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Abstract—Resource provision for services that have time-
varying demands has raised a great concern to service providers
aiming at high-standard service quality. We propose a new
resource provision approach using service simulation and arrival
rate estimation that integrates unsupervised clustering and statis-
tics techniques. We first cluster days that have similar arrival
patterns together, where from each cluster we can reveal and
separate days having different reasons for time-varying demands
of the service. We then adopt the two layer business factor model
to estimate multi-interval Poisson arrival distributions on daily
bases for simulating stochastic processes. Applying simulation on
queuing models with multi-interval Poisson arrival processes, we
can observe stochastic changes of customer waiting time, queuing
lengths and number of workers under different service strategies.
We conduct a case study on an electricity service call center in
real industries, showing how to build adequate resource provision
and estimation against history data in past years and how the
performance improved compared to their previous heuristics in
real life operations.

Index Terms—Arrival rate estimation, Service simulation,
Time-varying demands, Resource provision

I. INTRODUCTION

Cloud computing has affected lives everywhere. While
cloud computing platforms have been widely adopted as solu-
tions to provide scalable services in recent years, management
of cloud-based services [1] faces a great challenge of on-
demand resource provisioning and allocation in response to
time-varying workloads. These demands are stochastic because
of customer randomly requests. According to NIST [2]], cloud
computing is a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable com-
puting resources (e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction.
facilitate dynamic resource reallocation according to service
demands [3]]. Cloud computing allows companies to start small
and increase hardware resources only when there is an increase
in their needs. Because of the ability to pay for use of comput-
ing resources on a short-term basis, providers of cloud-based
services are rewarding conservation, having machines and
storage come and go on demand. Virtual machines (VMs) that
can be instantaneously cloned as multiple replicas running on
the same or different physical host facilitate dynamic resource
reallocation. As a result, cloud computing enables ubiquitous,
convenient and on-demand network access to a shared pool

of configurable computing resources (e.g., networks, servers,
storage, applications and services) [2].

Still in practice, e.g., Elastic Compute Cloud (EC2) from
Amazon Web Service (AWS) [4], S]], service providers are
asked to provide resource reservation plans in a long-term
lease. Experimentation of cloud computing in a real environ-
ment is expensive, time costly and not repeatable [6]. The
cost could be increasing significantly observing poor system
performance and worse clients’ experiences after actually
launching and running the services under the reservation plan.
To have a systematic estimation of the effects of adjustment
on the workloads and the cost of each hour or day with time-
varying demands, simulation poses an attractive solution that
provides observations of the stochastic processes of a relatively
closely-estimated system of cloud services.

The estimations can be used to build adequate reservation
plans without launching the service. It is essential that the
service provider has suitable resource provision regarding the
cost and the quality of service, having sufficient amount of
resources allocated to meet service agreements. On the other
hand, through the simulation, the service provider can also
observe clients’ experiences with varying demands when the
server runs different reservation plans or strategies. Neverthe-
less, setting a simple reservation policy, e.g., a heuristic sched-
ule to dispatch resources in various periods, may directly lead
to under-provisioning or over-provisioning of resources [4].

To improve the precision of resource provision, we propose
a systematic approach for synthesizing workloads of daily
reservation policy under different service quality strategies
through arrival rate estimation and service simulation. The
simulation shows the stochastic processes under the esti-
mated arrival distributions, providing information for service
providers to build a reservation plan, e.g., the number of VMs
to fulfill the demands in each period, and hence prevent under
or over-provisioning situations.

In this work, we are particularly interested in time-varying
demand services on daily basis. Specifically, given history
data on arrivals, we first divide a day into several equal
length periods and accumulate the arrivals in each period. The
arrival pattern of a day is then considered as a high dimension
vector with attributes as periods and values as the number of
arrivals in each period. These day arrival patterns may vary
due to the dates of the day, e.g., weekends, or unusual events
that happened in the day, e.g., typhoons and earthquakes.



To characterize different day patterns, we adopt unsupervised
clustering on each day according to their arrival pattern. Days
that fall in the same cluster have similar arrival patterns in a
day.

We then adopt the two layer business factor model [7] to
estimate distributions of each period as the day arrival pattern
of each cluster for simulating the stochastic process. The two-
layer model reflects the busy level of a day and its relations
among periods within a day. After having the estimated arrival
distributions, we simulate the stochastic processes to observe
the workload of a day under different resource reservation
plans and strategies.

