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Abstract

Most sequence alignment tools can successfully align protein sequences with higher levels of sequence identity. The
accuracy of corresponding structure alignment, however, decreases rapidly when considering distantly related sequences
(,20% identity). In this range of identity, alignments optimized so as to maximize sequence similarity are often inaccurate
from a structural point of view. Over the last two decades, most multiple protein aligners have been optimized for their
capacity to reproduce structure-based alignments while using sequence information. Methods currently available differ
essentially in the similarity measurement between aligned residues using substitution matrices, Fourier transform,
sophisticated profile-profile functions, or consistency-based approaches, more recently. In this paper, we present a flexible
similarity measure for residue pairs to improve the quality of protein sequence alignment. Our approach, called SymAlign,
relies on the identification of conserved words found across a sizeable fraction of the considered dataset, and supported by
evolutionary analysis. These words are then used to define a position specific substitution matrix that better reflects the
biological significance of local similarity. The experiment results show that the SymAlign scoring scheme can be
incorporated within T-Coffee to improve sequence alignment accuracy. We also demonstrate that SymAlign is less sensitive
to the presence of structurally non-similar proteins. In the analysis of the relationship between sequence identity and
structure similarity, SymAlign can better differentiate structurally similar proteins from non- similar proteins. We show that
protein sequence alignments can be significantly improved using a similarity estimation based on weighted n-grams. In our
analysis of the alignments thus produced, sequence conservation becomes a better indicator of structural similarity.
SymAlign also provides alignment visualization that can display sub-optimal alignments on dot-matrices. The visualization
makes it easy to identify well-supported alternative alignments that may not have been identified by dynamic
programming. SymAlign is available at http://bio-cluster.iis.sinica.edu.tw/SymAlign/.
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Introduction

Experimentally determining a protein’s structure is labor-

intensive and time-consuming. Homology search, on the other

hand, is a very effective way to predict the properties of an

uncharacterized protein [1]. Homologous proteins tend to have

similar structures. Their residue-residue equivalences can easily be

established using any standard alignment procedure. This strategy

is reasonably effective for proteins having more than 40% identity

but its accuracy, defined as the capacity to identify structurally

equivalent amino-acids, decreases significantly when considering

remote homologues. It is quite well established that below 25%

identity, sequence alignments become non-informative with

respect to the structural similarity [2]. In this range of identity,

an alignment based on amino-acid similarity may not be

structurally correct. This situation is very common with remote

homologues. In fact, the accurate alignment of remote homologues

remains a major challenge for computational biology [3].

Most protein sequence alignment tools rely on a scoring function

to measure the similarity between residues and give penalties for

insertion/deletions. The quality of the resulting alignments is greatly

influenced by the scoring function. The most common scoring

functions are called substitution matrices. They include the PAM

matrices [4], the BLOSUM series [5], GONNET [6], JTT [7], and

VT [8]. Each substitution matrix is designed for a different purpose.

For example, PAM matrices are designed to identify evolutionary

origins of proteins, while the BLOSUM matrices are to identify

protein members of the same family and to detect conserved

domains. Selecting a substitution matrix is difficult as it is still not

well understood which matrix is the best choice when aligning

different sequence pairs. A recent study [9] concluded that the

common belief that more accurate alignments of distantly related

sequences may be achieved using low-identity matrices is shown to

be false. Moreover, no evidence exists that selecting a matrix based

on sequence divergence improves accuracy. This point is quite

relevant, since the automated matrix selection is a key feature of

ClustalW [10]. Substitution matrices are extremely simplified

models of protein evolution. They assume all residues to evolve at

the same pace, and ignore any local effect that may influence the

mutability of a given amino-acid.
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The last issue has been an intense focus of research over the last

few years, and many methods have been produced that make an

attempt to model amino acid mutations in a position specific

manner. All these methods have their reliance on a pre-assembled

multiple sequence alignment (MSA) used as a profile. They include

Hidden Markov Models (HMMs) [11,12,13,14,15,16], and

Position Specific Scoring Matrices (PSSMs) which gives a weighted

score or a probability reflecting the frequency of each residue at

each position observed in a group of related sequences. PSI-

BLAST [17] is probably the best known method to generate

PSSM. Profile-sequence and profile-profile comparisons have been

successfully applied on homology detection and fold recognition

[12,18,19,20]. A couple of multiple sequence aligners have also

been developed that use the profile-profile alignment approach,

which include PCMA [16], SATCHMO [21,22], PRALINEpsi

[23], SPEM [24], PROMALS [25] and PSI-Coffee [3]. The last

three packages combine the profile-profile scoring scheme with a

T-Coffee style consistency based scoring scheme. A study [26]

