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摘 要 

ML和GLS是結構方程模式分析最常使用的參數估計法，兩種方法是基於常態

分配假設來進行估計，然而，真實資料卻時常違反常態性假設。在此情形下，基於

這二種估計法所求得的參數是否可靠，值得商榷。本研究旨在比較不同非常態情形

下，這二種方法與四種不受常態性假設影響的強韌統計方法（ADF, SCALED, boot-

strap- oM 和bootstrap- AM ）第一類錯誤率控制情形。結果發現：ML與GLS在所有

非常態模擬資料，即使樣本數高達5,000，二者的第一類錯誤率超過35%。而ADF

容易受小樣本影響產生過高的第一類錯誤率。SCALED, bootstrap- oM 和bootstrap-

AM 較不易受樣本數影響，且可降低非常態所造成的問題。最後，提出未來研究與

實務的建議。 
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Abstract 

Although the maximum likelihood estimator based on normality theory is default in 
most available programs in structural equation modeling, the majority of data investi-
gated in behavioral and social sciences violate the assumption of multivariate normality. 
This study evaluated six covariance structure analysis techniques (i.e., ML, GLS, ADF, 
SCALED, bootstrap- oM and bootstrap- AM ) under various conditions of nonnormality. 
Results clearly illustrated that the ML and GLS failed to provide a good control of Type I 
error rates in all conditions of nonnormality even with the sample size of 5000. The ADF 
was essentially unusable in small to intermediated sample sizes. The SCALED and two 
bootstrap methods provided promising advantages but they were confined by small sam-
ple sizes. Additionally, the minimum requirements of sample sizes and bootstrapped 
samples for bootstrapping procedures were identified. Finally, a few suggestions were 
provided in the hope of improving the current practice. 
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Introduction 

Structural equation modeling (SEM) 

is a statistical technique to estimate and 

test causal relationships embedded in the 

model (Bentler, 1988) and it has played a 

significant role in multivariate analysis, 

with extensive applications in the beha-

vioral and social sciences. The well known 

advantage of SEM is that it permits one to 

simultaneously test and model measured 

variables, latent variables and measure-

ment errors on the basis of theoretical 

framework (Bentler & Dudgeon, 1996; 

Bollen, 2002). The estimations of SEM 

mainly rely on covariance matrix. That 
is, ( )Σ θ , the population covariance ma-

trix, is used as a test statistic for evalua-

ting the quality of structural model. Under 
multivariate normality, ( )Σ θ can ap-

proximate the population covariance ma-

trix well. However, under nonnormality, 
( )Σ θ could be contaminated, which in 

turn produces the disastrously conse-

quences such as a high Type I error rate, 

low power and the inflation of fit indices 

(Bentler & Dudgeon, 1996; Yuan & 

Benlter, 2001; Yuan, Bentler, & Chan, 

2004). In reality, most real data sets in the 

behavioral and social sciences, especially 

those collected by self-reported question-

naires, potentially violate the assumption 

of normality. For example, Micceri (1989) 

investigated 440 large sample achieve-

ment and psychometric measures and 

found all data were significantly nonnor-

mally distributed, with several classes of 

contamination. Additionally, in some im-

portant areas of studies such as depres-

sion, abnormality and psychopathology, 

the nature of data represents nonnormally. 

Under such situations, can test statistics in 

covariance structure analysis estimated 

based on normal theory be reliable? And 

can the inferential conclusions based on 

covariance structure analysis be trusted?  

Furthermore, Breckler (1990) and 

Jöreskog (1993) have noted that most re-

searchers applied normal theory-based 

maximum likelihood (ML) or generalized 

lease squares (GLS) without seriously 

considering whether the assumption of 

normality had been violated. This lack of 

attention on data quality is probably due 

to the facts that the effects of nonnormally 

distributed data on covariance structures 

estimated based on normality theory are 

not well understood by applied re-

searchers; that there exist various results 

on the robustness of ML or GLS pro-

cedures with nonnormal data sets (e.g., 

Anderson & Amemiya, 1988; Browne, 
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1984; Hu, Bentler, & Kano, 1992; Satorra 

& Bentler, 1990, 1991); and that there are 

rare analytical results indicating that as-

ymptotic robustness (i.e., the validity of 

normal theory-based methods with large-

sample nonnormal data) is not enough 

when the data contain influential cases 

(e.g., outliers or heavy tails). Thus, such 

an investigation is one of the major  

focuses of the current study.  

