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Abstract Studies in the social and behavioral sciences often
involve categorical data, such as ratings, and define latent
constructs underlying the research issues as being discrete.
In this article, models with discrete latent variables (MDLV)
for the analysis of categorical data are grouped into four
families, defined in terms of two dimensions (time and
sampling) of the data structure. A MATLAB toolbox (re-
ferred to as the “MDLV toolbox”) was developed for apply-
ing these models in practical studies. For each family of
models, model representations and the statistical assump-
tions underlying the models are discussed. The functions of
the toolbox are demonstrated by fitting these models to
empirical data from the European Values Study. The pur-
pose of this article is to offer a framework of discrete latent
variable models for data analysis, and to develop the MDLV
toolbox for use in estimating each model under this frame-
work. With this accessible tool, the application of data
modeling with discrete latent variables becomes feasible
for a broad range of empirical studies.

Keywords Discrete latent variables - Discrete manifest
variables - Multilevel modeling - Latent class models -
Longitudinal data analysis

Discrete latent variables have been used in psychology and
the social sciences to represent distinct latent constructs.
Examples of discrete latent variables include profiles of think-
ing styles (Sternberg, 1998), attachment styles (secure, anx-
ious—resistant, and avoidant; Ainsworth, Blehar, Waters, &
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Wall, 1978), teaching styles (Bennett & Jordan, 1975), styles
of teaching and learning (Fischer & Fischer, 1979), and psy-
chological types (Jung, 1971). In these examples, the latent
categories of theoretical concepts, constructs, entities, or sub-
groups are represented by the levels of discrete latent variables.

Discrete latent constructs are often developed to character-
ize the underlying relationships in observed data. As these
constructs are not directly observable, statistical models
employing latent variables are needed to analyze the data, in
order to help understand the relationships. These models are
generally referred to as “models with discrete latent variables”
(MDLV5s). In this article, MDLVs are grouped into four fam-
ilies based on two dimensions of the data structure. Along the
time dimension, data may be collected at a fixed time (cross-
sectional) or at multiple time points (longitudinal). In terms of
sampling structure, data may be hierarchical (nested) or
nonhierarchical (nonnested). Models for nested data are
known as “multilevel models.” Models for the four kinds of
data are presented in a 2 %2 matrix framework, for convenient
reference (see Fig. 1). A MATLAB toolbox referred to as the
“MDLYV toolbox™ has been developed to implement the esti-
mation procedures when applying the four families of MDLV
models in data analysis.

The first dimension of the model framework concerns
whether data are collected at a fixed or at multiple time
points. For cross-sectional data that are collected at a single
time point, levels of a discrete latent variable represent the
underlying distinct latent categories and are generally called
“latent classes” in the literature. The latent structure of the
model explains the observed relationships among the man-
ifest (indicator) variables with mutually exclusive and ex-
haustive latent classes. In other words, each latent class is
associated with a unique response profile of the manifest
variables. Because the observed responses are subject to
random errors, statistical models are employed to relate the
latent classes to the realized responses. The models assume
that responses are independent, given the latent class
(known as the “conditional independence assumption”).
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Fig. 1 A framework of models with discrete latent variables

Data collected from the same individuals at multiple time
points are called “longitudinal data.” As these data are
sequentially ordered in the time dimension, the repeated
measurements provide data for studying the intraindividual
changes over time. The distinct latent states at different time
points represent an individual’s path of transition among
latent states. The dynamics of latent transitions among states
are characterized by the different patterns of the latent states
across time. Studying the transitional dynamics is the key to
understanding developmental stages in life. Examples of
theories (models) for developmental stages can be found in
children’s cognitive development (Piaget, 1973), the eight
psychosocial stages of lifespan social development (Erikson,
1950), and sequential stages of moral development (Kohlberg,
1984). Although these theories may imply that the latent state
transitions follow a deterministic sequence of directions (e.g.,
monotonic), the models represent transition patterns by the
probabilities of moving to another state or of staying at the
same state between two consecutive times, without imposing
directional constraints. The theories may be revised by exam-
ining the patterns of transitional probabilities as estimated
from empirical data.