found that profile-profile alignment gave an average improvement

of 2–3% over profile-sequence alignment and ,40% over sequ-

ence-sequence alignment. However, profile-profile alignment is

not an entirely trivial process and the improvement depends hea-

vily on the intrinsic properties of the considered dataset (average

identity, density of the phylogenetic tree, etc). This probably

explains why alternative studies [24] have found profile-profile

alignment approaches to lack a clear superiority over traditional

sequence-sequence alignment approaches.

Optimizing an MSA has been shown to be an NP-hard pro-

blem, hence a large number of methods have been developed to

address this important biological problem [27]. A majority of the

methods can be described as sophisticated variations around the

progressive alignment algorithm, originally described by Hogeweg

[28]. The algorithm starts with an all-against-all step where

pairwise comparisons are carried out in order to fill up a distance

matrix. This distance matrix is then resolved into a guide tree

whose topology defines the order in which the sequences will be

incorporated (one by one) within the MSA. This strategy is

extremely time-effective, but it can suffer from its extreme

greediness. Indeed, any pair of aligned sequences cannot be re-

aligned, and early inaccurate alignments may impact the whole

process through their influence on subsequent sub-alignments.

The quality of an MSA is therefore very sensitive to the guide tree

accuracy.

The excessive greediness of the progressive alignment can be

tackled by improving the quality of the first pairwise alignments.

This goal was the original motivation for the development of a

novel class of progressive aligners known as consistency based

progressive aligners. The original algorithm was developed for the

T-Coffee and later re-implemented in several aligners including

ProbCons [29] and PROMALS. The rationale of the consistency-

based approach is to use the all-against-all computation in order to

define a position specific scoring scheme for each pair of sequences

that takes into account their relation with the other sequences. In

this study, we decided to go further and extend the idea of the

consistency based approach. Its principle relies on synonyms, a

notion quite common in natural language processing. Its usage

makes it possible to capture local sequence similarities. In this

context, a protein synonym is an n-gram fragment of amino acids

that reflects the sequence variation in the evolution. Synonymous

n-grams can be effectively used to improve protein secondary

structure predictions [30].

In this paper, we extend the application of synonyms to the

problem of sequence alignment and present a method, called

SymAlign, to demonstrate how protein synonyms can be used to

improve the quality of protein sequence alignment. We applied

this method to two well-known benchmark datasets and estimated

the alignment quality using either reference alignments or

structure based evaluation methods (RMSD and iRMSD). Our

results show that SymAlign can generate alignments with better

RMSD/iRMSD. We also demonstrate that SymAlign is less

sensitive to structurally non-similar proteins when they are aligned

together with structurally similar proteins. Finally, in the analysis

of the relationship between sequence identity and structure

similarity, we demonstrate that SymAlign can better differentiate

structurally similar proteins from non-similar proteins.

Methods

The idea of protein synonyms
A synonym is a word that has identical or similar meaning as

another word in the same language. For example, lovely, pretty,

attractive, gorgeous, and so on all have similar meaning as

beautiful but with different spelling in English. They are literally

interchangeable with each other without changing the semantics of

a sentence. Polysemy is the opposite phenomenon, that is to say

the possibility for a single word to have different alternative

meanings, depending on the context. For example, the word

‘‘play’’ could be used as a verb, in the sense ‘‘being involved in a

game’’ or as a noun referring to a piece of writing performed by

actors. The exact meaning of a polysemy depends on the context

in which the word occurs. Technically, it is possible to align words

in two sentences according to the meanings of known words and to

infer the meaning of an unknown word from the word it is aligned

with. We used this idea to propose the definition and identification

of synonyms in protein sequences.

It is well known that a protein structure is encoded by its amino

acid sequence. Therefore, a protein sequence can be treated as a

text written in a language whose alphabet comprises 20 letters.

