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NONEXISTENCE OF GLOBAL SOLUTIONS OF
EMDEN-FOWLER TYPE SEMILINEAR WAVE EQUATIONS

WITH NON-POSITIVE ENERGY

MENG-RONG LI

Abstract. In this article we study the blow-up phenomena of solutions to

the Emden-Fowler type semilinear wave equation

t2utt − uxx = up in [1, T )× (a, b)).

1. Introduction

In this article we consider the nonexistence of global solutions in time of the
Emden-Fowler type semilinear wave equation

t2utt − uxx = up in [1, T )× (r1, r2) (1.1)

with boundary value null and initial values

u(0, x) = u0(x), u0 ∈ H2(r1, r2) ∩H1
0 (r1, r2),

u̇(0, x) = u1(x), u1 ∈ H1
0 (r1, r2)

where p > 1, r1 and r2 are real numbers. Through reviewing some properties
of solutions of Emden-Fowler equations and the nonexistence of global solutions
of some semi-linear wave equations with initial and boundary values problem in
bounded domain solution we want to study blow-up phenomena of solutions to
equation (1.1).

Review on the Emden-Fowler equation. The study of the Emden-Fowler equa-
tion originated from earlier theories concerning gaseous dynamics in astrophysics
around the turn of the 20-th century. The fundamental problem in the study of
stellar structure at that time was to study the equilibrium configuration of the mass
of spherical clouds of gas. Under the assumption that the gaseous cloud is under
convective equilibrium (first proposed in 1862 by Lord Kelvin [40]), Lane studied
the equation

d

dt

(
t2
du

dt

)
+ t2up = 0, (1.2)

for the cases p = 1.5 and 2.5. Equation (1.2) is commonly referred to as the Lane-
Emden equation [8]. Astrophysicists were interested in the behavior of the solutions
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of (1.2) which satisfy the initial condition: u(0) = 1, u′(0) = 0. Special cases of
(1.2), namely, when p = 1 the explicit solution to

d

dt

(
t2
du

dt

)
+ t2u = 0, u(0) = 1, u′(0) = 0

is u = sin(t)/t, and when p = 5, the explicit solution to

d

dt

(
t2
du

dt

)
+ t2u5 = 0, u(0) = 1, u′(0) = 0

is u = 1/
√

1 + t2/3.
Many properties of solutions to the Lane-Emden equation were studied by Rit-

ter [33] in a series of 18 papers published during 1878-1889. The publication of
Emden’s treatise Gaskugeln [12] marks the end of first epoch in the study of stellar
configurations governed by (1.2). The mathematical foundation for the study of
such an equation and also of the more general equation

d

dt

(
tρ
du

dt

)
+ tσuγ = 0, t ≥ 0, (1.3)

was made by Fowler [13, 14, 15, 16] in a series of four papers during 1914-1931. We
refer the reader to a summary in Bellman’s book [6, chap. VII]. The Emden-Fowler
equation also arises in the study of gas dynamics and fluid mechanics; see, e.g., the
survey article by Conti, Graffi and Sansone, the Italian contribution to the theory
of nonlinear ordinary differential equations and to nonlinear mechanics during the
years 1951-1961 [11]. There the solutions of physical interest are bounded non-
oscillatory which possess a positive zero. The zero of such a solution corresponds
to an equilibrium state in a fluid with spherical distribution of density and under
mutual attraction of its particles. The Emden-Fowler equations also appear in the
study of relativistic mechanics, nuclear physics and also in the study of chemically
reacting systems. The Emden-Fowler equation (1.3) can be transformed into a first
order nonlinear autonomous system, in fact, a quadratic system, and information
concerning its solutions may be obtained from the associated quadratic systems
through phase plane analysis. This approach was in fact first used by Emden in
his analysis of the Lane-Emden equation (1.2). For more detailed discussions on
this approach we refer to [9, 34]. Progress along Fowler’s approach concerning the
Emden-Fowler equation (1.3) may be found in [22, 35]. Similar analysis concerning
the related Thomas-Fermi equation may be found in [31, 36]. The first serious
study on the generalized Emden-Fowler equation

d2u

dt2
+ a(t)|u|γ sgnu = 0, t ≥ 0

was made by Atkinson [1, 2, 3, 4, 5]. For general reference, we mention the well
known texts by [6, 10, 23].