Finally, we conduct a case study on an electric service
company in Taiwan. We collect thousands of logs of their
history call data from their call center from 2012 to 2015.
The arrival patterns are clustered into five groups; from these
clusters we can check history data and identify features of
these days, such as weekends, regular working days, and
days that have unusual events happened with severe damages.
We estimate the arrival patterns for each cluster and the
service rate for simulating the stochastic process. We propose
two strategies to allocate resources dynamically and report
the number of virtual machines that are needed in different
periods, as well as average waiting time and queue lengths
during the simulation. Compared to the system performance
of the reservation plan that is is adopted by the company in
real life, we show that we can improve the service performance
by adopting dynamic allocation strategies.

The rest of the paper is organized as the following: we
summarize previous related work in Section 2, present the
methodology of clustering, estimation, and simulation in Sec-
tion 3, and conduct the case study in Section 4, and conclude
the work in Section 5.

II. LITERATURE REVIEW

We briefly review previous work in cloud simulation, re-
source provision and arrival rate estimation in this section.

A. Cloud Simulation

Calheiros, Ranjan, Beloglazov, De Rose and Buyya [8], [9]]
proposed the most famous simulation toolkit CloudSim for
modeling and simulation of cloud computing environments.
CloudSim supports system and behavior modeling of cloud
computing system components. CloudAnalyst built based on
CloudSim is proposed by Wickremasinghe, Calheiros, and
Buyya [10], [11] for supporting the visual modeling and
simulation of large-scale applications on cloud infrastructure.
It provides more description of the application including the
geography information and number of resource in each center
and traffic by user location. Garg and Buyya [12] propose
NetworkCloudSim that extends the CloudSim with a scalable
network model. NetworkCloudSim can be used to model the
cloud computing environment where the application and its
customers are different without communication tasks or lim-
ited network model within the data center. EMUSIM is built
based on Automated Emulation Framework and CloudSim

to predict service behavior on a cloud platform. A detailed
comparison can be found in [13]. Other than CloudSim
related simulation tools, Kliazovich, Bouvry, and Khan pro-
pose GreenCloud [14]] that targets on the energy costs of
the data center. Lim, Sharma, Nam, Kim, and Das propose
MDCSim [135] that is specific in hardware characteristics of
different model components of the data center. Our simulation
platform takes advantage on arrival rate estimation, providing
precisie resource provision for time-varying demand services.

B. Resource Provision

Many researchers have developed various resource provi-
sioning frameworks. Most of them try to solve the uncertainty
and intensity vary widely of the arrivals. In this section,
there are some study and practice in resource provisioning
of distributed system addressed in [[16], [[L7], [18], [19], [20],
[4]].

Jamshidi, Ahmad, and Pahl [16] exploit a fuzzy logic to
handle unexpected spikes in the workload and provide the
acceptable user experience. It also describes the uncertainty in
cloud-based software, and some approaches do not explicitly
deal with the situation that unexpected events are frequent. Ku-
sic and Kandasamy [17] develops a framework for optimizing
the resource provisioning problem using a limited lookahead
approach [21]. It also mentions that the France World Cup
web site [22] show up to 20% more profit per day using the
framework.

Lim, Babu, and Chase [18] propose a controller for an elas-
tic storage system based on the Hadoop Distributed File Sys-
tem (HDFS). It focuses the resource provision of storage tier
under dynamic Web 2.0 workloads. Bennani and Menasce [19]]
point out that some resource provisioning approaches will
face the problem of scalability limitations and the arrival is
untraceable. It provides an alternative solution based on the
use of analytic queuing network models and demonstrates the
performance of the approach.

Chaisiri, Lee, and Niyato [20] proposed an optimal virtual
machine placement (OVMP) algorithm. OVMP can minimize
the cost of hosting virtual machine in multiple cloud provider
environment under future demand and price uncertainty. An-
other algorithm motivated by OVMP, Chaisiri, Lee and Niyato
update an optimal cloud resource provisioning (OCRP) algo-
rithm for virtual machine management in cloud computing.
The algorithm considers the provisioning stages and prices
for a user using computing resource significantly.