The protein’s structure is analogous to the semantic meaning of

the text. However, the translation from sequence to structure

remains a mystery. It is well known that homologous proteins

share similar structures [31]. Therefore, we can learn something

about protein language from those protein sequences.

We consider homologous proteins as sentences with similar

meanings. They contain similar information and describe similar

actions. Taking this analogy further, we may consider that the

mutations between homologous sequences are like synonyms in

two sentences. Thus we can create a mapping relationship

between those sequence variations. In terms of natural language,

a group of homologous sequences can be treated as a series of texts

with identical or similar meanings. These texts can therefore be

used to infer synonymous relationship from sequence alignments.

The main limitation here is that we do not have much knowledge

on how protein languages are composed and the precise rules or

grammar indicating the boundaries of protein words.

Structure conformation is a highly complicated process where

both long and short range interactions play an important role.

Long-range interactions are very hard to model, but the short

range ones can be effectively estimated using the n-gram model.

The simplicity of the underlying modeling is very popular in

formal linguistic analysis and bioinformatics sequence comparison.

For instance, the BLAST’s algorithm uses an n-gram model to

generate a collection of similar words [32]. Our approach follows

the same lines. Given a sequence alignment for proteins A and B

with high sequence identity (typically above 30%), we use a sliding

window to extract all word pairs to define synonyms. For each

word w in protein A, if there is another word w’ in protein B

aligned with w and there is no gap between w and w’, we say w and
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w’ are synonymous. The rationale is that since proteins A and B

are similar in sequences, the two words would probably express

similar structures. By extending the collection of proteins similar to

protein A, we can define a larger number of synonyms for each

word in A.

An important difference between protein synonyms and similar

words in BLAST is that protein synonyms are defined from

biologically significant sequence alignments (context-sensitive) while

similar words are more or less context-free. Protein words share

some properties with natural language words, including polysemy:

the same protein word may appear in different proteins with

different structures. Kabsch and Sander demonstrated that the same

five residues can be a part of an alpha-helix in one protein and a part

of a beta-strand in another protein, and they suggested that

pentapeptide structure is strongly dependent on sequence context

[33]. We can deal with this situation by restricting synonymous

assignments to protein pairs similar enough.

In practice, given a target protein pair S and T to be aligned, we

define synonyms for each word in S and T by using a sliding

window to screen the sequence alignments between one of the

target sequences and its similar sequences. We perform a PSI-

BLAST search to generate a number of sequence alignments

between S and S’ (similar sequences of S). Each synonym sw

extracted from S’ is associated with a word in S. All synonyms for

the words in protein S and T are collected this way. Whenever a

word sw is found that are both synonymous with a word ws in S

and a word wt in T, then ws and wt are considered to be

synonymous by transitivity. Figure 1 shows how this idea can be

used to connect regions of two protein sequences.

The similarity measure of residue pairs
First, we introduce some notations used in this subsection.

Consider we are given two sequences S and T to be aligned,

S = s1s2s3…sm and T = t1t2t3…tn, where si, tj are the i-th residue of S

and j-th residue of T, respectively. A protein word ws,i = sisi+1…si+l21

represents the subsequence of length l, which begins at si and ends at

si+l21. Let sws,i denote a synonym of the word ws,i, and F(sws,i) be the

frequency of sws,i, which is the number of appearances among the

similar proteins of S. Likewise, let swt,j represent a synonym of the

word wt,j, and F(swt,j) be the frequency of swt,j. If sws,i = swt,j, we say

ws,i and wt,j share a synonym and we define a similarity score

between ws,i and wt,j by sim_s = (F(sws,i)+F(swt,j))/2, which means that

all of the residue pairs (si, tj), (si+1, tj+1), …, (si+l21, tj+l21) are given a

similarity score of sim_s. The final similarity score between a residue

pair (si, tj) is determined by the summation of sim_s for all common

synonyms that cover residues si and tj.

To avoid some residue pairs having much higher scores than

others and resulting in a broken alignment, we normalize similarity

scores by a simple normalization scheme. All the residue pairs are

ranked by their similarity scores and we divide them into N groups

equally, i.e., each group has equal number of residue pairs. The first

group of residue pairs is assigned an alignment score of N, and the

second group N21, and so forth. N is set to be 500 in this study;

however, if the number of alignable residue pairs is less than 500,

then N is set to be the number of alignable residue pairs.