Review positive solutions for the Emden-Fowler equation t2u′′ = up, p > 1.
Consider the transformation t = es, u(t) = v(s), then v(0) = u0; vs(0) = u1, and
the equation (1.2) can be transformed into the form

vss(s)− vs(s) = v(s)p, p > 1,

v(0) = u0, vs(0) = u1.
(1.4)
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Thus, the existence of local solutions u for (1.2) in (1, T ) is equivalent to the ex-
istence of local solutions v for (1.4) in (0, lnT ). In [30] we have estimated the
life-span T ∗ of positive solutions u of (1.2) for three different cases.

(a) u1 = 0, u0 > 0: T ∗ ≤ ek1 ,

k1 := s0 +
2(n+ 3)

8− ε
2

n− 1
v(s0)

1−p
2 , ε ∈ (0, 1).

(b) u1 > 0, u0 > 0:

(i) E(0) ≥ 0, T ∗ ≤ ek2 , k2 := 2
p−1

√
p+1

2 u
1−p
2

0 ;

(ii) E(0) < 0, T ∗ ≤ ek3 , k3 := 2
p−1

u0
u1

;
(c) u1 < 0, u0 ∈ (0, (−u1)1/p): u(t) ≤ (u0 − u1 − up0) + (u1 + up0)t− up0 ln t.

Some results on the semilinear wave equation �u = up in [0, T ) × Ω. We
have treated the estimates for the life-span of positive solutions of the semilinear
wave equation

� u = up in [0, T )× Ω
with boundary value null and initial values u(0, x) = u0(x), u0 ∈ H2(Ω) ∩H1

0 (Ω)
and ut(0, x) = u1(x), u1 ∈ H1

0 (Ω), where p ∈ (1, n/n− 2] and Ω ⊂ Rn is a bounded
smooth domain. We use the following notation:

∇ :=
( ∂

∂x1
, . . . ,

∂

∂xn

)
, Du := (ut,∇u), � :=

∂2

∂t2
−4,

a(t) :=
∫

Ω

u2(t, x)dx, E(t) :=
∫

Ω

(|Du|2 − 2
p+ 1

up+1)(t, x)dx.

For a Banach space X and 0 < T ≤ ∞ we set Ck(0, T,X) as the space of Ck

functions from [0, T )→ X, and

H1 := C1(0, T,H1
0 (Ω)) ∩ C2(0, T, L2(Ω)).

Jörgens [18] published the first existence theorem for global solutions to the wave
equation

� u+ f(u) = 0 n [0, T )× Ω, (1.5)
for Ω = Rn, n = 3 and f(u) = g(u2)u, his result can be applied to the equation
�u+ u3 = 0. Browder [6] generalized Jörgens’s result to n > 2 For local Lipschitz
f , Li [27] proved the non-existence of global solutions of the initial-boundary value
problem of semilinear wave equation (1.5) in a bounded domain Ω ⊂ Rn under the
assumptions

Ē(0) = ‖Du‖22(0) + 2
∫

Ω

f(u)(0, x)dx ≤ 0,

ηf(η)− 2(1 + 2α)
∫ η

0

f(r)dr ≤ λ1αη
2 ∀η∈R with α > 0,

λ1 := sup
{
‖u‖2/‖∇u‖2 : u ∈ H1

0 (Ω)
}

and a′(0) > 0. There we have a rough estimate for the life-span

T ≤ β2 := 2
[
1−

(
1− k2a(0)−α

)1/2]
/(k1k2),

with

k1 := αa(0)−α−1
√
a′(0)2 − 4Ē(0)a(0), k2 :=

(
− 4α2Ē(0)/k2

1

)α
/(1 + 2α).
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For n = 3 and f(u) = −u3, there exist global solutions of (1.5) for small initial data
[25]; but if E(0) < 0 and a′(0) > 0. then the solutions are only local, i.e. T < ∞
[27]. John [19] showed the nonexistence of solutions of the initial-boundary value
problem for the wave equation �u = A|u|p, A > 0, 1 < p < 1 +

√
2, Ω = R3. This

problem was considered by Glassey [17] in the two dimensional case n = 2. For
n > 3 Sideris [39] showed the nonexistence of global solutions under the conditions
‖u0‖1 > 0 and ‖u1‖1 > 0. According to this result Strauss [37, p. 27] guessed that
the solutions for the above mentioned wave equation are global for p ≥ p0(n) = λ
which is the positive root of the quadratic equation (n−1)λ2−(n+1)λ−2 = 0 and
Ω = Rn. For further information about blow up one can see [19, 27, 28, 37, 39, 32]
and their references.