Nonnormal distributions contain in-

fluential observations. In general, influen-

tial observations are classified into two 

categories. In the first category, the influ-

ences observations are only some extreme 

cases called outliers. Under such situa-

tions, nonnormality is due to outliers. S, 

the sample covariance matrix, is ex-

cessively affected by a small proportion 

of outliers, which in turn leads to the in-

flation of fit indices for the majority of 

the data (Bentler & Dudgeon, 1996; Yuan 

& Benlter, 2001). Additionally, S is very 

sensitive to outliers because it has un-

bounded influence function and zero 

breakdown point (Hample, Ronchetti, 

Rousseeuw, & Stahel, 1986; Huber, 1981; 

Wilcox, 1997, 2003; Yuan & Bentler, 

1998a). Put differently, any individual 

case can cause S to be arbitrarily large. 

(The readers are referred to Staudte and 

Sheather (1990) and Wilcox (1997) for 

the detailed discussion of influence func-

tion and breakdown points). In the second 

category, the influential observations are 

due to the heavy tails of sampling distri-

bution (but heavy tails are not created by 

outliers). In such cases, the influential ob-

servations are associated with the skew-

ness and kurtosis. When sampling distri-

bution has heavy tails, S is an inefficient 

estimator of the population covariance 

matrix (Tyler, 1983; Yuan et al., 2004) 

and the population of fourth-order mo-

ments, kurtoses, do not exist. Browne 

(1982, 1984) pointed out that the kurtosis 

is critical because it is a key term in the 

mathematical expression for the covari-

ances of covariances. Importantly, when 

heavy tails of a data set are coming from 

outliers, the situation becomes worse 

(e.g., Devlin, Gnanadesikan, & Ketten-

ring, 1981; Yuan & Bentler, 1998a).  

In general, there are two alternatives 

dealing with nonnormality in SEM. One 

is to identify outliers by means of some 

analytical procedures (e.g., Bollen & 

Arminger, 1991; Chatterjee & Yilmaz, 

1992; Lee & Wang, 1996) and subjec-

tively decide whether to remove them. 

This procedure is not encouraging since 

the most influential observations may not 
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be real outliers (Huber, 1981). Another 

way is to apply a robust approach-- 

downweighting the effects of outliers 

(e.g., Campbell, 1980; Rousseeuw & van 

Zomeren, 1990; Wilcox, 1997; Yuan & 

Bentler, 1998a, 1998b). As mentioned 

above, the sample covariance matrix has 

unbounded influence function and zero 

breakdown point. On the other hand, by 

giving a proper weight to each individual 

case, the robust covariances have 

bounded influence functions as well as 

nonzero breakdown points. It implies that 

robust covariances are less affected by 

any influential observation. The term ro-

bust covariance in SEM is “well defined 
as long as the structural model ( )Σ θ is in-

variant under a constant scaling factor 

(ICSF). That is, for any parameter vector 

θ  and positive constant a, there exists a 

parameter vector *θ such that 
*( ) ( )= aΣ θ Σ θ ” (Yuan & Bentler, 1998a: 

368-369).  

Several robust covariance structures 

have been developed to address the pro-

blems associated with the ML or GLS un-

der various nonnormal conditions (e.g. 

Browne, 1984; Campbell, 1980; Hu et al., 

1992; Kano, Berkane, & Bentler, 1990; 

Satorra & Bentler, 1990, 1991; Yuan & 

Bentler, 1998a, 1998b). Among these ro-

bust approaches, the most widely used 

methods are asymptotically distribution 

free estimator, ADF (Browne, 1984) and 

scaling corrected, SCALED (Satorra & 

Bentler, 1988, 1990). Both of them have 

their strengths and weaknesses under 

various conditions. In addition to these 

methods, the bootstrapping recently has 

been regarded as a promising approach 

(e.g., Yung & Bentler, 1994, 1996; Yuan, 

et al., 2004; Yuan & Hayashi, 2003; Yuan, 

Hayashi, & Yanagihara, 2007). Yet, there 

still exists many unknown issues about 

the applications of these robust methods. 

For example, do these robust methods 

perform well under various conditions of 

nonnormality? Therefore, such an explo-

ration is another major focus in the   

present study. Related literature of these 

robust methods is discussed as follows. 