Generating the alignment by T-Coffee
T-Coffee can generate an alignment based on customized

alignment scores between residue pairs. We transform the si-

milarity scores of all residue pairs into a library file. A library file is

a list of pairs of residues that are considered alignable with a

designated score. When dealing with MSAs, we generate a library

file for each pair of protein sequences. T-Coffee builds a guide

tree based on the input library files and reports a multiple

sequence alignment. Figure 2 illustrates the complete algorithm of

SymAlign.

Figure 1. Connecting two counterpart regions by shared synonyms of two protein sequences. The words YIAKQRQ in protein S and
VKALPDA in protein T share two synonyms which are extracted from their similar sequences.
doi:10.1371/journal.pone.0027872.g001
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Two scoring functions for profile-profile alignment
In order to compare SymAlign with profile-profile alignment

methods, we selected two scoring functions to calculate the alignment

score for each residue pair and used T-Coffee to produce sequence

alignments. The two scoring functions, BASIC [34] and B-DHIP [35],

are described as follows.

BASIC is a profile–profile alignment method designed for fold

recognition, which was successfully applied at CASP3 [36]. Given

a pair of protein sequences S and T, BASIC is defined as follows:

D i,jð Þ~
X20

u~1

X20

v~1

A i,uð Þ|M u,vð Þ|B j,vð Þ½ �,

where D(i, j) is the alignment score for the residue pair (si, tj), A and

B represent the log-odds scoring matrices of the profiles for protein

S and T, respectively, and M is the substitution matrix (M is

BLOSUM62 in this study). BASIC compares two proteins from

their profiles with the scores from the background comparison

matrix.

B-DHIP is also a profile-profile alignment comparison method

for fold recognition, which uses a standard dot-product between

vectors of log-odds scores and probabilities of the 20 amino acids.

It is defined as follows:

D i,jð Þ~

P20

u~1

A i,uð Þ|~BB j,uð Þ
� �

z ~AA i,uð Þ|B j,uð Þ
� �� �

2
,

where Ã and B̃ represent the profiles of probabilities for the 20

amino acids at each position in S and T, respectively, while other

symbols are same as those in BASIC. We generate all log-odds

score and probability data for each protein sequence by PSI-

BLAST.

Performance evaluation
To estimate the accuracy of a sequence alignment, researchers

often use a reference-dependent measure, the quality score (Q-

score). It is defined as the ratio of the number of correctly aligned

residue pairs compared with the reference alignment. The

measure that depends on a reference alignment has been criticized

for the limited capacity to capture the structural correctness of an

alignment globally [37]. An alternative is to compute a reference-

independant measure, for instance, by estimating the quality of the

superposition induced by the alignment. Two such metrics have

been proposed: the RMSD (Root Mean Square Deviation) that

estimates the quality of the superposition, and the iRMSD (intra

molecular Root Mean Square Deviation) [37] that estimates the

difference of intra-molecular distances between pairs of equivalent

alpha carbons in a way similar to APDB [38].

In this study, we evaluated the performance using Q-score,

iRMSD and RMSD. We downloaded and modified the program

from the http://boscoh.com/protein/rmsd-root-mean-square-

deviation, which is used to calculate the RMSD between PDB

structures based on Kabsch’s algorithm [39]. To simplify the

calculation of the RMSD, each amino acid is represented by the

3D coordinates of the nitrogen (N), a-carbon (CA), carbon (C) and

oxygen (O) atoms on its backbone. Because RMSD is used to

Figure 2. The algorithm of SymAlign. We use PSI-BLAST to collect a group of similar sequences for the targets from which we
define synonyms. Similarity scores are estimated based on the shared synonyms. A library of all alignable residue pairs is made and fed into T-
Coffee for generating a sequence alignment.
doi:10.1371/journal.pone.0027872.g002
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measure the difference between two protein structures, we only

evaluated the performance of pairwise sequence alignment. When

measuring the performance of multiple sequence alignments, we

calculated the average RMSD between every pair of structures

within the MSA. The iRMSD was estimated using the

implementation distributed with the T-Coffee package.

Benchmark datasets
We assessed the performances on two benchmark databases:

BAliBASE 3.0 [40] and PREFAB 4.0 [41]. BAliBASE consists of

eight reference sets, meant to reflect real alignment problems.