C. Arrival Rate Estimation

Zhang, Jiang, Yoshihira, Chen, and Saxena [23] propose the
best use of cloud service based on the workload (or a number
of request arrives) estimation. They study the dynamics of
hourly workload measuring during a 46-day period of the on-
line video sharing website provided by Yahoo [24]]. Avramidis
and L’Ecuyer [25]] describe the arrival rate uncertainty of a call
center, modeling and estimating its arrival rate and service
times. Roy, Dubey, and Gokhale [26] proposed a predictive
model with workload forecasting in cloud system to develop an



auto-scaling resource provision using auto-regressive moving
average method (ARMA). Cunha, Almeida, Almeida and San-
tos [27] combine an adaptive capacity management framework
for system performance. It assumes request arrivals following
non-homogeneous Poisson process with rate changes. We
adopted the two-layer model proposed by Oreshkin, Regnard
and L’Ecuyer [[7] for modeling the relationships among periods
in a daily base.

III. METHODOLOGY

We present our methodology in this section. The process
can be divided into three stages. The first stage is to extract
and cluster arrival patterns for daily calls. The second stage
is arrival rate modeling to estimate distributions of arrivals in
periods of each day. The last stage is the stochastic simulation
procedure with queuing models. Figure [T] shows the overview
of our analysis architecture. We detail each stage in the
following sub sections.

A. Arrival Pattern Clustering

Demands are varied day by day. The daily arrival pattern
may vary due to various reasons such as regular work-
day/weekends, accidents, unpredictable damages, policy ad-
justments and rate changes of system operations, etc. However,
there may be some patterns that are shared with days. To
figure out days that have similar arrival patterns, we apply
unsupervised clustering on daily arrival patterns (that could
be extracted from raw log files as we will show in the case
study) and apply the arrival rate estimation on days that have
similar arrival patterns. We formally define arrival patterns in
the next section.

As for clustering, we adopt K-Means [28] algorithm to
fulfill the purpose of arrival pattern clustering. Specifically,
to deal with a potential large amount of data, we incorporate
our implementation with the Spark MLIib [29]], a distributed
machine learning library for large-scale data processing. The
tool set is well-suited for iterative machine learning tasks with
APIs available for Java, Scala, Python, and R [30].

B. Arrival Rate Modeling and Estimation

We adopted the estimation method proposed by Oreshkin,
Regnard and L’Ecuyer [7] for modeling the arrival rates. It
assumes that the customer arrival historical data is existing. We
then consider the operation time of the system and divid it into
p multiple periods of equal length. For example, if the system
receives the request from 00:00 to 24:00 and each period has
30 minutes, we have p = 48. Let Y = (¥1,Y2,...,Y,) be
the vector of arrival counts in those p periods. It assumes
that the arrivals are from a Poisson process with a random
rate A = (A1,As,...,A,) having an arbitrary multivariate
distribution over [0, 00)?. Taking its mean A = (A1, Az, ..., Ap)
as a scaling factor or base rate, and A; = Bj;\; where
B; is a non-negative random variable called busyness factor
having B = (B, By, ..., Bp) with E[B;] = 1 for each j. To
summarize, it has

Aj = Bj\; and Y; ~ Poisson(A;)

where Y}’s are independent and each Y; has a Poisson distribu-
tion with mean Aj, and the Poisson distribution with mean A;
denoted as Poisson()\j). However, this model is non-standard,
because the rates A; are hidden and can be inferred only
indirectly through the counts Y}, and its parameters are often
hard to estimate for this reason.

We adopt the two-layer model in this work. Based on the
multiplicative combination of independent period of busy-
ness factor ]_§j and the busyness factor for the day, B, let
Gamma(a,b) denote a gamma distribution with mean a/b and
variance a/b%. They assume that B3, él, ey Bp are independent
with

B ~ Gamma(B,8) and B; ~ Gamma(a;,a;)

for each j and for some positive parameters 3, a1, ..., 0. It
take
Bj = B;B;

as the busyness factor of period j. This combination permits
one to better control the correlation between the Bj’s, in
comparison with the previous special cases where it was either
0or 1.