The second dimension concerns the sampling character-
istics of the data. Often, observed data have a natural nested
structure in which individual observations are clustered
within higher-level units. The nested data structure is re-
ferred to as a “multilevel,” “clustered,” or ‘“hierarchical”
structure. A notable example of nested structure is the edu-
cational system, in which students are organized into clas-
ses, classes are organized into schools, and schools are
organized into districts. Data with such nested structure are
generally not completely independent of each other. For
example, data on students in the same school tend to be
correlated (not independent), because of shared family and
school characteristics as well as interactive relationships.
Incorporating possible dependency in the nested data into
the modeling procedure is important in obtaining results that
can be interpreted properly. The MDLV models discussed
here appropriately account for data dependency by way of

conditional independence (as opposed to total indepen-
dence) assumptions. Explicitly, responses are assumed to
be independent within latent classes, but not across them.
Thus, data across latent classes within a cluster may be
dependent.

In the following sections, four families of models in-
cluded in the toolbox are presented one by one, according
to the framework in Fig. 1. First, however, a general
description of the European Values Study (2011; EVS) is
given. Several data sets were created by extracting sample
data from two waves of this study (the 1999 and 2008
surveys) for use in demonstrating the modular functions of
the toolbox. Each data set was analyzed with models in a
specific family in order to illustrate how to apply the models to
fit the data and how the results may be interpreted. The four
families of models are explained in four separate sections.
Each section provides the model representation and statistical
assumptions of a particular family of models. Then, the tool-
box is invoked to fit the data with each of the models under
discussion. An analysis example in each section illustrates
how to use the toolbox to perform the specific modeling tasks
and how to interpret the results. The next-to-last section pre-
sents a summary description of the MDLV toolbox (details are
provided in Appendix C of the supplemental materials), and
the last section concludes the study with a brief discussion of
applications of the models included in the MDLV toolbox.
Alternative software is also discussed that is available for
applying various models with discrete latent variables in data
analysis.

Models with discrete latent variables for data analysis

The models included in the MDLV toolbox are organized
into four families based on the structure of the data to be
analyzed. These families of models are presented in Fig. 1
using a 2x2 matrix framework with time (7) and sampling
scheme (S) as its dimensions. The time dimension differen-
tiates cross-sectional data (7=1) from longitudinal data
(T>1). Cross-sectional data are obtained at a fixed time
point, while longitudinal data are obtained repeatedly at
two or more occasions for each individual. The sampling
dimension differentiates nested (hierarchical) data from
nonnested (nonhierarchical) data. Nested or hierarchical
data involve multiple levels of sampling, and models appli-
cable to these data are called “multilevel.” Nonnested or
nonhierarchical data do not consider organizational levels of
the sampling units and are regarded as being single-level.
The models shown in the upper right quadrant in Fig. 1
are developed for the analysis of nested longitudinal data
and are called the “multilevel latent Markov models”
(MLMMs). The MLMM can be considered either as an
extension of the latent Markov model (LMM) to explain
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possible dependency attributable to the nested data struc-
ture, or as an extension of a multilevel latent class model
(MLCM) to describe discrete latent change when models are
applied to longitudinal data. Therefore, the LMM in the
lower right quadrant and the MLCM in the upper left quad-
rant are the two special cases of MLMM.

The LMM describes possible changes among discrete la-
tent states from one time to the next. The MLCM take into
account the possible dependency due to nested structure when
modeling data with discrete latent variables. The latent class
model (LCM) is the classical model for modeling categorical
data with discrete latent variables. As can be been in Fig. 1, the
LCM situated in the lower left quadrant are the basic models
of the proposed framework. The LCM can also be consid-
ered as the special case of MLMM when data are
nonnested and collected at a single time point.

The theoretical background and statistical representation
of each of these families of models are discussed separately
in the following sections. Applications of the models are
illustrated by fitting them to data extracted from the
European Value Study (2011) using the functions available
in the MDLV toolbox.

Data for illustrative examples: The European Values
Study

The EVS consisted of four waves of surveys between 1981
and 2008. The aims of the EVS were to explore the moral
and social values of Europeans and to cover various topics,
such as attitudes toward family, work, religion, politics, and
society. The first wave was conducted in 1981 in a total of
16 countries; the second wave was collected in 1990 and
included 27 countries. The participating countries in the
third (1999) and fourth (2008) waves increased to 33 and
47, respectively. We will use data extracted from the 1999
and 2008 surveys to demonstrate the functions in the MDLV
toolbox. Further information about this study is available at
the EVS website (www.europeanvaluesstudy.cu). Sample
data on ten items related to marriage were obtained from
each of the two surveys for analysis with the four families of
models included in the toolbox.