Asymptotically distribution 
free estimator (ADF) 

Brown (1984) developed an “asymp-

totically distribution free” (ADF) estima-

tor procedure that does not assume multi-

variate normality of the measured va-

riables. The ADF is based on multivariate 

elliptical distributions, which are symme-

tric with tails that can be either heavier or 

lighter than those of a normal distribution 
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as well as identical. The key of the ADF 

estimation is to utilize an optimal weight 

matrix which consists of a combination of 

second-order and fourth-order terms. The 

major theoretical advantage of the ADF is 

to produce asymptotically (large sample) 
unbiased estimates of the 2χ goodness-of-

fit test, parameter estimates as well as 

standard errors. There are, however, two 

important limitations of the ADF. The 

first limitation is that the calculation of 

the matrix of fourth-order moments needs 

a large sample size to generate stable 

estimates. Sample sizes of 1000 are nece-

ssary with relative simple models under 

typical conditions of nonnormality 

(Curran, West, & Finch, 1996) and 5000 

observations are necessary for more com-

plicated models (Hu & Bentler, 1995; Hu 

et al., 1992). Briefly, at a large sample 

size ( 5000≥n ), the ADF performs as ex-

pected, providing observed Type I error 

rates at the nominal level. However, with 

complicated models or small to moderate 

sample sizes, the ADF has been proble-

matic in terms of high rates of noncon-

vergence as well as high Type I error rates 

(Curran et al., 1996; Hu et al., 1992; 

Muthén & Kaplan, 1992). Now, questions 

may arise: large sample sizes ( 5000≥n ) 

are rare in psychological and behavioral 

research. The second limitation is that the 

ADF is computationally demanding due 

to the calculations which need the inver-

sion of its optimal weight matrix. With 

more than 30 measured variables, imple-

mentation of the ADF becomes impracti-

cal (Bentler, 1995; Hu et al., 1992). Im-

portantly, the ADF is biased under certain 

conditions (e.g., Chou, Bentler, & Satorra, 

1991), but conflict results are reported by 

Muthén and Kaplan (1992). 

Scaling Corrected 
(SCALED) 

Satorra and Bentler (1988, 1990, 

1994) developed two modifications of 

standard goodness-of-fit statistic test 

based on ML and heterogeneous kurtosis, 

HK (Kano et al., 1990). Here, only modi-

fication of ML was proposed. The 

SCALED is a rescaled test statistic when 
normality theory 2χ statistic does not fo-

llow the expected 2χ distribution under 

nonnormality, by applying a scaling con-

stant to the covariance matrix of the pa-

rameter estimates. That is, the normal 
theory 2χ is divided by a constant k, 

whose value is a function of the model re-

sidual weight matrix, the observed multi-

variate kurtosis and the degree of freedom 

for the model.   
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Compared to the ADF, the SCALED 

is less affected by the model complexity 

and sample size. Also, it appears to pro-
vide good estimates of 2χ for sample size 

200 and higher. However, it has a ten-

dency to over-reject models at smaller 

sample sizes (Hu et al., 1992; Hu & 

Bentler, 1995). Previous studies (e.g., 

Curran et al., 1996; Hu et al., 1992; 

Satorra & Bentler, 1990) have shown that 

the SCALED is superior to the ADF in 

nonnormal conditions, but the reason why 

the SCALED is better than the ADF is not 

clear. One speculation may be that the 

SCALED uses a matrix generated from 

these moments directly, but the ADF ap-

plies the inverted matrix, which leads to 

the accuracy problems in intermediate-

size samples and the sufficiency problems 

in small-size samples (Hu et al., 1992).  

Bootstrapping 

The bootstrap, introduced by Efron 

(1979), is a computationally-intensive sta-

tistical tool which allows researchers free 

from the theoretical distributions of cla-

ssical test statistics. The bootstrapping 

procedures involve resampling the data 

with replacement many times to generate 

an empirical estimate of the entire sam-

pling distribution of a statistic. Recently, 

studies using bootstrapping on covariance 

structures have been on the increase (e.g., 

Bollen & Stine, 1990, 1992; Stine, 1989; 

Yuan & Hayashi, 2003, 2006; Yuan et al., 

2007; Yung & Bentler, 1994; 1996). The 

bootstrap approach on covariance struc-

tures was initially developed by Beran 

and Srivastava (1985). Further, Bollen 

and Stine proposed a bootstrap method 

for adjusting the p value associated with 

MLT (the likelihood ration statistic based 

on normal theory). Their results indicated 
that naive bootstrapping of MLT for SEM 

models was inaccurate due to the distribu-

tion of bootstrapped model test statistics 

followed a noncentral chi-square distribu-

tion rather than a central one. To address 

this problem, they applied a transforma-

tion on the original data to make the 

model-implied covariance matrix become 

the true underlying covariance matrix in 

the population. Extending the study of 

Bollen and Stine, Yung and Bentler pro-

posed two bootstrap methods, symbolized 
as bootstrap- oM  and bootstrap- AM . Due 

to the limitations of the number of re-

peated samples (i.e., only 10 repeated 

samples) as well as conditions of non-

normality, their results showed that both 
bootstrap- oM and bootstrap- AM  were 

not reliable enough. Recently, Yuan and 
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Hayashi used three bootstrap ( MLT , SBT , 

BT ) to estimate Type I error, power and 

sample-size determination. Their results 
illustrated that MLT was asymptotically 

pivotal, when data were normally distri-
buted. SBT (a rescaled version of the like-

lihood ratio statistic proposed by Satorra 

and Bentler) was not asymptotically pi-

votal for nonnormal distributions but for 
elliptical distributions. BT (an asymptoti-

cally distribution-free statistic proposed 

by Browne) was asymptotically pivotal 

for sampling distributions with finite 

fourth-order moments (kurtoses). Fur-

thermore, they indicated that combining 

downweighting with bootstrapping pro-

vided a theoretical justification for using 

bootstrapping to the data with heavy tails. 