Since most of the existing sequence alignment tools can

successfully align sequences sharing .40% identity but fail for

more divergent sequences with ,20% identity, we focused on

those divergent sequences in this study, And this subset, referred to

as RV11, has been shown to be most informative and predictive of

the ranking [3]. Furthermore, it is one of the few datasets in

BAliBASE where all aligned members have a known structure,

which serves to minimize the methodological biases [41]. RV11

consists of 38 test sets. Since BB11037 is the only test set that does

not contain PDB structures, it was excluded from this study. The

remaining RV11 contains a total of 256 sequences, distributing

exclusively in 37 MSAs and making up 933 pairwise alignments

with an average identity of 11.54%. BAliBASE alignments can be

evaluated either on the entire alignments or on pre-defined blocks

(core regions). The definition of these core regions is somehow

arbitrary and has recently been criticized. For this reason, we

decided to do the analysis on the entire sequences.

PREFAB 4.0 contains 1,682 pairwise reference alignments. We

filtered out some proteins that do not have PDB structures or

whose sequences are inconsistent with the associated PDB entries.

We also filtered out protein pairs having more than 20% identity.

The resulting subset includes 1,553 sequences and 954 pairwise

alignments. The average sequence identity is about 10.01%. Like

RV11, we conducted the analysis on the entire sequences in

PREFAB and ignored the annotation of core regions.

Sequence Alignment Packages
We compared the performance of SymAlign with eight state-of-

the-art methods: ClustalW (version 2.1) [10], Dialign (version

2.2.2) [42], MAFFT (version 6.847beta) [43], MTRAP (version

1.2) [44], MUSCLE (version 3.8.31) [45], Probalign (version 1.4)

[46], T-Coffee (version 8.97_101117) [47], and ProbCons (version

1.12) [29], as well as the two scoring functions for profile-profile

comparison BASIC and B-DHIP described in this section.

Results and Discussion

Comparison with existing methods on pairwise
alignments

The comparison of pairwise sequence alignments on the

BAliBASE and PREFAB are summarized in Table 1. It is worth

noting that for the reference-independant measures, the best scores

are estimated on the reference alignments: 1.28 Å and 6.81 Å for

the iRMSD and the RMSD on BAliBASE’s RV11, 1.15 Å and

6.25 Å on PREFAB. The consistency-based methods outperform

the others in terms of Q-score, RMSD, and iRMSD. The results of

most methods on the two datasets are in reasonable agreement in

the three metrics, and with slightly more fluctuations when

considering consistency-based methods.

SymAlign achieves the best performance on the two datasets in

terms of all the three measures, and Probalign achieves the second

best ranking in iRMSD and RMSD measures. Since SymAlign

computes the similarity scores of residue pairs and uses T-Coffee

to generate alignments, the results of the two methods can be

directly compared. SymAlign achieves an improvement of 6.2% in

Q-score and 2 Å in RMSD over T-Coffee on BAliBASE’s RV11,

and 1.11% in Q-score and 1.73 Å in RMSD on PREFAB.

Furthermore, observed from Table 1, it is noteworthy that

Probalign, MTRAP, T-Coffee, ProbCons and MUSCLE achieve

equal performance in Q-score (ranging from 21.03% to 21.80%

on PREFAB), though their average RMSDs vary from 11.89 Å to

13.30 Å. It shows that RMSD can better demonstrate the

alignment quality in terms of the resulting structural superposition.

However, the differences in iRMSD among these methods are not

distinguishable. It suggests that RMSD is a better choice to

estimate the alignment quality than iRMSD. It is also interesting

to note that, the scoring functions of profile-profile comparisons do

not perform better than traditional sequence-sequence comparison

methods.

Table 1. Comparison with existing methods on pairwise alignments.