The original questionnaires have 12 items on attitudes
toward the important criteria for a successful marriage.
Participants were asked to rate the importance of each of
the criteria. Ten of the items that are common to both waves
are analyzed in the examples and listed in Table 1. The
original response categories have three levels: very impor-
tant, rather important, and not very important. Since partic-
ipants tended to consider many factors important, we
recoded the responses into two categories: Very important
was recoded to 1, and rather important and not very impor-
tant were coded to 0.

@ Springer

Table 1 Items in the European Values Study questionnaire on “im-
portant criteria for a successful marriage”

Item Description

M1 Faithfulness

M2 An adequate income

M3 Being of the same social background
M4 Shared religious beliefs

M5 Good housing

M6 Agreement on politics

M7 Living apart from your in-laws

M8 Happy sexual relationship

M9 Sharing household chores

MI10 Children

The survey data are cross-sectional within a country,
though 31 countries participated in both the third (1999)
and fourth (2008) waves. For analysis with LMM and
MLMM, synthetic longitudinal data were created by linking
the responses of each participant in the 1999 survey sample
to corresponding responses of a matched participant in
2008. Participants were matched by income ranking within
the same country. The steps (including the SAS codes used)
to construct the synthetic longitudinal data are detailed in
Appendix Al of the supplemental materials. The synthetic
longitudinal data are fitted with the LMM without consid-
eration for the countries of the participants. Countries con-
stitute the second level in the data structure when the data
are fitted with the MLMM.

The LCM and MLCM were fitted to data on the sampled
responses separately for the third (1999) and fourth (2008)
waves. Data over the surveyed countries were combined and
fitted separately for the two waves with the LCM. The same
data were also fitted separately for the two waves with the
MLCM by taking into consideration the countries of the
participants (i.e., participants were nested within countries).

Appendix A in the supplemental materials presents the
SAS syntax for sampling, linking, and recoding the EVS
data. The MATLAB scripts and syntax for preparing the
sampled data to be analyzed with various models using the
MDLYV toolbox are also shown in Appendix A. In the
following sections, each of the four families of models
presented in Fig. 1 is discussed. Then, examples of the
model fitting are used to explain how to fit the models using
functions available in the MDLV toolbox.

Multilevel latent Markov models
MLMMs (Yu, 2007) address both temporal and structural

dependency in a single model. Let Y, denote the response
vector of all participants in group g over T occasions, when
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there are ng, participants in group g. Let Y, denote the
observed response to the jth item of participant i in group
g at the 7th time point. Each participant responds to the same
J items at each time point. The latent variable (/) is used to
differentiate groups in latent class distributions. Let H, be
the random variable representing the latent cluster member-
ship of group g, and / be a particular latent cluster. The
variable H, is assumed to follow a multinomial distribution
with L components. Each component represents a latent
cluster. As is specified in the MLCM, different clusters have
different lower-level parameters.

P(ve) = Xh (P(H, = O TTE S Sy S

X Hthzp(Xig,f = mt|Xig«,t—l =m_1,Hg = l) HzT:1 H/‘le P(yigfvt ’Xi':f = mt)} )’

At the individual level, let X, denote the latent state for
participant i of group g at time ¢, in which a particular latent
state at time ¢ is denoted as m, For simplicity, the
numbers of latent states and clusters are fixed as equal-
ing M and L, respectively, across all occasions. In
addition, each participant is assumed to belong to only
one group (e.g., to attend only one school), and his or
her group membership is assumed to be the same over
time (e.g., to attend the same school). With these as-
sumptions, the probability of observing the response
vector of participant i of group g over T occasions is

P (X = mi |H, =)

(1)

where P(H,=/) denotes the latent cluster probabilities, which
can be conceptualized as cluster sizes. The conditional proba-
bilities, P(X;, 1 =m; | Hy=1), indicate that the latent clusters may
have different latent class distributions at Time 1. The clusters
can also differ in the transition process; that is, cluster mem-
bership can have systematic effects on the process of moving
between the latent states' across two time points. This effect is
expressed by a conditional probability as P(Xq =m,| Xig, 1=
m,_1, Hy=I). However, it is assumed that cluster membership
(Hg) has no effects on the conditional response probabilities
P(yigj | Xig,=my). That is, how individuals respond to items is
only affected by their latent class statuses, not by their group
membership. This “time-invariant” assumption of conditional
response probabilities is made in order to avoid potential con-
fusion about the attribution of differences observed over time.
Conditional on the latent class, item responses are not affected
by the clusters at the group level. The constraints of Zlel
P(H,=1) =1 and szlP(xig:m Ho=1)=1 are
needed for model identifications. Note that the rows of the
transition matrix must also sum to 1.

