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Abstract—Composing services in a pervasive environment
usually involves user-in-the-loop adaption which is absent in most
of the traditional enterprise service composition mechanisms. In
such environment, the criteria for selecting and ranking services
are usually specified by users, which tend to be vague and
subjective. The criteria can be contradictory and the activated
services can interfere with one another. This paper addresses
these issues by defining a unifiable and negotiable expression
language called the Preference Expression that is capable of spec-
ifying both enumerative/numeric as well as mandatory/negotiable
user preferences. A set of unification rules for possible conflicting
preferences is also derived. Experimental results show that the
proposed approach is able to achieve high composition precision
and maintains reasonable success rate at the same time.

I. INTRODUCTION

Service composition, a technique for discovering, selecting,

and activating service components to form a service that

best fits pre-specified criteria, is an important issue in Ser-

vice Computing and has received much interest in enterprise

environments for a long time [3]. Enterprise services are

usually composed based on a set of precisely specified service

requests, which do not change frequently and are usually

defined by domain experts to fit business requirements. In

addition, the services components deployed in an enterprise

environment are relatively well-defined and static.

Figure 1 depicts the process of typical service composition.

In such process, service composition is driven by a user-

specified Service Request that contains a set of Preference

Descriptors for selecting qualified service components. After

a Service Request is submitted, the process enters the Type-

based Node Searching phase, in which a service composi-

tion manager searches for qualified candidates either from

a centralized service registry or by broadcasting the type

information as the searching criteria and waiting for responses.

The procedure in this phase depends on the underlying service

discovery infrastructure such as UDDI (Universal Description

Discovery and Integration) [5] or Jini [4]. Usually, there are

more than one qualified candidates, so that the manager selects

the best one among candidates in the Candidate Scoring and

Selection phase. After all of the most appropriate candidates

are determined, each of them is then activated in the Service

Activation phase.

Although it has been reported that service composition

is also significant in pervasive environments such as smart

Fig. 1: A typical service composition architecture

Fig. 2: The refined architecture that facilitates preference

unification

homes [2], however, existing enterprise service composition

techniques are not suitable for pervasive systems. Unlike in

enterprise environments, the goal of pervasive service compo-

sition is to compose services that meet maximum satisfactions

of users, which tend to be vague and subjective. Complexities

arise when many users submit conflicting service requests at

the same time. It follows that the core issue of pervasive

service composition is twofold : 1) how users specify their

preferences precisely, and 2) how to unify possible conflicting

service requests submitted by multiple parties. Unfortunately,

most of current works focus on designing sophisticated mech-

anisms in the Candidate Scoring and Selection phase [7], [8],

[9], [6] instead of dealing with the request conflicting issue

mentioned above. The objective of this paper is therefore to

devise a set of mechanisms that are able to capture users’ pref-

erences precisely and to negotiate when there are conflicting

preferences.

In this work, we append an additional phase, namely, the

Preference Unification phase, before the Type-based Node

Searching phase (see Fig. 2) so that before a service com-

position starts, users are able to adjust Preference Descriptors

to make the composed service more satisfactory. In addition,

a formal expression language, namely, the Preference Expres-

sion (PE), based on CC/PP (Composite Capability/Preference

Profiles) standard [10] is also introduced. PE denotes user

preferences from two perspectives: the enumerability and the

necessity of preferences. A set of rules for unifying different

types of potentially conflicting preferences are also presented
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(see Section IV). Note that one of the most distinguishing

feature of the proposed PE is that it is negotiable so that

users are able to indicate that there are spaces for compromise

when their preferences are mutually exclusive. In this way,

the proposed approach is able to reach high success rate

of composition while maintaining user-acceptable quality of

services, as will be discussed in Section V.

II. RELATED WORK

Service composition has been one of the most active

research issues in Service Computing [3]. In the last few

years, a considerable number of studies have been made on

designing a service composition system, but most of them

focus on enterprise environments. According to a recent study

conducted by Bronsted et al. [2], there are surprisingly few

researches have been done on the service composition issues

in pervasive environments such as the smart homes. They also

observed that little research has been made on dealing with

possible conflicting user preferences.

