starts by
writing the a posteriori state estimate X, as a linear combination of the a priori estimate

X{ and the difference between the actual measurement Y; and its prediction H )A(t_ ,

Xe= X + KoYy - HX]), (6)
and then determining the n x m matrix K; by minimizing the mean-squared error

E((X; — X)"(X; = X)|Dy).

The minimization involves substituting (6) into (5), differentiating the trace of P; with

respect to Ky, and setting the derivative equal to zero to solve K;. The resulting K is
K, =P HT (HP, H  + R) ™. (7)
With the Kalman gain K, the posterior covariance matrix can be derived rather straight-
forwardly. To begin, write
P, = E[(X; — X¢)(X¢ — X¢)T|Dy]
= B{[(X; = X;) = K((HX, + Vi = HX])[(Xy = X77) = Ko(HX, +V, = HX])]" Dy}
=P - P H'K!' - K{HP, + K;,(HP, H' + R)K], (8)

where the last line follows from (3) and the independence of X; and V;. Then, substituting

(7) into (8) gives the update of the error covariance estimate

P=(I-KH)P,.



For details of this approach, see Brown and Hwang [1].
Now we show how to derive the update step by Stein’s equation. First, write the

posterior density of X, given D; as

p(w¢|Dy) = p(xt|ye, Di—1) o< p(xe| De—1)p(ye|ze, Di—1)

= prior X likelihood
o ¢(xe; 2y, By )p(yelze)-
Next, let ¥ satisfy (P;)~! = 7%, and define
Zy = S ( X — X)). (9)

So, Z; ~ N(0, I,,), where I,, is the n x n identity matrix. The posterior density of Z; given
Dt is
p(2e| D) o< f (=) dn(2e) (10)

where
f(z) = e s(—HS a—Ha ) TR (y—HEy o~ Hip ) (11)

The density (10) is of the form for Stein’s equation. Therefore,

- E ((Et_l)THTR_l(Yt —HY 7, - HXt_)|Dt> ,
and collecting terms involving FE(Z;|D;) yields
(1+ (EHTHTRTYHY Y B(ZDy) = (5 HTHTR™V (Y, — HX)). (12)

Now, from (4), (9), (12), and the property (ABC)~! = C~!B~tA~! we obtain

X: = E(XiDy) =X, + %, E(Z|D;)
= Xy (e T HT RS (S0 ) T HT R (Y - HE)

— X+ (P '+H'R'H) 'HTR (Y, - HX,),

which is of the form as (6). Then, the desired expression of the a posteriori state estimate
can be derived by an application of the Matrix Inversion Lemma,
— _ -1 _ _ _ -1
(P '+H"R'H) H'R'=P H" (HP,H" +R) =K.
Once Ky is available, the posterior covariance matrix can be derived as shown in the previous

paragraph.



3 Discussions

The result in the previous section is a joint work with Dr. Coad. It gives a new derivation

for the Kalman gain. It will be combined with further findings and submitted later.
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Report on attending The Joint Statistical Meeting, August 8 - 13, 2015,
Seattle, Washington.

The Joint Statistical Meetings (JSM) is the largest statistical meeting held in
North America. The JSM 2015 was held August 8-13, at the Washington State Con-
vention Center. It was jointly held by organizations including American Statistical
Association, Institute of Mathematical Statistics, International Chinese Statistical
Association, International Society for Bayesian Analysis, Royal Statistical Society,
etc. The conference puts together short courses, keynote lectures, scientific sessions,
poster session, expositions, social events etc, and provides opportunities for partici-
pants to engage and network, and get inspirations to develop new ideas. This year it
attracted over 6,000 participants.

This year 1 was invited by Professor X. Wang in Department of Statistics at
University of Connecticut to the topic-contributed session sponsored by Bayesian
Statistical Science. My talk title is “Real-time Bayesian inference for latent ability
models.” It is about Bayesian online inference for models such as paired-comparison
models, item response theory models. 1 got a good chance to present my work and
communicate with many people about my research. I also attended two professional
short courses. One of them is “Applied text mining”, which is a hands-on workshop
with R code and packages for the practical application of text mining to real-world
applications, including data from survey comments, websites, etc. The other one is
“Software Engineering for Statisticians”, which provides basics of computer architec-
ture, revision control tools, code readability, etc. These materials are taught in a
computer science curriculum, but seldom part of a statistics degree; however, they
have become increasingly important tools for statisticians.

During these days, I met many old and new friends from industries and academics.
Having chats with them inspired me and encouraged me to keep on moving. I have

brought course materials from the two workshops. It was really a fruitful trip.
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