The various components of the MLMM are graphically
depicted in Fig. 2 to present a simple and intuitive conceptual-
ization of the components and their effects. The squares are the
observed manifest variables. The arrows indicate that some
relationships may exist between two connected variables. To
emphasize the discrete nature of the latent variable, the latent
variable is expanded as an ellipse, with each latent class explic-
itly depicted inside the ellipse. The discrete group-level latent
variable (H) is represented by the horizontal ellipse, and the
circles inside represent the different latent clusters. The two

"In the context of analyzing longitudinal data (i.e., the LMM and
MLMM), the term “states” instead of “classes” is used to refer to
different distinct categories of a discrete latent variable at the lower
level, to differentiate from data measured at a fixed time point.

vertical ellipses are the latent variables of individual’s latent
status at Times 1 and 2. Each latent state is depicted as a small
circle inside the ellipses. The long horizontal dashed line di-
vides the two levels of hierarchy. The arrows from the discrete
random variable (H) at group level pointing toward the discrete
latent variable (X7) and the transition paths (dashed lines) at the
lower level represent the effects of the latent clusters.

The special cases of MLMM (i.e., LCM, LMM, and
MLCM) that will be discussed in the following sections can
be represented by portions of the components in Fig. 2. For
example, the MLCM can be represented by removing the
portion of 7=2; the LMM can be depicted by the components
below the dashed line; and the LCM can be portrayed by the
portion below the dashed line at a given time.

my Jpee

Yn Y21 ¢ Y.n le Y22 ¢ YJQ

Fig. 2 Graphical representation of a multilevel latent Markov model
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Table 2 Likelihood values (—LL), numbers of parameters, and fit indices (Akaike and Bayesian information criteria [AIC, BIC]) for models in the

MDLYV framework

Model L M -LL #par AIC BIC
MLMM 2 2 33,230 27 66,514 66,658
2 3 32,990 47 66,074 66,325
3 2 49,876 32 99,816 99,987
3 3 49,861 56 99,834 100,133
MLCM Wave 3 2 2 8,139 23 16,325 16,448
2 3 8,052 35 16,175 16,362
3 2 8,148 25 16,347 16,480
3 3 8,071 38 16,218 16,422
Wave 4 2 2 8,223 23 16,493 16,616
2 3 8,048 35 16,165 16,352
3 2 8,243 25 16,536 16,669
3 3 8,067 38 16,210 16,413
LMM 2 16,271 23 32,587 32,710
3 16,021 38 32,119 32,322
4 15,884 55 31,877 32,171
5 15,790 74 31,728 32,124
LCM Wave 3 2 8,088 21 16,218 16,330
3 8,000 32 16,065 16,236
4 7,964 43 16,013 16,243
5 7,934 54 15,976 16,265
Wave 4 2 8,165 21 16,372 16,484
3 7,986 32 16,036 16,207
4 7,910 43 15,906 16,136
5 7.850 54 15,808 16,097

MLMM, multilevel latent Markov models; MLCM, multilevel latent class models; LMM, latent Markov models; LCM, latent class models. "L
denotes the number of latent clusters; ¥ M denotes the number of latent classes

Fitting the MLMM with the MDLV toolbox

Taking into consideration the nested structures (participants
nested within countries), the EVS data were fitted by an
MLMM. The codes for fitting the MLMM using the MDLV
toolbox are available in Appendix B1. Models with two and
three latent clusters combined with two and three latent classes
were fitted to the pseudolongitudinal data, and the likelihood
values, numbers of parameters, and Akaike and Bayesian in-
formation criteria (AIC and BIC) are presented in the top panel
of Table 2. According to the AIC and BIC, the best-fitting
model is the one with two latent clusters and three latent classes.
The estimated parameters of the two-cluster and three-state
MLMM and the corresponding conditional response probabil-
ities of these three classes are listed in Table 3.