There are some approaches proposed to model user pref-

erences in an intelligent information system such as Lee et
al. [11] and Mandel et al.[12]. However, these approaches

either do not provide a completed formal framework for user

to represent their preference or does not work when multiple

conflicting preferences are present. Existing pervasive service

composition mechanisms deal with conflicting preferences

either explicitly defining a precedence [13] or by attempting to

seek a common ground among conflicting ones by using logic-

based approaches [14]. Shankar et al. [15] proposes an Event-

Condition-Action-Post-Condition (ECA-P) policy model. This

work detects conflicts among policies by analyzing their

semantic post-conditions and replaces conflicting ones with the

one with preferred post-conditions. However, due to limited

expressiveness of ECA-P model, the results are decisive: users

either come to a common agreement or the service is not

provided at all. However, in real cases, users tend to be ne-

gotiable. Obviously, more powerful representation techniques

have to be developed in order to capture the negotiable user

preferences. It follows from the above discussions that there

is still much space for further investigation on the problem of

conflicting preferences in pervasive service composition. This

work therefore concentrates on dealing with this issue.

III. SERVICE MODEL

In this paper, the proposed approach is presented based on

a message-oriented service model called PerSAM (Pervasive

Service Application Model). To facilitate further discussions,

this section briefly review PerSAM; details of the object

models and algorithms can be found in [16].

A PerNode p ∈ P is a basic logical software entity in a

system, where P is the universe of PerNodes. PerNode has

two subtypes: Worker Node and Manager Node. A Worker

Node w ∈ W is a PerNode that encapsulates a unit of

application logic, where W is the universe of Worker Nodes in

the system. Worker Nodes are basic service providing units of

a Pervasive Service. In this work, the capabilities and selecting

criteria for Worker Nodes are modeled by extending CC/PP,

which is a W3C standard for specifying device capabilities and

user preferences [10]. The capability of a Worker Node w is

described by its type τ and a set of attributes A = {αi}, where

αi = (ni, vi) is a name-value pair, based on which the Worker

Node can be described by arbitrary attributes. The description

of a Worker Node’s capability is called a Capability Descriptor

and is formally defined as follows.

Definition 1. (Capability Descriptor) The Capability De-
scriptor of a Worker Node w is a pair: C(w) � (τ, A), where
τ is the type of w, and A = {αi} is the attribute set of w.

For example, a Worker Node w1 that controls an 37 inches

LCD monitor which locates at the room-1 can be described

as follows:

(LCD, [(size, 37), (location, ”room− 1”)]).

In PerSAM, a smart home application is called a Pervasive

Service, denoted s, which consists of one or more Worker

Nodes that collectively provide a service to users. Each

Pervasive Service is managed by a Pervasive Service Manager

(PSM), which is responsible for composing, activating, and

monitoring the corresponding Pervasive Service. All members

of a Pervasive Service, but not PSM, are dynamic, and each

PSM is responsible for selecting most appropriate Worker

Nodes during the process of service composition. A Pervasive

Service can be formally denoted as a tuple:

s = 〈ms,W s〉 ∈M × 2W , (1)

where ms is the PSM of s, M is the universe of PSMs, and

W s is the set of Worker Nodes belonging to s.

Typically, a service designer defines an application (i.e.

a Pervasive Service) by specifying a Service Request. A

Service Request specifies a Preference Descriptor P (w̃) for

each desired Worker Node w̃ so that a PSM is able to search

for qualified nodes according to the descriptor. The structure

of a Preference Descriptor is defined below.

Definition 2. (Preference Descriptor) The Preference De-
scriptor of a desired Worker Node w̃ is a pair: P (w̃) � (τ, Ã),
where τ is the type of w̃, and Ã = {α̃i}. Note that α̃i =
(ni, εi), where ni is the attribute name and εi is an expression
that specifies selection criteria for attribute values.

For example, the following Preference Descriptor P (w̃1)
directs the PSM to search for an LCD monitor that is more

than 30 inches and is located at room-2:

(LCD, [(size, (≥ 30)), (location, (== ”room− 2”)]).

Depending on the characteristics of service composition mech-

anisms, the syntax of ε is usually different. To facilitate

consistent smart home applications, we propose an unifiable

and negotiable expression called the Preference Expression.