2. Preliminaries

Existence and uniqueness of a local solution. Under some transformations
one can get the existence of solutions to the Emden-Fowler type semilinear wave
equation (1.1) for suitable conditions [29]. Taking the transform s = ln t, u(t, x) =
v(t, x), then ut = t−1vs, t2utt = −vs + vss, equation (1.1) can be transformed into

vss − vxx = vs + vp

quadin [0, lnT )× (r1, r2),

v(x, 0) = u0(x), vs(x, 0) = u1(x)
(2.1)

with zero boundary conditions. In this paper we focus on the nonexistence of global
solutions u of (1.1). After some argumentations, we can obtain the Lemma 2.1.
Let

v(s, x) = es/2w(s, x), vs = es/2ws +
1
2
v,

vss = es/2wss + es/2ws +
1
4
es/2w,

then (2.1) can be rewritten as

wss − wxx =
1
4
w + e(p−1)s/2wp. (2.2)

Lemma 2.1. Suppose that w ∈ H1 is a solution of the semilinear wave equation
(2.2). Then for s ≥ 0,

d

ds

∫ r2

r1

(
w2
s + w2

x −
1
4
w2 − 2

p+ 1
e

p−1
2 swp+1

)
(s, x)dx

= −p− 1
p+ 1

∫ r2

r1

e
p−1
2 swp+1(s, x)dx

(2.3)

∫ r2

r1

(
w2
s + w2

x −
1
4
w2 − 2

p+ 1
e

p−1
2 swp+1

)
(s, x)dx

= Ew(0)− p− 1
p+ 1

∫ s

0

∫ r2

r1

e
p−1
2 rwp+1(r, x) dx dr,

(2.4)

where

Ew(0) =
∫ r2

r1

(
w2
s + w2

x −
1
4
w2 − 2

p+ 1
wp+1

)
(0, x)dx
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=
∫ r2

r1

|Big(
(
u1 −

1
2
u0

)2 + (u′0)2 − 1
4
u2

0 −
2

p+ 1
up+1

0

)
(x)dx

=
∫ r2

r1

(
u2

1 − u0u1 + (u′0)2 − 2
p+ 1

up+1
0

)
(x)dx.

Proof. From(2.2) we can obtain

d

ds

∫ r2

r1

(
w2
s + w2

x −
1
4
w2 − 2

p+ 1
e

p−1
2 swp+1

)
(s, x)dx

+
p− 1
p+ 1

∫ r2

r1

e
p−1
2 swp+1(s, x)dx

=
∫ r2

r1

2ws
(
wxx +

1
4
w + e(p−1)s/2wp

)
(s, x)dx

+
∫ r2

r1

(
2wxwxs −

1
2
wws − 2e

p−1
2 swpws

)
(s, x)dx

=
∫ r2

r1

2(wswxx + wxwxs)(s, x)dx = 0.

Thus, assertions (2.3) and (2.4) are proved. �

3. Nonexistence of global solutions for (1.1) under null energy

After tedious computations we can obtain the nonexistence of global solutions
for Emden-Fowler equation (1.1) under small amplitude initial data and also that
w blows up in L2 since at finite (1.2) and therfore u blows up in L2 at finite lnS∗.
We have the following Theorem.

Theorem 3.1. Suppose that u ∈ H1 is a positive weak solution of equation (1.1)
with α :=

∫ r2
r1
u0u1(x)dx > 0,∫ r2

r1

(u2
1 − u0u1 + (u′0)2 − 2

p+ 1
up+1

0 )(x)dx = 0

and 0 < r2 − r1 ≤ 1. Then the life-span of u is finite. That is, there exists S∗1 so
that (∫ r2

r1

u(t, x)2dx
)−1

→ 0 as t→ lnS∗1 ,

where S∗1 = 2
p−1

‖u0‖2
α .

Proof. Setting

B(s) :=
1

p+ 1

∫ s

0

∫ r2

r1

e
p−1
2 rwp+1(r, x) dx dr,

K(s) =
∫ r2

r1

(
w2
s + w2

x −
1
4
w2
)

(s, x)dx,

then (2.4) can be rewritten as

K − 2B′ = Ew(0)− (p− 1)B, (3.1)

therefore,

(e
p−1
−2 sB)′ = e

p−1
−2 s

(
B′ − p− 1

2
B
)

=
1
2
e

p−1
−2 s(K − Ew(0)),
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e
p−1
−2 sB =

1
2

∫ s

0

e
p−1
−2 r(K(r)− Ew(0))dr

=
1
2

∫ s

0

e
p−1
−2 rK(r)dr − Ew(0)

p− 1

(
1− e

p−1
−2 s

)
,

B =
1
2

∫ s

0

e
p−1
2 (s−r)K(r)dr − Ew(0)

p− 1

(
e

p−1
2 s − 1

)
;

this implies

1
p+ 1

∫ s

0

∫ r2

r1

e
p−1
2 rwp+1(r, x) dx dr

=
1
2

∫ s

0

e
p−1
2 (s−r)