Simple formulas are available for the moments in this
model:

1+ 8+ ay
Var(B;) = d+ptay) ﬁﬂaj o) )]
and
Cov(Bj, By) = % (2)

Those additional terms for the Two-Layer model provide
more flexibility to match the variances and correlations. They
choice Maximum likelihood estimators (MLEs) for estimating
the parameters because MLE is generally more robust and
accurate in experience. While these estimators were readily
available for the previous special cases, here they are much
harder to compute. More specifically, the available expression
for the density of Y} , which appears in the likelihood function
for each j, involves an integral with respect to the realization
of the vector of unobserved daily busyness factors and do not
know how to evaluate this integral in closed form. They opted
to develop parameter estimation methods for this model based
on Monte Carlo estimation of the loglikelihood function.

The Algorithm 1 shows the estimation of arrival rates in a
two-layer busyness factor modeling. We initialize the gamma
parameter estimator with the arrival pattern dataset first, and
then we find the busyness factor of the day in the dataset B
by using the function GammaParameterEstimator to sample a
gamma value with the parameter 3. The parameter [ is for
sampling a global busyness factor. For each period of a day,
we find the busyness factor of each period j as Ej by sampling
a gamma value with parameter ;. The parameter «; is the
parameter for sampling a value from the gamma distribution
in each period. The final busyness factor of each period is
Blj] = B*Blj]. The final poisson distribution of period j is
defined with A[j] that is returned by the algorithm.
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Table I

Algorithm 1 Arrival rate estimation

input: Arrival[date][count]
output: A[j],j=1,...,p
1: GPE = GammaParameter Estimator(Arrival)
8 =GPE.getB()
B = gamma(B, B).sample()
alj] = GPE.geta()
for all j:
B[j] = Gamma(a[j], a[j]).sample()
Blj] = B*Bj
Alj] = Alj]+ Blj]
return A[j]

R A A ol

C. Stochastic Simulation with Queuing Models

We present our stochastic simulation procedure based on the
queueing models in this section. Figure [2] shows the overview
of pour simulation structure with queuing models. The method
shows the service quality of the system for various parameter
setting, for example, arrival rate in each period, service rate,
the quality of service bound including average waiting time
and queue length.

The procedure of simulation including three parts: The
simulation method for the system, the arrival event, and
service completion event. Table [] specifies the parameters
used in the simulation procedure. Algorithm 2 is the main
procedure for simulation. Before the while loop, initialize the
parameter, server list and the boolean flag arrival Event and
serviceEvent to False, which means the event in this cycle
is not decide yet in every cycle begin. Phase 1 starts the
procedure while the clock in simulation does not reach end
time.

Phase 2 to Phase 9 is updating the clock in the simulation. If
the hour in simulation does not change, sum up the parameters
like the number of servers in the system for estimate quality of
service. If not, the list will save the average number of server,
queue length in this hour and update the parameters. Phase
10 gets the first free server id in the server list. Phase 11 gets
the id having the first completion time in the server list. Phase
12 to Phase 17 identify the event type of this cycle. We have
several steps here. First, we will get the index of the server
which has lowest service completion time from the server list
and get its service completion time NCT also (The first time

DESCRIPTION OF PARAMETERS IN THE SIMULATION PROCEDURE

Name Definition

w The cumulative experienced waiting time in the
queue.

Q The queue save arrival event time.

arrivalEvent The Boolean value to decide the event is arrival
event.

serviceEvent | The Boolean value to decide the event is service
event.

qLength The bound number of customer waiting in the queue.

wBound The bound of customer waiting time.

nat The next arrival time in the simulation procedure.

nct The next completion time in the simulation proce-
dure.
An server s has two fields: s.state indicates the server]

S status is busy or not and s.nct indicates that the next
completion time of service by a server.

S The list of servers that store those servers’ status.

E[W] The average waiting time.

prevClock The prevent event time in the simulation procedure.

clock The current event time in the simulation procedure.

The number of total served
The number of total events.

ts
te

of cycle will set to 0). After that, we find the earlier time of
next customer’s arrival time NAT and NCT, the earlier one
will be the event type in this cycle, set the arrival Event or
serviceEvent to T'rue.