The details of Preference Expression will be elaborated in the

follow sections.
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Listing 1: The BNF of MEPE

MEPE ::= PtList | NegationExpr

PtList ::= ’ ( ’ == STRING PtListTail∗ ’ ) ’

PtListTail ::= →== STRING

NegationExpr ::= ’ ( ’ ! = STRING(∧! = STRING)∗ ’ ) ’

IV. UNIFIABLE PREFERENCE EXPRESSIONS

This section presents the syntax and unification rules of a set

of unifiable preference expressions. The approach taken by this

work is first to distinguish different kinds of preferences from

two perspectives and then propose approaches to deal with

them separately. Specifically, we design Preference Expression

from two aspects: 1) a preference can be specified either

numerically or enumeratively, and 2) from the user’s points

of view, the preference can be either mandatory or negotiable.

The following subsections are going to elaborate each of these

combinations and their unification rules in detail.

A. Unifiable Enumerative Preference Expressions

The Enumerative Preference Expression is used to describe

preferences for an enumerable attribute by specifying a list

of preferred or un-preferred values. This type of expression

is called a Mandatory Enumerative Preference Expression

(MEPE). For instance, the preference to the composers of a

music can be specified as (== ”Bach” →== ”Mozart”).
The syntax of MEPE is presented in Listing 1 in BNF

(Backus-Naur Form) [17]. In an MEPE, the preferred values

are a listed of strings, delimited by arrowheads. Alternatively,

one can enumerate the undesired values by a list of conjunc-

tions (e.g. ! = ”Bach”∧! = ”Vivaldi”). The list is ordered by

preferences in descending order so that one can easily conceive

that the first qualified service component is the most preferable

one. The expression is evaluated to be true as soon as the

PSM finds a service component whose attribute value meets

the criteria specified in the expression. Alternatively, one can

enumerate the undesired values by a list of conjunctions (e.g.

! = ”Bach”∧! = ”Vivaldi”), as mentioned earlier, and then the

expression is evaluated to be true if the attribute value of a

service component matches none of the undesired values.

In a Preference Expression, the term with an operator is

called a ”preference term”, or simply a ”p-term”. A set of

p-terms is called a ”preference term set”, or called a ”pt-

set”, which is denoted as pt(ε), where ε is the Preference

Expression. Assume that there are k possibly conflicting

Preference Expressions {εi}ki=1, then the pt-sets of these ex-

pressions are denoted as {pt(εi)}ki=1. For example, if ε = (==
”Bach” →== ”Mozart”), then pt(ε) = {== ”Bach”,==
”Mozart”}. In MEPE, p-terms that are associated with the

notations ”==” and ”! =” operators are respectively called

positive p-terms (denoted ε+) and negative p-terms (denoted

ε−). An MEPE is either composed of a set of positive p-terms,

called Positive MEPE, or a set of negative p-terms, called

Negative MEPE, but not a mixture of them. The pt-set of a

Positive MEPE and a Negative MEPE are denoted as pt(ε+)
and pt(ε−), respectively.

If there are more than one specified preference expressions,

then these expressions have to be unified. The core idea of

unifying Preference Expressions is to construct a new expres-

sion such that for all p-terms in the new expression satisfy all

involved original expressions. If there is at least one Positive

MEPE, then a set of possibly conflicting MEPEs can be unified

as a single Positive MEPE. Assume that {εi}ki=1 are a set of

possibly conflicting MEPEs, where ∃ε+ ∈ {εi}ki=1 such that

ε+ is a Positive MEPE. Then, the set {εi}ki=1 can be integrated

into a Positively Unified MEPE, denoted as εu+, where

∀t ∈ pt(εu+), ∧k1
i=1[t ∈ pt(ε+i )] and ∧k

j=k1+1[t /∈ pt(ε−j )].
The core idea is to construct an expression εu+ such that all

p-terms in εu+ satisfy all of the involved original expressions.

The following theorem presents a general form of unifying

MEPEs where there is a mixture of possibly conflicting

positive and negative MEPEs.

Theorem 1. (Deriving the unified pt-set of a mixture of
Positive and Negative MEPEs) If there is a mixture of several
possibly conflicting Positive and Negative MEPEs, then the pt-
set of the Positively Unified MEPE pt(εu+) can be obtained
by the following operations:

pt(εu+) = ∩k′
i=1pt(ε

+
i )− ∪k

j=k′+1pt(ε
−
j ), (2)

where there are k′ positive MEPEs and k−k′ negative MEPEs.