Relative to the classical approaches 

(e.g., ML and GLS), the robust ap-

proaches (e.g, ADF, SCALED and boot-

strapping) proposed here have following 

promising advantages. First, by down-

weighting the effects of influential cases, 

robust methods result in smaller chi-

square statistics that provide more support 

to a theoretical model. Second, robust 

methods give more reasonable solutions 

with problematic data (e.g., outliers and 

heavy tails), yet classical methods cause 

improper solutions such as Heywood 

cases. Third, both classical and robust 

methods lead to the same conclusions 

with approximately normal data sets 

(Bollen & Stine, 1992; Yuan & Bentler, 

1998a, 1998b). Although the proposed ro-

bust methods have shown promise for co-

variance structure analyses, unknown 

issues related to them still exist. For in-

stance, relative to the ADF, the SCALED 

is less affected by the model complexity 

and sample sizes. What is the minimum 

sample size for the SCALED to get a 

good control of Type I error rates? Under 

what conditions, the SCALED outper-

forms the ADF? There are various   

variants of bootstrapping, and which 

bootstrap method should be applied? 

Based on the study by Bollen and Stine, it 
suggested that the bootstrap- oM is used to 

estimate the bootstrap distribution of the 
test statistic. Here, both bootstrap- oM and 

bootstrap- AM derived from Yung and 

Bentler (1996) are applied, but are they 

equivalent under various conditions of 

nonnormality? Additionally, as is well 

known, when using bootstrap methods, 

the minimum sample size is required. 

However, minimum sample size re-

quirements for the original sample are 

rather vague. Studies only suggest that the 

bootstrap may be inappropriate with rela-
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tively small sample sizes (e.g., Ichikawa 

& Konishi, 1995; Yung & Bentler, 1996). 

For practical data sets potentially contain-

ing outliers or heavy tails, how could we 

determine the sample size needed to 

achieve a good control of Type I error rate 

in covariance structure models? Finally, 

the minimum of B (i.e., number of boot-

strapping) required to yield accurate esti-

mates of p values in SEM is also unclear. 

Yung and Bentler suggested ideal = nB n , 

but this collection is impractical for prac-

tical experiments. 

Based on previous arguments, the 

objective of this study is to address the is-

sues (mentioned above) associated with 

robust covariance in SEM. Monte Carlo 

simulations are utilized to evaluate two 

classical methods based on normal theory 

(ML and GLS) and four robust methods 
(ADF, SCALED , bootstrap- oM and boot-

strap- AM ) under different conditions of 

nonnormality (e.g., various sample sizes, 

skewness and kurtosis) in terms of their 

Type I error rates.   

Method 
Procedure 

This study examined the relative per-

formance of two classical methods relying 

on normal theory (ML, GLS) and four ro-

bust methods for covariance structure 

models (ADF, SCALED, bootstrap-

oM and bootstrap- AM ) under various 

conditions of multivariate nonnormality, 

with a particular emphasis on properly 

specified models. Monte Carlo simula-

tions were designed based on two condi-

tions manipulated here: distribution type 

of population (five distribution types) and 

sample size (n=100, 200, 500, 1000, 

5000). When investigating both bootstrap 

methods, the number of bootstrapping B 

(B=200, 300, 500, 1000, 1500, 2000, 

5000) was considered in addition to the 

conditions of distribution type and sample 

size. Three hundred random samples were 

analyzed in each of the population condi-

tions. The outcomes were compared in 

terms of their Type I error rates.  

Model Specifications and 
Distributional Conditions 

An oblique three-factor model with 

three indicators per factor was examined. 

This confirmatory factor model was a cor-

rectly specified model, in which the popu-

lation parameters included that all factor 

ladings were set to .70, uniqueness were 

set to .51, interfactor correlations were set 

to .30 and factor variances were set to 1.0. 

Five population distributions were con-
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sidered through the manipulation of uni-

variate skewness and kurtosis. Distribu-

tion 1 was multivariate normal with uni-

variate skewness and kurtoses equal to 0. 