∫ r2

r1

(
w2
s + w2

x −
1
4
w2
)

(s, x) dx dr − Ew(0)
p− 1

(e
p−1
2 s − 1),

∫ s

0

∫ r2

r1

e
p−1
2 rwp+1(r, x) dx dr

=
p+ 1

2

∫ s

0

e
p−1
2 (s−r)

∫ r2

r1

(
w2
s + w2

x −
1
4
w2
)

(r, x) dx dr

− p+ 1
p− 1

Ew(0)(e
p−1
2 s − 1),

(3.2)

∫ r2

r1

e
p−1
2 swp+1(s, x)dx

=
p+ 1

2

∫ r2

r1

(
w2
s + w2

x −
1
4
w2
)

(s, x)dx− (p+ 1)Ew(0)e
p−1
2 s

+
p2 − 1

2

∫ s

0

e
p−1
2 (s−r)

∫ r2

r1

(
w2
s + w2

x −
1
4
w2
)

(r, x) dx dr.

(3.3)

Setting J(s) := A(s)−k, k = p−1
4 > 0, A(s) :=

∫ r2
r1
w2(s, x)dx, we have A′(s) =

2
∫ r2
r1
wws(s, x)dx,

A′′(s) = 2
∫ r2

r1

(wwxx +
1
4
w2 + w2

s + e
p−1
2 swp+1)(s, x)dx

= 2
∫ r2

r1

(−w2
x +

1
4
w2 + w2

s + e
p−1
2 swp+1)(s, x)dx.

By (3.3) then

A′′(s)

= 2
∫ r2

r1

(
wwxx +

1
4
w2 + w2

s + e
p−1
2 swp+1

)
(s, x)dx

= 2
∫ r2

r1

(
− w2

x +
1
4
w2 + w2

s

)
(s, x)dx+ (p+ 1)

∫ r2

r1

(
w2
s + w2

x −
1
4
w2
)

(s, x) dx

+ (p2 − 1)
∫ s

0

e
p−1
2 (s−r)

∫ r2

r1

(
w2
s + w2

x −
1
4
w2
)

(r, x) dx dr

− 2(p+ 1)Ew(0)e
p−1
2 s

=
∫ r2

r1

[
(p+ 3)w2

s + (p− 1)w2
x −

p− 1
4

w2
]
(s, x) dx− 2(p+ 1)Ew(0)e

p−1
2 s
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+ (p2 − 1)
∫ s

0

e
p−1
2 (s−r)

∫ r2

r1

(
w2
s + w2

x −
1
4
w2
)
(r, x) dx dr . (3.4)

Also J ′(s) = −kA(s)−k−1A′(s),

J ′′(s) = −kA(s)−k−2[A(s)A′′(s)− (k + 1)A′(s)2]

≤ −kA(s)−k−1
[
A′′(s)− 4(k + 1)

∫ r2

r1

w2
s(s, x)dx

]
.

(3.5)

Since Ew(0) =
∫ r2
r1

(u2
1 + (u′0)2 − u0u1 − 2

p+1u
p+1
0 )(x) = 0, we have

A′′(s)− 4(k + 1)
∫ r2

r1

w2
s(s, x)dx

=
∫ r2

r1

[(p+ 3)w2
s + (p− 1)w2

x −
p− 1

4
w2](s, x)dx

+ (p2 − 1)
∫ s

0

e
p−1
2 (s−r)

∫ r2

r1

(w2
s + w2

x −
1
4
w2)(r, x) dx dr

− 4(k + 1)
∫ r2

r1

w2
s(s, x)dx,

A′′(s)− 4(k + 1)
∫ r2

r1

w2
s(s, x)dx

=
∫ r2

r1

[
(p+ 3)w2

s + (p− 1)w2
x −

p− 1
4

w2
]
(s, x)dx

+ (p2 − 1)
∫ s

0

e
p−1
2 (s−r)

∫ r2

r1

(w2
s + w2

x −
1
4
w2)(r, x) dx dr

− 4(k + 1)
∫ r2

r1

w2
s(s, x)dx

≥ (p− 1)
∫ r2

r1

[w2
x −

1
4
w2](s, x)dx

+ (p2 − 1)
∫ s

0

e
p−1
2 (s−r)

∫ r2

r1

(
w2
s + w2

x −
1
4
w2
)
(r, x) dx dr

≥ (p− 1)
(
1− (r2 − r1)2

)( ∫ r2

r1

w2
x(s, x)dx

+ (p+ 1)
∫ s

0

e
p−1
2 (s−r)

∫ r2

r1

(w2
s + w2

x)(r, x) dx dr
)
> 0,

provided r2 − r1 ≤ 1. Therefore, by (3.5) we obtain that for
∫ r2
r1
u0u1(x)dx > 0,

r2 − r1 ≤ 1, J ′′(s) < 0 for all s ≥ 0.