Proof. Based on the De Morgan’s laws and the set difference

operation, that is, A−B = A∩ B̄, (2) can be transformed to

intersections of pt-sets, specifically,

pt(εu+) = ∩k′
i=1pt(ε

+
i )− ∪k

j=k′+1pt(ε
−
j )

= ∩k′
i=1pt(ε

+
i ) ∩ ∪k

j=k′+1pt(ε
−
j )

= ∩k′
i=1pt(ε

+
i ) ∩ ∩k

j=k′+1pt(ε
−
j )

Thus, we have:

[pt(εu+) ⊆ pt(ε+1 )] ∧ ... ∧ [pt(εu+) ⊆ pt(ε+k′)]∧
[pt(εu+) ⊆ pt(ε−k′+1)] ∧ ... ∧ [pt(εu+) ⊆ pt(ε−k )],

which can be rewritten as

[pt(εu+) ⊆ pt(ε+1 )] ∧ ... ∧ [pt(εu+) ⊆ pt(ε+k′)]∧
[pt(εu+) � pt(ε−k′+1)] ∧ ... ∧ [pt(εu+) � pt(ε−k )].

As a result, ∀t ∈ pt(εu+), we see that

[t ∈ pt(ε+1 )] ∧ [t ∈ pt(ε+2 )] ∧ ... ∧ [t ∈ pt(ε+k′)]∧
[t /∈ pt(ε−k′+1)] ∧ [t /∈ pt(ε−k′+2)] ∧ ... ∧ [t /∈ pt(ε−k )].

In other words, ∀t ∈ pt(εu+), we have

∧k′
i=1[t ∈ pt(ε+i )] ∧ ∧k

j=k′+1[t /∈ pt(ε−j )].

After deriving unified pt-sets, the order of p-terms have to

be determined if the result is a Positively Unified MEPE. To

determine the order of p-terms, users have to designate one
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Listing 2: The BNF of NEPE

NEPE ::= PtList ? ( : ’ ( ’ NegationExpr ’ ) ’ ) ?

PtList ::= ’ ( ’ == STRING PtListTail∗ ’ ) ’

PtListTail ::= →== STRING

NegationExpr ::= ’ ( ’ ! = STRING(∧! = STRING)∗ ’ ) ’

Positive MEPE as the master expression. For example, if we

want to unify the following MEPEs:

ε+1 = (== ”Bach” →== ”Mozart” →== ”Vivaldi”)

ε+2 = (== ”Mozart” →== ”Bach” →== ”Vivaldi”)

ε−3 = (! = ”A. Vivaldi”).

, where ε+1 is the master expression. The pt-set of the unified

MEPE can be obtained by applying Theorem 1:

pt(εu) = pt(ε+1 ) ∩ pt(ε+2 )− pt(ε−3 )
= {== ”Mozart”, ”Bach”, ”Vivaldi”} − {”Vivaldi”}
= {== ”Mozart”,== ”Bach”}.

Next, pt(εu) is ordered according to ε+1 which is chosen as

the master expression. Hence, the Unified MEPE, denoted as

εu, can be obtained after attaching the operators:

εu = (== ”Bach” →== ”Mozart”).

As mentioned earlier, representing preferences by manda-

tory expressions is decisive, that is, users either come to an

agreement or no service is provided at all. However, users are

usually willing to negotiate: they do not always insist on the

criteria and may want to give up some desired service quality

if the criteria can not be met in the first place. The Negotiable

Enumerative Preference Expression (NEPE) is designed for

this purpose, which is used to specify the ”good to have”

criteria for an enumerative attribute. The BNF of NEPE is

presented in Listing 2.
An NEPE has the form P : N, where the P segment is a list

of positive p-terms, whereas the N segment is a set of negative

p-terms. For example, in the expression (== ”Mozart” :
! = ”Vivaldi”), the P segment is == ”Mozart”, and the N
segment is ! = ”Vivaldi”. The p-terms in P specify all ”good

to have” options. If the p-terms in P can not be satisfied,

then the expression can be considered satisfied as long as the

criteria specified in N are evaluated to be True. If follows that

if one of the Preference Expressions to be unified is NEPE,

then the expressions are first treated as Positive MEPEs that

are composed of the p-terms in P. If the unification fails,

namely, pt(εu) = φ, then the p-terms in P are replaced by

those in N and then they are unified again. In this way, the

NEPE provide an additional chance for unification, since N has

weaker constraint than P. For example, if we want to derive

the Unified MEPE from the following MEPEs and NEPEs,

where ε1 is the master expression:

ε1 = (== ”Bach” →== ”Vivaldi” →== ”Haydn”)

ε2 = (== ”Mozart” :! = ”Vivaldi”).