Phase 18 updating the time in the simulation, setting the
prevent event time to the clock, and clock time to this event
time. Phase 19 will also be a check that whether the quality
of service bound is met. This constraint is that the queue is no
longer than g Length customers or the waiting time of a person
are over than wBound minute. If it is not, the Boolean flag
createStatus will be set to Flalse, or set to T'rue, otherwise.
The flag createStatus is used to identify should add a new
server to server list or not. The further description shows in
section E.

Phase 20 will lead the procedure to Algorithm 3 if the
arrival Event is True or Algorithm 4 if the service Event is
True. After the while loop end, return the quality of service
parameter we concerned. The view of our simulation structure
shows in Figure 2.

Algorithm 3 is invoked when arrival Event is True in
Algorithm 2. First, we sample a next arrival time NAT by
adding a random number which following the exponential
distribution having lambda change based on the current clock
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Figure 2. An overview of the simulation structure with queuing models.

in simulation if it does not exceed the end time (If NAT reach
the end time, setting the NAT to INFINITY for break the
while loop). Second, we check if there is at least one server
free by inner conditional loop by using the parameter idFree
mentioned above. If idF'ree equal to -1 means that there is no
available server in the server list, so we put the customer into
the queue and if createStatus is TRUE, add a new server
to the server list. If ¢dF'ree not equal to -1 means that there
is at least one server is free and ready to serve. We set the
server state to busy with idFree and sample for the time of
its next service completion time, put it back to the server list.
Third, we check if the queue is empty. If so, the total served
customer is increased by 1.

Algorithm 4 is invoked when serviceEvent is True in
Algorithm 2. A service completion event has two cases; the
queue is being empty or not. The two situation will lead to
different behaviors in the simulation. Case 1: the queue is
empty. First, we check the createStatus and size of server
list. If the createStatus is False and size is more than the
initial number of server, we remove the server with idFree
meaning that the retirement of the server. Second, get the first
busy server and release them by setting its state to free and its
next completion time to /NFINITY which means that set
the server to idle and have priority to be the next free server.
Or the situation 2, the queue is not empty. It means that there
is some customer waiting in the queue. In this situation, first,
we get out the customer from the queue and record the time
that the customer arrival to system ¢. The waiting time of
the customer is clock—t. Second, we take a sample for the
next service completion time NCT using the current time +
a random number from an exponential distribution having g,
and we also provide other distribution for different services.
Getting the server having the lowest NCT meaning that it is
the first server that able to start next service, setting the new
NCT into it and put it back to the server list. At the end of
the cycle, increment the number of total events and if this
is neither arrival Event nor serviceEvent, set the NAT to
INIFINITY to break the while loop.

Algorithm 2 The main simulation procedure

Input: arrival rate, service rate, QoSBound.

Output: avgWait, avglength, AvgServerNum
Initialization : NT, W, L, t, clock = 0. arrivalEvent,
serviceEvent = False. Initialized the Queue Q and servers
S status.

1: while clock < endI do

2:  currHour = (int) clock

3:  if (currHour == prevHour) then

4: serverSum+ = servers, gSum+ = Q.length()

50 else

6: AvgServer Num.add(serverSum/(te -
hourStart Event))

7: AvgLength.add(¢gSum/(te — hourStart Event))

8: serverSum = 0, hourStartEvnet = te, prevHour =
currHour

9: end if

10:.  idFree = getNextFreeServerld()

11:  dNCT = getNCTId()

122 nct = S.get(idNCT), e.time = min(nat, nct)
13:  if e.time = nat then

14: arrival Event = True
15:  else

16: serviceBvent = True
17:  end if

18:  prevClock = clock, clock = net.time
190 createStatus = (QoSReachBound)?true : false)
20: if (arrival Event) then

21: Call Algorithm 3; arrival Event = False;
22:  end if

23:  if (servicel Event) then

24: Call Algorithm 4; servicel Event = False;
25:  end if

26 te=te+1
27: end while
28: return AvgWait=W/ts, AvgLength, AvgServer Num

Algorithm 3 Arrival event process.
1: A = getLambda(net.time)

2: Create a next arrival time nat =  clock +
nextExponential(\).
3: if idFree! = —1 then
4:  getServer(idFree).setNCT(clock +
next Exponential(i))
getServer(idFree).setState(busy)

5
6: else

7. Q.put(clock)

8: if (createStatus = True) S.add(new server)
9: end if

10: if Q.isEmpty() then

1: ts=ts+1

12: end if

13: Return;