Methods BAliBASE’s RV11 PREFAB

Q-score (%) iRMSD (Å) RMSD(Å) Q-score (%) iRMSD (Å) RMSD(Å)

SymAlign 45.78 1.31 11.10 22.56 1.35 11.57

Probalign 40.42 1.38 11.84 21.10 1.40 11.89

MTRAP 39.71 1.41 12.97 21.80 1.44 12.91

T-Coffee 39.58 1.38 13.10 21.45 1.43 13.30

ProbCons 38.76 1.38 13.15 21.03 1.40 13.23

MUSCLE 37.44 1.42 13.23 21.18 1.47 13.29

MAFFT 35.35 1.41 13.63 19.13 1.45 13.78

ClustalW 34.21 1.48 13.69 19.14 1.50 13.29

B_DHIP 27.44 1.48 13.75 13.81 1.43 12.93

Dialign 29.78 1.42 14.91 15.71 1.42 14.00

BASIC 14.91 1.41 16.73 8.57 1.48 14.86

Every pair of proteins contained in each test set was aligned with each aligner and subsequently evaluated with the three metrics: Q-score, iRMSD and RMSD. SymAlign
achieves the best ranking on the two test sets and the three quality measures.
doi:10.1371/journal.pone.0027872.t001

Improving the Alignment Quality

PLoS ONE | www.plosone.org 5 December 2011 | Volume 6 | Issue 12 | e27872



Comparison with existing methods on multiple
alignments of the benchmark datasets with and without
outliers

We further compared these methods on multiple sequence

alignments of the BAliBASE’s RV11, and the results are shown in

Table 2. Probalign achieves the best RMSD on RV11. SymAlign

achieves the second best, showing a 1.11 Å improvement over T-

Coffee. It can also be observed that the RMSDs of all of methods

get improved compared with results on pairwise alignments except

MTRAP. In general, multiple alignments can achieve better

alignment quality since they can benefit from pairwise alignments

through either the progressive alignment strategy, or via the

consistency-based scheme.

Note that the protein members in each MSA of RV11 are

specially selected. Although their mutual sequence identities are

below 20%, they are structurally similar. This defines a very

challenging situation albeit not entirely realistic. In practice, it is

common to align a set of sequences containing non-homologous

ones. Unfortunately, the progressive alignment procedure can be

strongly affected by non-homologous sequences. In order to

estimate the alignment quality when facing such problem, we

simulated this situation by adding ‘‘outliers’’ into each test set of

RV11 as described below. Given two sequences Pi and Pi9, let

SeqIdy(Pi, Pi9) denote the sequence identity of Pi and Pi9 calculated

by T-Coffee, and TMscore(Pi, Pi9) denote the TM-score of Pi and

Pi9. Note that TM-score is a score between (0,1] to measure the

similarity of topologies of two structures [48], which is estimated

by TM-align [49], a structural alignment program. The higher the

score, the more similar the two structures. Given a test set U = {P1,

P2, …, Pk} of RV11, we generated an outlier Pi9 for each Pi, where

Pi9 is selected from any other test set that maximizes the difference

between SeqIdy(Pi, Pi9) and TMscore(Pi, Pi9). We then tested on the

new test set U’ given by {P1, P2, …, Pk, P19, P29, …, Pk9} For

example, we add proteins BB11035.1dvh, BB11002.1ihv_A,

BB11033.1erv, and BB11026.1ubi into BB11001 as outliers. The

new test set BB11001’ includes four original protein members and

the four outliers.

We intended to disturb the guide tree by adding outliers. The

outliers are involved in the process of MSA, but not involved in the

evaluation of alignment quality. They serve as noises to test the

robustness of an alignment tool. To compare the performance of

different tools on the new dataset RV11 with outliers (denoted as

RV11’), we calculated the RMSD on the original protein pairs

according to the resulting MSA. The comparison results on RV11’

are shown in the second column of Table 2. It can be observed

that SymAlign achieves the best performance, which suggests that

SymAlign is robust to outliers while Probalign, MUSCLE, and

MAFFT are more sensitive to outliers, and their RMSDs are

increased by more than 1.5 Å.

Identification of structural similarity
The performance of a method on benchmark datasets may not

always be representative of its performance on real datasets.

Indeed, a real dataset sometimes includes protein sequences that

may not be structurally similar. However, there is little discussion

in the literature about the alignment quality for protein sequences

with no structural similarities. In reality, given sequence

alignments with ,20% identity, one has difficulty in distinguishing

between structural similarity and non-similarity no matter how

accurate an aligner can achieve on these sequences. Thus in this

section, we evaluated each method by how its alignment results

reflect structural similarity or non-similarity.

Table 2. Comparison with existing methods on multiple
alignments and outliers.