First, ε2 has to be converted into an MEPE based on P,

so that we have εP2 = (== ”Mozart”), where εP2 is an MEPE

that are composed of all p-terms in P. However, the unification

between ε1 and εP2 fails, since

pt(εu) = pt(ε1) ∩ εP2

= {== ”Bach”,== ”Vivaldi”,== ”Haydn”}
∩ {== ”Mozart”} = φ.

Next, because ε2 is negotiable, εP2 is replaced by εN2 so that

the unification is performed again. Hence,

pt(εu) = pt(ε1)− εN2

= {== ”Bach”,== ”Haydn”}.
Finally, pt(εu) is ordered according to ε1 which is chosen

as the master expression. Hence, the Unified MEPE can be

obtained as follows:

εu = (== ”Bach” →== ”Haydn”).

It is important to observe that the result of unifying a set of

MEPEs and NEPEs must be an MEPE. The reason is that the

outcome has to be a consensus (and also the most constrained).

If there is at least one of them which is not negotiable, the

outcome must not be negotiable. But for a special case where

all expressions to be unified are NEPEs, the outcome will

be an NEPE. When unifying NEPEs, the p-terms in P and

in N segments are converted into MEPEs and are unified

correspondingly. If either the unification result of P segments

or that of the N segments is φ, then the final result have to

be transformed to an MEPE. For example, if ε2 is replace by

(== ”Mozart” :! = ”Vivaldi”), causing pt(εu1) = φ, then

the final result becomes φ : (! = ”Haydn”∧! = ”Vivaldi”),
which can be rewritten as a negative MEPE (! = ”Haydn”∧! =
”Vivaldi”).

B. Unifiable Numeric Preference Expressions

Numeric attributes are different from enumerative ones in

that they are numerically comparable and that they can be con-

strained by specifying intervals (i.e. upper and lower bounds).

As a result, numeric expressions must support more operators

than that are supported in enumerative ones. Specifically, there

are only two operators supported in Enumerative Preference

Expressions: ”==” and ”!=”, whereas Numeric Preference

Expressions uses additional operators such as ”>”, ”<”, ”≤”,

”≥”, and ”¬”. Numeric Preference Expressions can also be

mandatory or negotiable. A Mandatory Numeric Preference

Expression (MNPE) is a numeric preference expression whose

criteria must be met. For example, the MNPE:

((> 20∧ ≤ 30)∨ < 10) (3)

can be used to specify the selection criteria of size of an LCD

display whose size is either between 20 to 30 inches or smaller

than 10 inches.

On the other hand, the Negotiable Numeric Preference

Expression (NNPE) is the numeric preference expression that

contains ”negotiable” semantics. Similar to NEPE, an NNPE
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TABLE I: Reducing < x∨ < y when (a) x > y, (b) x < y,

and (c) x = y.

No. Case Rule

(1) < x∨ < y if x ≥ y then < x else < y
(2) > x∨ < y if x ≤ y then True
(3) > x∨ > y if x ≥ y then > y else > x
(4) == x∨ < y if x ≤ y then < y
(5) == x∨ > y if x ≥ y then > y
(6) == x∨ == y if x == y then == x
(7) ! = x∨ < y if x < y then True else ! = x
(8) ! = x∨ > y if x > y then True else ! = x
(9) ! = x∨ == y if x == y then True else ! = x

(10) ! = x∨! = y if x == y then ! = x else True

is also composed of a P segment and an N segment which

are delimited by a colon mark. For example, the following

expression

((> 20∨ < 10)∧! = 25 :�) (4)

is capable of specifying a selection criteria and a negotiable

expression for an LCD display, where the former is that the

size should be either larger than 20 inches or less than 10

inches and must not equal 25 inches, whereas the later is the

expression after the colon mark (”:”), i.e. the N segment with

the notation ”�”, which means the size is the greater the

better. Note that the N segment of an NNPE is useful when the

user only wants to specify a vague constraint for an attribute.

For instance, �, �, and ≈ denote ”the greater the better”,

”the less the better”, and ”the closer to a specified value the

better”.