Algorithm 4 Service-completed event process.
1: if Q.isEmpty() then

2. if createStatus = False then

3 S.release(idNCT)

4:  end if

5. busylD = getFirstBusyl D(S)

6: if busyID! = —1 then

7 S.get(busyID).setState( free).setNCT (Infinity);

8: end if

9: else

100 t=Q.Get(), W+ =clock —t, ts =ts+ 1

11:  nct = clock 4+ nextExponential(p),
S.set(nctID).set NCT (nct)

12: end if

13: Return;

D. Dynamic Resource Provision

Our simulation platform provides dynamic resource alloca-
tion that are determined according to the provision resource
strategy. We have two strategy parameters that can be adjusted
as the trigger to initialize a new server node. The first
parameter is the current length ¢ Length of the waiting line and
the second is the average waiting time wBound of a customer.
The strategy of the resource provision is to set the bound value
of qLength and wBound. In the simulation procedure, we
set these two parameters first for estimation of the quality of
service, and we then observe the average waiting time, the
queue maximum length and the number of customer waiting
for more than wBound, and the average server nodes used
in different periods. When it happens that the bound of the
length of the waiting line or the waiting time of a customer
is reached, a new server is added to the system to improve
the quality of service. This strategy called dynamic provision
provides service providers the on-demand resource allocation.

We have implemented the simulation platform described in
this section. In the next section, we present a case study to
illustrate our idea with real log data and to show the results
and performance comparison on simulation against dynamic
resource provision and static resource provision according to
heuristics in practice.

IV. CASE STUDY

In this section, we conduct the case study on an electricity
service call center, showing how we perform the clustering,
arrival pattern modeling and estimation and hence build ad-
equate resource provision and estimation, showing how the
performance improved compared to the previous methods.

A. Log Preprocess Stage

We have collected data directly from the system used in the
call center from 01/01/2012 to 12/31/2015, with a total number
4080000+ call records in system logs. A fraction of the raw
data is shown in Figure . In this stage, we first preprocess the
data to extract the information for arrival rate estimation.

ID, ArrivalTime, LeavingTime, Duration
034934,01/01/2014 01:07:23,01/01/2014
034932,01/01/2014 01:07:41,01/01/2014
034931,01/01/2014 01:08:16,01/01/2014
093005,01/01/2014 01:09:23,01/01/2014
093873,01/01/2014 01:12:14,01/01/2014
30,01/01/2014
45,01/01/2014
31,01/01/2014
50,01/01/2014
15,01/01/2014

034940,01/01/2014 01:12:
093873,01/01/2014 01:12:
092072,01/01/2014 01:13:
034940,01/01/2014 01:14:
034921,01/01/2014 01:15:

Figure 3. An Example Of Log Files

Each record in the raw data has the exact date and time
when the call comes into the system. For arrival estimation,
we build a vector for each day. The vector consists of 48
attributes (denoted by p) with their values as the number of
calls in each 30 minutes of a day (i.e., p=1 for 0:00-0:30,
and p=48 for 23:30-24:00). For a log record that has the call
arrives at the time 09/01/2015 05 : 48 : 08, we increase by
one the value of the attribute p = 12 for the vector of the day
09/01/2015. for counting.

After this stage, we have computed the vector for each
day between 01/01/2012 to 12/31/2015. In the next stage, we
cluster these data so that days that have similar values are
clustered together.

B. Arrival Pattern Clustering

The vector of a day extracted from the raw data represents
the arrival pattern (the arrival count of each period in that day).
Some arrival patterns of a week-long example are shown in

Figure []

Exmaple - Arrival Pattern of each day

Figure 4. Week-long samples of the arrival pattern of a day

It is essential to note that some days may have similar arrival
patterns but may vary significantly to other days. We may
lose precision using one distribution to estimate all kinds of
days due to the variance. To address this issue, we propose
to use clustering to figure out types of arrival patterns. By
dividing arrival patterns into different types (according to their
similarity), we reduce the variance and improve the precision
for arrival modeling. We also found that each type has its
meaning behind.