Distribution 2 and 3 were moderately  

nonnormal. The former distributed sym-

metrically with univariate skewness of 0 

and kurtoses of 7 and the latter repre-

sented nonsymmetrically with univariate 

skewness of 2 and kurtoses of 7. Distribu-

tion 4 and 5 were severely nonnormal, 

with the former distributing symmetri-

cally with univariate skewness of 0 and 

kurtoses of 21 and the latter representing 

nonsymmetrically with univariate skew-

ness of 3 and kurtoses of 21. Model speci-

fications were partially referred in Curran 

et al. (1996). Only asymmetrical distribu-

tions were analyzed in the study of Curran 

et al., however, both symmetrical and 

asymmetrical distributions were taken 

into consideration in the present study. 

Simulated raw data were generated in 

EQS (Bentler, 1995) to reach the desired 

conditions. The method developed by 

Vale and Maurelli (1983) was imple-

mented to generate independent observa-

tions from specific nonnormal distribu-

tions. The programming accuracy check 

was done with SAS PROC     

UNIVARIATE.   

Test Statistics 

Maximum-likelihood (ML) 
Jöreskog and Goldberger (1972) ap-

plied Maximum-likelihood in SEM. Let S 

represent the unbiased estimator that is 
based on a sample size n of ×p p popula-

tion covariance matrixΣ , whose elements 
are functions of a 1×q  parameter vector 

: ( )=θ Σ Σ θ . ML function is  
1log log ( )−= − + −MLF S tr S pΣ Σ , (1) 

where "|.|" is the determinant of a matrix, 

"tr" is the trace, and p is the total number 

of manifest variables (x and y) in the 

model. 

Generalized least squares 
(GLS) 
Jöreskog and Goldberger (1972) ex-

tended Generalized least squares method 

in the path analysis. GLS functions is  

{ }2
11 ˆ( )

2
−⎤⎡= −⎣ ⎦GLSF tr S WΣ θ , (2) 

where S is the observed covariance   

matrix, ˆ( )Σ θ  is the covariance matrix 

implied by the hypothesized model and 
1−W  is a weight matrix.  

Asymptotic distribution free 
(ADF) 
Asymptotic distribution free was 

proposed by Brown (1984). ADF function 

is 
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[{ }21 11 ( 1) ( )
2

− −⎤= + − ⎦ADFF k tr S WΣ θ  

[ }{ 21( ) −⎤− − ⎦tr S Wδ Σ θ , (3) 

where k is common kurtosis parameter of 

a distribution, W is any consistent esti-
mator of Σ and 2/ [4( 1)= + +k kδ  

2 ( 1)]+pk k . 

Scaling Corrected (SCALED) 
Satorra and Bentler (1988) deve-

loped two modifications of the standard 
goodness-of-fit test ( ,ML HKT T ). In this 

study only the modification of MLT is used. 

The scaled ML function is  
/= MLT T k , (4) 

where k is the scaling estimate and 
ˆ ˆ( ) /= ssk tr UV df , Û is a consistent esti-

mator of U on the basis of θ . ŝsV  is the 

distribution-free estimator with * *×p p  

positive definite weight matrix. 

Bootstrap 
Yung and Bentler (1996) extended 

the study of Bollen and Stine (1992) and 

proposed two bootstrap methods, symbo-
lized as bootstrap- oM and bootstrap- AM . 

Two methods are achieved by transfor-

ming the observed sample so that its first 

and second moments completely satisfy 

the hypothesized mean and covariance 
structure. The bootstrap- oM is  

1/2 1/2ˆ ˆ( ) { ( ) ,−≡ = − +o i o n i n oR M y S x xΣ μ  

1, 2, },=i  (5) 

where ˆˆ ( )=oΣ Σ θ and ˆˆ ( )=oμ μ θ are esti-

mated under the null hypothesis. 

When the structure equations and the 
parameter values ( Aθ ) are hypothesized 

without any specified parameter values of 

Aθ , AΣ and Aμ are just vectors with 

known value. The bootstrap- AM  is  
1/2 1/2ˆ ˆ( ) { ( ) ,−≡ = − +A i A n i n AR M y S x xΣ μ  

1, 2, .... }=i n . (6) 

The bootstrap distribution of *T is 

used as an estimator for sampling distri-

bution of the original test statistic T. The 

bootstrap estimate of the p value of T is 
*p , which is defined by 

}{* *

1

1
=

= >∑
B

j
j

p I T T
B

. (7) 

In this study, let B= 200, 300, 500, 

1000, 1500, 2000 and 5000. 