Not surprisingly, the unification rules for Numeric Prefer-

ence Expressions are different from enumerative ones because

they are now integration of numerical interval as well as

comparative operators rather than lists of strings. However,

it can be shown that the integration of numerical intervals and

operators can actually be reduced to a few types of compact

forms so that specific unification rules for these compact

forms can still be derived to integrate Numeric Preference

Expressions efficiently.

The first step is to convert the expressions into Conjunctive

Normal Forms (CNF), where a clause is a disjunction of

logical terms (e.g. > 30∨ < 20). Theoretically, every logical

expression can be converted into an equivalent CNF expression

by repeatedly applying distributive law and De Morgan’s laws.

The purpose for converting expressions into CNF is that both

∩ and ∪ satisfy the associativity property so that the logical

terms can be unified pairwise. Specifically, after an MNPE

is converted into a CNF, all clauses are connected by ∩,

and all logical terms are connected by ∪. Therefore, logical

terms within a clause can be unified pairwise, and the order

in which they are unified does not affect the outcome. The

same principle holds for clauses within an MNPE. Taking

the MNPE in (3) as an example, it can be converted in to

the following CNF by applying De Morgan’s laws, that is,

((> 20∧ ≤ 30)∨ < 10) ≡ (((> 20∨ < 10) ∧ (≤ 30∨ < 10)).
The next step is to derive the most compact form for

each disjunctive clause. In fact, all disjunctive clause can be

TABLE II: Compact forms of Numeric Preference Expressions

No. Type Compact Form

(1) Negation ! = s
(2) Disjoint intervals or > a∨ < b ∨∨

i
(== xi),

Disjunctions of positive terms where a �= b
(3) Disjoint intervals or > a ∨∨

i
(== xi)

Disjunctions of positive terms
(4) Disjoint intervals or < b ∨∨

i
(== xi)

Disjunctions of positive terms
(5) Disjoint intervals > a∨ < b, where a �= b
(6) Disjoint intervals > a
(7) Disjoint intervals < b
(8) Disjunctions of positive terms

∨

i
(== xi)

reduced to one of the eight compact forms shown in Table

II by repeatedly applying the reduction rules shown in Table

I. Among six different operators defined in MNPE, ≤ and

≥ is semantically equivalent to (< ∨ ==) and (> ∨ ==),

respectively. In this way, the number of different operators

can be reduced to four: >, <, ==, and ! =. Consequently,

there are 10 possible pairwise combinations among numeric p-

terms in a disjunctive clauses (see Table I). Because the logical

operator for connecting p-terms in distinctive clauses is ∨, the

outcomes of unifications should be with fewer constraints, that

is, with greater possible coverage. The reduction rules for the

cases (1) to (10) listed in Table I can be diagrammatically and

intuitively derived.

Now let us prove that all disjunctive clauses can be reduced

to one of the eight compact forms shown in Table II.

Lemma 1. If a p-term of the form ! = s appears in a
disjunctive clause, then either ! = s is the only p-term in
the disjunctive clause or the clause is resolved to be True.

Proof. The numeric unification is performed pairwise

throughout the disjunctive clause. According to cases (7)-(10)

shown in Table I, the results of integrating ”! = s” with

another p-term is either True or ”! = s”. If the result is True,

then the whole disjunctive clause are immediately evaluated

as being True; otherwise, only ”! = s” is derived and then

it is integrates with the next term in the disjunctive clause.

Finally, the clause contains either solely ”! = s” or the whole

clause is evaluated as being True.

Lemma 2. There is at most one p-term of the form > a and
at most one p-term of the form < b in a disjunctive clause.

Proof. This lemma can be directly proved by using case

(1) and case (3) shown in Table I. Assuming there are two

different p-terms of the form > a, (for instance, > x and

> y), then according to case (1) in Table I, the p-terms can be

integrated into single term, namely, either > x or > y. Similar

results hold for for < b according to case (3).

Lemma 3. All disjunctive clauses can be reduced to the
general forms shown in Table I, namely, either ! = s or
> a∨ < b ∨∨

i

(== xi), where a �= b.
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TABLE III: Unification rules for NegotiationExpr

Master Slave Outcome

� � �
� � �
� � φ
� � φ
other cases other cases Master NegotiationExpr

Proof. Recall that the general form of MNPE is∨
i1

(! = si1) ∨
∨
i2

(> ai2) ∨
∨
i3

(< bi3) ∨
∨
i4

(== xi4).