J ′(s) ≤ J ′(0) = −p− 1
4

A(0)−
p+3
4 A′(0) = −p− 1

2
α‖u0‖

− p+3
2

2 ,

J(s) ≤ J(0)− p− 1
2

α‖u0‖
− p+3

2
2 s

= ‖u0‖
− p−1

2
2 − p− 1

2
α‖u0‖

− p+3
2

2 s

= ‖u0‖
− p+3

2
2

(
‖u0‖2 −

p− 1
2

αs
)
,
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J(s)→ 0 textass→ S∗ =
2

p− 1
‖u0‖2
α

.

Thus w blows up in L2 at finite S∗, and then u blows up in L2 at finite lnS∗. �

4. Nonexistence of global solution for (1.1) under negative energy

Theorem 4.1. Suppose that u ∈ H1 is a positive weak solution of equation (1.1)
with α :=

∫ r2
r1
u0u1(x)dx > 0,

∫ r2
r1

(u2
1 − u0u1 + (u′0)2 − 2

p+1u
p+1
0 )(x)dx < 0 and

0 < r2− r1 ≤ 1. Then the life-span of u is finite. That is, there exists S∗2 such that(∫ r2

r1

u(t, x)2dx
)−1

→ 0 as t→ lnS∗2 .

Further, the life-span satisfies lnS∗2 < lnS∗1 , and we have the estimate

A(s) ≥ A(0)− 4Ew(0)
p+ 1
p− 1

[
se

p−1
2 s − 2

p− 1
(e

p−1
2 s − 1)

]
,

where A(s) :=
∫ r2
r1
w2(s, x)dx.

Proof. By (3.4), Ew(0) < 0,
∫ r2
r1
u0u1(x)dx ≥ 0 and the small width in space is

0 < r2 − r1 ≤ 1,

J ′′(s)

= −kA(s)−k−2[A(s)A′′(s)− p+3
4 A′(s)2]

≤ −kA(s)−k−1
[
A′′(s)− (p+ 3)

∫ r2

r1

w2
s(s, x)dx

]
= −kA(s)−k−1

[
− 2(p+ 1)Ew(0)e

p−1
2 s + (p− 1)

∫ r2

r1

(w2
x −

1
4
w2)(s, x)dx

+ (p2 − 1)
∫ s

0

e
p−1
2 (s−r)

∫ r2

r1

(w2
s + w2

x −
1
4
w2)(r, x) dx dr

]
≤ 2k(p+ 1)Ew(0)e

p−1
2 sJ(s)1+ 1

k < 0,

(4.1)

where k = (p− 1)/4, we can obtain the same conclusions as in Theorem 3.1.
By the inequality (4.1) and J ′ < 0 we can estimate J further,

J ′′(s) ≤ 2k(p+ 1)Ew(0)e
p−1
2 sJ(s)1+ 1

k =
1
2

(p2 − 1)Ew(0)e
p−1
2 sJ(s)1+ 1

k < 0,

J ′(s) ≤ J ′(0) +
s

2
(p2 − 1)Ew(0)e

p−1
2 sJ(s)1+ 1

k ≤ s

2
(p2 − 1)Ew(0)e

p−1
2 sJ(s)1+ 1

k ,

−k
(
J(s)−

1
k

)′ = J(s)−1− 1
k J ′(s) ≤ Ew(0)

2
(p2 − 1)se

p−1
2 s,

−k(J(s)−
1
k − J(0)−

1
k ) ≤ Ew(0)

2
(p2 − 1)

( 2
p− 1

se
p−1
2 s − (

2
p− 1

)2(e
p−1
2 s − 1)

)
= Ew(0)(p+ 1)

[
se

p−1
2 s − 2

p− 1
(e

p−1
2 s − 1)

]
,

this implies

A(s) ≥ A(0)− 4
p+ 1
p− 1

Ew(0)
[
se

p−1
2 s − 2

p− 1
(e

p−1
2 s − 1)

]
.

Thus, the assertions are proved. �
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