Methods

1. BAliBASE’s
RV11

2. BAliBASE’s
RV11’ (with outliers)

RMSD(Å) RMSD (Å)

SymAlign 9.20 9.40

Probalign 8.70 10.20

T-Coffee 10.31 10.80

ProbCons 10.31 11.09

MUSCLE 11.75 13.39

Dialign 11.90 11.64

MAFFT 12.21 13.89

ClustalW 12.44 13.39

MTRAP 16.38 16.53

We estimated the alignment accuracy on the original RV11 test sets and those
with additions of outliers. The experiment result shows that SymAlign is more
robust to outliers than any other aligners tested here.
doi:10.1371/journal.pone.0027872.t002

Table 3. The comparison results of identifying structural similarity on RV11.

Method Sequence Identity .10% Sequence Identity .15% Sequence Identity .20%

Precision Recall Precision Recall Precision Recall

TM-align 93.40 23.74 100.00 10.61 100.00 6.42

SymAlign 40.57 23.46 81.13 12.01 100.00 7.26

Dialign 6.69 28.21 28.77 11.17 90.00 7.54

ClustalW 1.65 65.36 18.46 20.11 85.71 8.37

MTRAP 1.63 65.08 17.41 21.78 88.89 8.94

Probalign 1.61 63.13 6.62 26.53 85.41 11.45

T-Coffee 1.55 74.02 6.44 28.49 77.77 9.77

ProbCons 1.52 74.86 5.96 32.12 74.00 10.33

MUSCLE 1.47 83.80 3.39 38.26 72.73 11.17

MAFFT 1.32 88.83 1.66 60.05 19.87 17.32

doi:10.1371/journal.pone.0027872.t003
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To this end, we generated all possible sequence pairs in

BAliBASE’s RV11 and PREFAB, i.e., 31,707 and 1,205,128 pairs,

respectively. A recent study on TM-align [50] suggested that protein

pairs with a TM-score .0.5 are mostly in the same fold while those

with a TM-score ,0.5 are mainly not in the same fold. We used TM-

Align to label each pair as a proven positive (PP) if TM-score $0.5 or

a proven negative (PN) if TM-score ,0.5. In BAliBASE’s RV11,

1.13% of the pairs were labeled as PPs and 1.09% in PREFAB. We

aligned all of the pairs by each method considered here and

evaluated the usefulness of sequence identities to indicate correct PP

or PN labels. We used thee different thresholds of sequence identity,

i.e., .10%, .15%, and .20%, to predict each sequence pair to be

structurally similar. We then calculated the precision = TP/(TP+FP)

and the recall = TP/(TP+FN). The results on RV11 and PREFAB

are summarized in Tables 3 and 4, respectively.

SymAlign consistently achieved the highest precisions among all

sequence aligners at the three different identity thresholds,

especially at 15% identity threshold; it achieved 81.13% precision

on RV11, outperforming the second best aligner (Dialign) by a big

gap of 52.36%. It shows that SymAlign has a much lower

tendency than other aligners to over-estimate similarity between

structurally non-similar sequences. On the other hand, SymAlign’s

recalls at the three identity thresholds are very close to those of

TM-Align, showing SymAlign’s alignments are very close to

structure based alignments by TM-align to reflect true structural

similarity. As a result, the identity estimated on SymAlign

alignments is more informative for structure similarity.

Tables 3 and 4 also show that the recall for TM-align and

SymAlign are very close. We estimated the agreement between the

two methods (Table 5) and found it to be very strong. This result is

especially interesting, considering that TM-align is a structure-

based method while SymAlign is merely based on sequence

comparisons. SymAlign demonstrates a significant improvement

in precision over all other tools in distinguishing between structural

similarity and non-similarity based on sequence similarity. Most

methods over-estimate sequence identity when fed with a pair of

structurally non-similar sequences. Their precisions are close to

the ratios of positives on the two datasets.

Sequence alignment visualization
Most sequence alignment tools only report for each pair of

proteins a single alignment with the highest score and provide

visualization in the text of sequences to show the alignment result.

However, the alignment is not necessarily the best one. Dot matrices

are convenient ways to represent alternative alignments. We show

here (Figure 3) how the SymAlign can be used to represent the

suboptimal alignments between two sequences. The figure shows

the alignment of 1bb9 and 1ov3_A selected from BAliBASE’s RV11,

where 1bb9 corresponds to the vertical axis while 1ov3_A

corresponds to the horizontal axis. Dots are shaded according to

a grayscale reflecting the number of shared synonyms associated

with each residue pair. The darker the dot, the larger the number of

shared synonyms. The reference alignment is illustrated by red dots.