This form can be further reduced to one of the following form

based on Lemma 1:∨
i2

(> ai2) ∨
∨
i3

(< bi3) ∨
∨
i4

(== xi4), (5)

or

∨(! = s). (6)

Note that (5) can be further reduced to the following form

based on Lemma 2:

>a∨ < b ∨
∨
i

(== xi). (7)

As a result, this lemma can be proved by combining (6) and

(7).

Theorem 2. (The compact forms of disjunctive clauses) All
disjunctive clauses can be reduced to one of the eight compact
forms shown in Table II.

Proof. The compact forms (1) and (2) listed in Table II can

be directly obtained from the two general forms derived in

Lemma 3, namely, (6) and (7). The compact forms (3) to (8)

are special cases of general forms, which can be obtained by

assigning ∞, −∞, and 0 to the variable a and b in (7) and i
in (6), respectively, as shown in Table II.

After each disjunctive clauses are reduced to the most

compact forms, the final step is to connect disjunctive clauses

by conjunctive logical operator (∧) and applying unification

rules to each pair.

The unification procedure of NNPE is the same as that of

MNPE except for the N segment. The rules for unifying N
segments are listed in Table III. If the semantics of terms in

N are the same, then the segment N is directly adopted. On

the contrary, the terms are removed if any conflict exists. If it

is neither of the two cases, then the segment N of the master

expression is chosen.

V. EVALUATION

According to a recent survey of 24 existing service composi-

tion frameworks in pervasive environments [2], 17 of them are

categorized as Type-based Service Composition (TBSC), since

they only compose the service by simply matching node types;

the remaining 7 of them match the values of attributes against

a set of user-specified expression, which are called Expression-

driven Service Composition (EDSC). In the following, the

proposed approach is called the Negotiable-Expression-driven

Service Composition (NESC). This work evaluates the quality

of the above mentioned approaches based on several metrics

which will be reported in the following sub-sections.

All experiments are conducted on P4 1GHz CPU PCs with

1GB memory and all input data are randomly generated to

simulate the real world situation. In each experiment, the

number of Service Request is set to 1000, the lengths of

services are randomly distributed from 3 to 5, and there are

totally 15 node types in the system. Each composition method

is performed to select candidates among a group of Worker

Nodes ranging from 500 to 1500 instances and each node

consists of 7 to 11 attributes. Among these attributes, 50%

of them are constrained by user preferences. By default, the

number of mandatory preferences is equal to the number of

negotiable preferences.

1) Success Rate of Matching: The first metric is called the

Success Rate of Matching (SRM), which is defined below:

SRM =

∑
s∈S

n(W valid
s )

∑
s∈S

n(W requested
s )

=

∑
s∈S

n(Ws
valid)

∑
s∈S

�(s)
, (8)

where W valid
s is set of Worker Nodes that are successfully

found and matched for the service s, S is the set of services

to be composed, and �(s) is the average number of components

in a service.

The core idea of SRM is to measure the success rate based

on the number of successfully found nodes instead of the

number of successfully composed services. When a service

needs to be composed and if there are n − 1 out of n nodes

which are found, then n−1
n is given to SRM instead of 0.

Figure 3a shows SRM with different number of Worker Nodes.

Both the SRMs of EDSC and NESC slightly increase when

the number of nodes is increased. TBSC has the highest

SRM. However, a composition mechanism with high SRM

does not guarantee high quality of service. In an extreme

case, a composition mechanism can achieve high SRM by

simply reporting that all nodes are candidates. As a result, a

metric that measures the precision of the timing for reporting

candidates is required. Recently, many researchers found that

”recall” and ”precision”, which are common evaluation mea-

sures in the information retrieval field [18], are very useful

metrics for evaluating the quality of service composition [19],

[20]. NESC only returns the best node, so that n(W requested
s )

represents the total number of relevant nodes of a Service

Request. Therefore, the semantics of SRM is identical to the

concept of ”recall” which is the number of relevant items

retrieved (i.e.
∑
s∈S

n(W valid
s )) over the number of total number

of relevant items (i.e.
∑
s∈S

n(W requested
s )). In the following,

the metrics for measuring the precision of a composed service

will be presented.