Results 

To evaluate the Type I error rates of 

the model test statistics under various 

conditions of nonnormality, the criterion 

of robustness proposed by Bradley (1978) 

was applied. According to Bradley’s li-

beral criterion, when one estimator pro-

vides an empirical alpha within the inter-
val [.5 , 1.5 ]α α , it is regarded robust. For 

his stringent criterion, one estimator is 

considered robust if it provides an empiri-
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cal alpha within the interval[.9 , 1.1 ]α α . 

Here, Bradley’s liberal criterion was uti-
lized. Using .05,=α  the intervals for a 

robust estimator were [.025, .075]. Table 

1 details the empirical Type I error rates 

across different conditions of nonnor-

mality.  

As expected, both ML and GLS had 

acceptable Type I error rates under condi-

tions of normality even at the smallest 

sample size (e.g., n=100). With the depar-

tures from multivariate normality, how-

ever, the ML and GLS were not robust 

even at the largest sample sizes (e.g., 

n=5000), with percentages of model re-

jections ranging from about .20 to .45. 

Apparently, the more severe the nonnor-

mality, the greater the corresponding Type 

I error rates. For example, under the se-

verely nonnormal conditions (e.g., 

distribution 5: skewness=3, kurtosis=21), 

the percentages of model rejections of 

both ML and GLS reached more than .35 

even with the largest sample sizes. 

Regarding the ADF, under the 

multivariate normal distribution models, 

rejection rates were within the robustness 

interval of [.025, .075], with an exception 

of 200≤n . Under nonnormal conditions, 

the ADF yielded observed Type I error 

rates nearly at the upper bound of .075, 

given n= 5000. Yet, with small to mode-

rate sample sizes, the ADF appeared to be 

disastrously problematic; that is, it re-

sulted in rejection rates as high as .48 un-

der certain condition (e.g., distribution 5 

with n=100). Under normal condition 

models, the SCALED operated a good 

control of Type I error rates, with only 

marginally above the .075 upper bound at 

n=100. Nevertheless, it was confined to 

small sample sizes. That is, it appeared to 

be robust at 200≥n  under a moderate 

departure from nornormality (e.g., distri-

bution 2 and 3) and at 500≥n  under the 

severely nonnormal conditions (e.g., dis-

tribution 4 and 5). Compared with the 

ADF, the SCALED was less affected by 

the degree of nonnormality and sample 

size. The ADF required 5000≥n  to 

maintain a good control of Type I error, 

but the SCALED only needs 200≥n  

with samples drawn from moderately 

nonnormal population and 500≥n  with 

the data departure from severe nonnor-

mality. Additionally, the SCALED pro-

vided rejection rates within the robustness 

interval given 500≥n , regardless of dis-

tribution types.  

With respect to the bootstrap meth-
ods (e.g., bootstrap- oM  and bootstrap-

AM ), both of them suffer from small 
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sample sizes (e.g., 100=n ) under both 

normal and nonnormal conditions. The re-

jection rates arbitrarily varied at 100=n , 

implying that bootstrapping was unstable 

with small sample sizes. Nonetheless, 

both bootstrap methods maintained a 

good control of Type I error rates given 

adequate sample size (e.g., 200≥n ). To 

better understand the patterns of rejection 

rates of bootstrapping, two separate three-

way ANOVA analyses for the bootstrap-

oM  and bootstrap- AM  were conducted 

with an exclusion of 100=n  (because 

bootstrapping with 100=n  was un-

stable). In each univariate factorial analy-

sis, there were 300 replications for five 

distributions crossed with four sample 

sizes crossed with seven bootstrapping 

replications (300 × 5 × 4 × 7 = 42000 cases). 

Table 2 summaries Eta-squared values as-

sociated with each factorial analysis. Re-

sults illustrated that both first-order and 

second-order interactions were nonsig-

nificant. Only a significant main effect of 

the number of bootstrapping (B) was 

identified. These results signify that the 

empirical Type I error rates of both boot-

strap methods mainly depend on the 

number of bootstrapping, but distribution 

type and sample size were not influential 

factors for rejection rates. Furthermore, 

the number of bootstrapping 500≥B  

produced nonsignificant differences of re-

jections from a posteriori. With a closer 

inspection, most rejection rates were be-

low .05 given 500≥B ; that is, 500≥B  

seemed to be irrelevant in terms of model 

rejections. Additionally, the bootstrap-

oM  performed comparably with boot-

strap- AM  in terms of their Type I error 

rates. Comparing both bootstrap methods 

with the SCALED, it appeared that all 

were less affected by distribution types. 

To achieve acceptable rejection rates, 

200≥n  was required for both bootstrap 

methods, but 500≥n  was needed under 

severely nonnormal conditions for the 

SCALED.  