As one can see, the left side of the matrix shows an alternative

alignment with a pattern very similar to the reference alignment.

We aligned the two sequences according to the two diagonal

patterns shown in the figure and measured their RMSDs. The

reference alignment produces an RMSD of 9.12 Å, while the

other one produces an RMSD of 13.65 Å. This observation is

totally consistent with an inspection of the structures showing that

1ov3_A is probably a tetramer and 1bb9 a dimer of some common

homologous ancestral repeat.

Conclusions
In this paper, we present a new method, SymAlign, to align

protein sequences, using the concept of protein synonyms, instead

of a substitution matrix or a position-specific scoring matrix used

by traditional alignment tools to calculate the alignment score

between residue pairs. We demonstrate that the shared synonyms

can improve the similarity estimate between equivalent residues.

SymAlign is evaluated on the most difficult test sets of BAliBASE

Table 4. The comparison results of identifying structural similarity on PREFAB.

Method Sequence Identity .10% Sequence Identity .15% Sequence Identity .20%

Precision Recall Precision Recall Precision Recall

TM-align 94.53 14.55 98.42 7.59 98.75 4.22

SymAlign 14.25 15.68 70.41 8.70 95.89 4.78

Dialign 3.03 24.77 22.65 9.55 87.14 4.88

MTRAP 1.42 50.71 10.68 14.38 87.02 5.74

Probalign 1.41 51.29 5.07 19.15 70.44 6.79

ClustalW 1.39 52.46 9.26 14.56 81.08 5.79

T-Coffee 1.27 58.22 4.34 20.52 59.45 6.91

ProbCons 1.25 60.52 3.84 21.59 55.05 7.18

MUSCLE 1.17 67.25 2.82 25.87 53.63 7.16

MAFFT 1.10 79.29 1.48 45.02 13.69 10.92

doi:10.1371/journal.pone.0027872.t004

Table 5. The proportions of positive cases both identified by
TM-align and SymAlign to those only identified by TM-align
with respect to different thresholds.

Sequence
Identity .10%

Sequence
Identity .15%

Sequence
Identity .20%

BAliBASE’s RV11 91.76% 89.47% 95.65%

PREFAB 86.39% 90.95% 92.73%

The experiment shows that the agreement between SymAlign and TM-align on
RV11 and PREFAB datasets is very strong.
doi:10.1371/journal.pone.0027872.t005
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and PREFAB, and experiments show that SymAlign can align

sequences more accurately than alternative methods.

An interesting novelty in the benchmark described here is our

assessment of the impact of unrelated sequences. We define a fairly

realistic situation to compare various methods. By altering each

test set through the addition of unrelated sequences, we

demonstrate that SymAlign is very robust to outliers. This should

be an essential feature for any sequence aligner because the

inclusion of outliers within a group of homologues frequently

occurs in sequence analysis.

SymAlign can align sequences to better indicate their preserved

3D structures than standard sequence aligners. On the benchmark

datasets, we show that whenever SymAlign delivers an alignment

with more than 15% identity, the considered sequences are more

likely to be in the same fold.

Furthermore, SymAlign displays not only the optimal but also

the sub-optimal alignments on dot-matrices. A fine grayscale

makes it easy to identify alternative alignments that may not have

been identified by dynamic programming. It is especially useful

when aligning distantly related sequences. Altogether SymAlign

should prove an interesting development for T-Coffee. The

increased accuracy provided by SymAlign will be especially

important and useful in all situations where accurately aligning

distantly relates homologues is a limiting step.

Figure 3. The dot matrix generated by SymAlign for proteins BB11002.1bb9 and BB11002.1ov3_A in RV11. A grayscaled dot
represents the number of shared synonyms corresponding to a residue pair. We turn a grayscaled dot into a red-scaled one if the corresponding
residue pair is annotated as an equivalent pair in the reference alignment. As one can see, the left side of the matrix shows an alternative alignment
with a pattern very similar to the reference alignment.
doi:10.1371/journal.pone.0027872.g003
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