2) Precision of Composition: Precision is the number of

relevant items retrieved over the number of total retrieved

items [18]. Hence, the Precision of Composition (PoC) can
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Fig. 3: (a) Success Rate of Matching with number of nodes; (b) Precision of Composition with number of nodes; (c) Precision

of Composition with the ratio of constrained attributes ;

be defined as the number of valid nodes retrieved over the

number of total retrieved nodes, namely,

PoC =

∑
s∈S

n(W valid
s )

∑
s∈S

n(W found
s )

, (9)

where n(W valid
s ) is the number of nodes that fulfills the

corresponding Node Preference Descriptors and n(W found
s )

is the number of nodes found by the PSM.

Figure 3b illustrates the PoC of the three approaches with

increasing number of nodes. The PoCs of TBSC, EDSC, and

NESC are steady at 10%, 78%, and 86%, respectively. It is

important to note that the although TBSC gets high SRM in

the previous experiments, it suffers from extremely low PoC.

In other words, TBSC tends to retrieve too many candidates

causing the precision being extremely low. On the contrary,

EDSC is too restrictive so that, although it gets the highest

PoC, the SRM is poor. Figure 3a and 3b show that NESC is

able to maintain high score both in SRM and PoC. Specifically,

the NESC is precise enough so that it is able to compose

high quality services while maintaining reasonable success

rate of composition. From Fig. 3b, given that the number of

constraints on node attributes are the same, PoC is independent

of the number of the Worker Nodes. Therefore, additional

experiments are performed to observe the relationship between

PoC and the ratios of constrained attributes. The outcomes

are shown in Fig. 3c. Observe that the PoCs of TBSC drop

rapidly whereas PoCs of other approaches increase gradually.

The results show that TBSC is more inappropriate if there are

more constraints on attributes.

3) User Satisfaction Index (USI): Finally, we use the Fβ-

score of SRM and PoC to indicate the overall quality of

composition. Fβ-score is a popular method used to combine

the precision and recall metrics [21], where β is a weight

parameter used to adjust the importance between precision and

recall. In fact, F1-score is the harmonic mean of precision and

recall. The following equation defines a Fβ-based metric called

User Satisfaction Index (USI) by integrating the outcomes of

SRM and PoC:

USI(Fβ) = (1 + β2) · PoC · SRM

(β2 · PoC) + SRM
. (10)

In real cases, a composition method with low success rate

(SRM) usually leads to frustrating user experiences. Users’

preferences are usually adjustable, dynamic, and vague so

that they are usually willing to negotiate, that is, to adjust

their preferences, in order to prevent the composition from

failing. When evaluating composition methods, one can put

more emphases on success rate (SRM) by increasing β.

Figures 4a and 4b show the USIs of the three methods when

β = 1 and β = 2, respectively. The results show that the

proposed approach obtains the highest score both in QoC(F1)
and QoC(F2). When β = 2, where the metric is in favor of

the approaches with higher success rate, The USI score of

NESC is obviously much higher than that of EDSC.

It can be concluded that the proposed approach, namely,

NESC, is able to achieve high composition precision and

maintains reasonable success rate of composition at the same

time so that it outperforms the other methods in both USI(F1)
and USI(F2) metrics.

VI. CONCLUSION

In a pervasive environment, the criteria for selecting and

ranking services are usually specified by users, which tend

to be vague and subjective, causing the criteria for selecting

services can be contradictory. This paper proposes a nego-

tiable and unifiable expression language, namely, Preference

Expression, along with a set of unification rules for integrating

conflicting preferences. Experimental results show that the

proposed approach is able to greatly increase the success rate

of composition especially under strict constraints. Although

the proposed approach is presented based on PerSAM, the

the core techniques such as Preference Expression and its

unification rules are generally applicable to other service

models with minor modifications.

Ongoing research will be under way to address the following

issues. First, the constraints on preferences may involve more

than one variable at the same time, but the current version
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Fig. 4: (a) User Satisfaction Index (β = 1); (b) User Satisfaction Index (β = 2)

of unification rules does not consider the co-relation among

attributes. Besides, many services in Smart Homes contain

”contents”, that is, digitized media such as texts, images,

videos and voices that are able to be processed by computers.

Currently, the ”contents” is modeled as an attribute of a

service. Nevertheless, from a user’s point of view, services

with different digital contents should be distinguished from

one another. For instance, a media player playing different

movies provide different user experiences. In other words, the

information of contents should be taken into account when

selecting and ranking services besides types and QoS attributes

of services. Further research is also under way to investigate

this type of content-aware services.
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