We adopt K-means for clustering. Figure [5] shows the
result of arrival pattern clustering for days from 01/01/2012
to 12/31/2015, where we set the number of clusters to 5.
Each cluster represents on type of arrival patterns. For each



type, we draw its mean value of the arrival pattern with
vectors of the days clustered together (having the same type)
on the left side of Figure 5] On can tell that the result of
clustering separates days according to their arrival patterns
into five types. We find out the exact dates of days in each
type, and investigate events happened in these dates manually.
After consulting with experienced officials in the electricity
company, we summarized the representing scenarios of each
type in Table |ll} It is interesting to note that in the days of
Type 1, there were serious electricity damages due to strong
typhoons passed Taiwan. The days of Type 5 are weekend
days. The days of Type 4 are week days. The days of Type 3
are week days with mild local damages.

That is to say, we can estimate arrival rates for different
scenarios. This is essential for officials in the electricity
companies to have adequate resource provision.

Arrival Pattern Clustering
1200 Clustering Of Arrival Pattern
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Figure 5. Clustering result of arrival pattern.

Table IT
THE TYPE OF DIFFERENT ARRIVAL PATTERN

Description
Type 1  Extraordinary high workload of a day
Type 2 High workload of a day
Type 3 Normal workload with some special event
Type 4  Normal workload of a day
Type 5  Day that do not provide service.

C. Arrival Rate Modeling

In this stage, we build the arrival model for days in each type
according to the arrival rate estimation discussed in Section 3.
Our implementation uses the JAVA APIs developed by E. Buist
and L. E’cuyer [31].

Figure [6] shows the estimation result of the arrival model
with days clustered in type 4. For each period, we estimate
a poison distribution. We draw the upper bound and lower
bound of the 95% confidential interval of the estimated model
in red lines. The green line (estimate) is the mean of 1000
runs of samples from the estimated distribution and it fits
well as expected. The blue line is the mean of a test set
where these days are randomly picked weekdays without
significant damages reported. These test data are not from
training data and are not used in model estimation. As one
can see in Figure [6] the blue line mostly fits in the range of
the 95% confidential interval of the estimated distributions.

This indicates that the estimation on arrival rate models is
appropriate for us to use as estimation of arrival calls to the
electricity company.

Arrival Rate Estimate Performance

—tEstimate

O Estimate upper bound  =D=Estimate lower bound  =—A==Test set

Figure 6. Arrival Rate Estimation

D. Simulation Result

In this section, we report our simulation results using the
arrival models. The electricity company also provides us its
resource provision plan of the number of servers in each
period. Figure [7| shows as the heuristics the deployed service
nodes in each period. The heuristics has been adjusted to
fit their demands in weekdays and is currently running in
practice.

We use the estimated arrival model of type 4 to run
simulation. We report the performance of the heuristics in
Table As one can see, each period has around 19.2 servers
deployed, and the simulation result shows that a customer on
average waiting 1.6 minus to be served and the maximum
length of the waiting queue is 17.

We run the simulation to compare the heuristics with the
dynamic resource provision strategy. We set the strategy as
the following: adding a new server whenever the queue length
is more than 5 or the customer waiting time is more than 3
minutes. The required number of servers is shown in Figure
and the performance is shown in Table for comparison.
The result shows that by increasing the cost 5%(20.216-
19.251/19.251, i.e., roughly increasing 0.965 server on average
per period), the service quality can be improved by reducing
the waiting time 13.8%(0.224/1.624) and the queuing length
47%(8/17).

Table III
PERFORMANCE BETWEEN THE HEURISTICS AND THE DYNAMIC RESOURCE
PROVISION
Heuristic Dynamic
Average number of server 19.251 20.216
Average waiting time 1.624 min | 1.401 min
Maximum queue length 17 9
The ratio (?f customers waiting more 15.5% 10.25%
than >3mins

V. CONCLUSION

We propose a new cloud resource provision approach for
time-varying demand services using simulation, unsupervised
clustering and distribution estimation techniques. We cluster
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days that have similar arrival patterns together to cater for
time varying demands of services and adopt existing arrival
rate modeling and estimation to observe formed distribution
in presence of clustering. This helps cloud providers have an
idea of how to provision their resources in an unpredictable
environment with changing demands. By conducting the real
case study, we show that compared to past heuristics adopted
in real life, by adopting the dynamic allocation strategy, ser-
vice providers can have a better reservation plan that improves
their system performance with less resources allocated.
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