To assess whether Type I error con-

trol was a function of distribution type 

(e.g., distribution1-5) and sample size 

(e.g., n=200, 300, 500, 1000, 5000), fac-

torial analyses of variance were con-

ducted for each method (ML, GLS, ADF, 

SACLED). Because the performance of 

both bootstrap methods greatly relied on 

the bootstrapped samples and they were 

not significantly influenced by distri-

bution type as mentioned above, both 

bootstrap methods were excluded. In each 

factorial analysis, there were 300 repli-

cations for five distributions crossed with  
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Table 2 Partial Eta-squared of factorial analyses of variance for the bootstrap methods 

 bootstrap- oM  bootstrap- AM  

distribution .019 .021 
sample size .011 .008 
number of bootstrapping (B) .287*** .235*** 
distribution × sample size .012 .020 
distribution × (B) .016 .014 
sample size × (B) .011 .013 
distribution × sample size × (B) .015 .009 

2R  corrected model .371*** .301*** 

*** p<.001 

 

five sample sizes (300 × 5 × 5 = 7500 cases). 

In Table 3, results showed that about 70% 

of the variance in the empirical rejection 

rates was explained by first and second 

order effects for the ML and GLS. The 

explained variance for the ADF and 

SCALED was 47% and 29.5%, respec-

tively. In addition, main effects and inter-

action effects were significant for the ML, 

GLS and ADF. It is suggested that the 

empirical Type I error rates varied as a 

function of distribution type and sample 

size for the ML, GLS and ADF. For the 

SCALED, however, only sample size had 

a significant effect on rejection rates. 

Conclusions 

This study was to investigate the 

performance of general and robust cova-

riance structure analysis techniques under 

various conditions of multivariate non-

normalilty, with an emphasis on properly 

specified models. As is well-known, nor-

mal-theory methods (e.g., ML and GLS) 

are assumed that the fourth-order mo-

ments are equal to 0, which in turn fails to 

reflect the quality of a covariance struc-

ture model under conditions of nonnor-

mality. The more severe the nonnormality, 

the worse control of Type I error rates. 

The present Monte Carlo simulation 

clearly demonstrates that both ML and 

GLS have Type I error rates as high as .35 

and .45, respectively, under severely non-

normal distributions even with the largest 

sample size (n=5000). In practice, the ap-

plied researchers may use the asymptotic 

robust theory, such as ADF, to justify the 

use of normal-theory with nonnormal data 

(Browne, 1982). Theoretically, the ADF 

depends on computing the fourth-order 

moments of the measure variables. The 
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Table3 Partial Eta-squared of factorial analyses of variancefor the ML, GLS, ADF, 
SCALED  

 ML GLS ADF SCALED 
distribution .621*** .523*** .231*** .013 
sample size .218*** .225*** .318*** .211*** 
distribution × sample size .255*** .214*** .212*** .019 

2R corrected model .715*** .698*** .470*** .295*** 

*** p<.001 

 

fourth-order moments reflect the heavy or 

light tails. If data contain heavy tails, it 

provides unstable estimators especially 

with small sample sizes. This study, cor-

responding to the previous studies (e.g., 

Chou et al., 1991; Curran et al., 1996; Hu 

et al., 1992), reveals that the ADF suffers 

from small and moderate sample sizes, 

regardless of distribution types. For ex-

ample, with sample sizes smaller than 

200, it provides model rejection rates 

over .215 under normal conditions and 

model rejections ranging from .285 

to .480 under nonnormal conditions. Even 

for a sample size of 1000, it still fails to 

have a good control of Type I error rates 

for all conditions of nonnormality. Only 

until 5000=n , acceptable rejection rates 

could be achieved. Compared with the 

ADF, the SCALED is computed on the 

basis of the model, estimation methods 

and the fourth-order moments. The 

SACLED, therefore, performs well over-

all, with exceptions of its tendency to 

overreject models at smaller sample sizes. 

Results signify that minimum sample size 

of the SCALED to get a good control of 

Type I error rates is 200 for moderately 

nonnormal conditions and 500 for se-

verely nonnormal conditions. The reason 

for the superior performance of the 

SCALED over ADF may be due to the 

sample fourth-order moments. The 

SCALED uses a matrix computed from 

the sample fourth-order moments directly 

but the ADF utilizes the relevant matrix to 

be inverted. When the sample size is 

small, this inverse may not exist (Hu et al, 

1992). 

New findings from this study focus 
on the performance of bootstrap- AM and 

bootstrap- oM . Results illustrate that both 

bootstrap methods work well in various 

conditions of nonnormality, with unstable 

performance at 100=n . It means that the 

minimum sample size of 200 is required 

for bootstrapping approaches. The mini-

mum sample size needed here was 
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slightly less than that (e.g., n=300) in the 

study of Ichikawa and Konishi (1995). 

Furthermore, neither distribution type nor 

sample size affects the rejection rates for 

both bootstrap methods given 200≥n . 

The rejection rates mainly depend on the 

number of bootstrapped samples (B). 

When 500≥B , the negligible effects on 

rejection rates are identified. As such, it 

may suggest that the minimum B required 

to provide a good control of Type I error 

rates may be 500=B . Although the 
bootstrap- AM  and bootstrap- oM  are 

equivalent in terms of their Type I error 

rates, there still exists other puzzles con-

cerned with both bootstrapping ap-

proaches. For instance, are they equiva-

lent in terms of power or standard error? 

Are they equivalent under more compli-

cated models (e.g., models with many pa-

rameters or different parameters values)? 

Would the minimum B and sample size 

greatly depend on model complexity? 

Studies for such a practice are further 

needed. 

When considering the overall per-

formance of all methods, it is evidently 

that two bootstrap methods beat the ML, 

GLS and ADF under properly specified 

models, regardless of distribution types of 

nonnormality. The SCALED, with 

slightly high but acceptable rejection 

rates, performs as well as bootstrap me-

thods given 500≥n . It implies that the 

resampling-based methods (i.e., boot-

strapping) may be more conservative in 

its control of Type I error rates. Impor-

tantly, the empirical Type I error rates per-

form as a function of distribution type and 

sample size for the ML, GLS and ADF. 

However, for the SCALED, the rejection 

rates are merely influenced by sample 

sizes, and for bootstrap method, the re-

jection rates are only affected by the 

number of bootstrapped samples.  

These findings yield some important 

implications for the practitioners. First, 

the majority of data investigated in psy-

chological or behavioral research con-

ceivably fail to follow normal distribu-

tions, especially for several significant 

areas of studies such as depression, ab-

normality and psychopathology. There-

fore, the data should be checked for po-

tential violations of multivariate normal-

ity assumption. The EQS computer pro-

gram is especially useful in this regard. 

When handling the data containing out-

liers or heavy tails, the researcher is ad-

vised to use one of the distribution-free 

methods for parameter estimation.   

Second, many researchers seldom suspect 
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the quality of their data due to a false 

sense of generalizability of the ML 

method. They believe the validity of nor-

mal theory-based methods with large-

sample nonnormal data (i.e., asymptotic 

robustness theory). Regretfully, the situ-

ations for asymptotic robustness rely on 

the data as well as the model and it is not 

known how to verify these conditions in 

practice (Yuan, Bentler, & Zhang, 2005). 

As such, it is inappropriate to heedlessly 

trust that the data and model satisfy these 

conditions. Third, compared with ML or 

GLS, although the robust methods pro-

posed here minimize the effects of non-

normlaity, one suffers from its weak-

nesses. The ADF is not recommended 

since it is essentially unusable in small to 

intermediated sized samples. The 

SCALED and bootstrap methods are re-

garded as better alternatives. Thus, it is 

suggested that the programs of choices for 

multivariate nonnormal data are EQS, 

MPLUS and AMOS, with their imple-

mentations of the SCALED or bootstrap 

methods (EQS and MPLUS provide the 

SCALED procedures; EQS and AMOS 

yield the bootstrap procedures). Im-

portantly, when we apply bootstrap methods, 

three cautions should be noted, including 

(a) lacking independent and identical dis-

tributed property of observations, (b) suf-

fering from statistical property of effi-

ciency and (c) failing with small sample 

sizes (Yung & Bentler, 1996). Further-

more, the present study demonstrates the 

robustness of the SCALED, bootstrap-

AM and bootstrap- oM only for complete 

data. However, many real data sets are 

nonnormal and incomplete. The degree of 

nonnormality and proportion of missing 

data could ruin the robustness properties 

(e.g., Savalei, 2008) and as a result the re-

searchers should be more careful to   

handle nonnormal as well as incomplete 

datasets. 

Any Monte Carlo simulation study 

could be criticized for its limited gene-

ralizability since it is infeasible to design 

models as complex as the real world. The 

present study evaluates the performance 

of six methods under various conditions 

of nonnormality in terms of their Type I 

error control rates, with a particular em-

phasis on properly specified models. The 

dependent variable investigated here only 

focuses on the Type I error rates. Other is-

sues such as bias, efficiency, power, and 

standard error could be further consi-

dered. Additionally, the degree of model 

misspecification, model complexity (i.e., 

number of parameter or parameter values) 
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and proportion of missing data can be 

critical concerns in further studies. 
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