2 Only one set of starting values was used in this example, for the purpose
of illustration. However, multiple starting values are strongly
recommended in empirical applications, in order to avoid local solutions.
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The patterns of conditional response probabilities of the
three latent states show differences in emphasis on the
important criteria for a successful marriage. The probability
pattern for the state S1 is characterized by generally rating
most of the ten criteria as being very important (with the
notable exception of political agreement). This latent state
resembles the “general class” found in the LCM results (cf.
class C1 for Wave 3 and C3' for Wave 4 in Table 5). S1 is
the only latent class likely to consider the finance items
(adequate income and good housing) as being very impor-
tant. Personal compatibilities with regard to religion and
social background are also likely to be important for this
class, though to a lesser extent. The other two states, S2 and S3,
do not view finance and compatibility as being very important.
The second state S2 places importance primarily on family life,
particularly on faithfulness, the sexual relationship, and chil-
dren. For state S3 (with relatively small sizes: 16 % and 4 %,
respectively, for the two latent clusters), only faithfulness is
emphasized by the majority of the members, while a relatively
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Table 3 The estimated model parameters of the two-cluster and three-class multilevel latent Markov model (MLMM) and multilevel latent class

model (MLCM)

MLMM MLCM (Wave 3) MLCM (Wave 4)
.67 .64 42
P(Hg:l):|:.33} P(Hg:l):{.36:| P(Hg:l):{‘:;g]
17 .42 .08 .22 05 .13
P(X|H)= .67 .54 P(X|H)= | .46 .59 P(|X|H)=|.34 .58
16 .04 46 .19 .61 .29
PX;| Xi)
Cluster A Cluster B
.67 33 .00 .85 .15 .00
.04 91 .05 .08 90 .02
.00 .43 .57 .00 .34 .66
Items S1 S2 S3 Cl C2 C3 Cl C2 C3
1 Faithfulness 93 .84 .62 95 .87 75 1.00 .89 76
2 Adequate income .81 25 .07 .85 44 .10 93 .55 11
3 Social background 44 .05 .02 .61 12 .04 1.00 12 .03
4 Shared religious beliefs .47 11 .03 .67 .19 .07 .86 18 .05
5 Good housing .88 24 .02 93 46 .07 .99 .60 .05
6 Agreement on politics 25 .02 .00 42 .03 .01 .54 .06 .01
7 Living apart in-laws .69 44 .04 75 .56 21 .70 .58 29
8 Sexual relationship .86 .61 .00 91 7 33 .87 74 .36
9 Sharing chores .70 33 .00 .82 44 11 .81 .55 18
10 Children .86 .59 22 .94 74 .39 .87 74 .39

small proportion (.22) consider having children as being
important.

Table 3 also presents estimates of latent cluster probabil-
ities and the corresponding latent class distributions for each
cluster. The results suggest that about two thirds (.67) of the
countries are in cluster A and one third (.33) are in cluster B.
Looking at the initial latent state distributions (for Wave 3
[1999 survey]), it was found that 67 % of the participants in
Cluster A countries were in S2, and the remainder were
evenly distributed between S1 (17 %) and S3 (16 %). For
the countries in cluster B, S1 (42 %) and S2 (54 %) were the
dominant classes, with S3 (4 %) being almost negligible.

The posterior latent cluster membership probabilities were
obtained for each of the 31 participating countries. Each coun-
try was then classified into the cluster for which it had higher
membership probabilities. The classification results are sum-
marized in Table 4. As can be seen from Table 4, cluster A
includes most of the countries in Eastern and Northern Europe,
whereas the cluster B countries are mostly in Western, Central,
and Southern Europe. A closer look within the clusters also
suggests that religion plays a role. In general, countries
assigned to cluster A tend to be in the region in which
the traditional religion of the majority is Orthodox

Christianity. Countries in cluster B tend to be in the region
in which the religion of the majority is traditional Protestant
or Catholic Christianity. This pattern of clustering along the
dimension of religious belief can also be seen in Wave 4.
However, there are some limitations to using traditional
majority religion to characterize the two latent clusters.
For example, many countries that are historically Catholic
(e.g., Italy, Spain, and Portugal) and historically Protestant
(e.g., Germany and Great Britain) are grouped in cluster A
(Orthodox Christianity), and the major centers of Eastern
Orthodoxy (e.g., Greece and Ukraine) are categorized into
cluster B (Protestant or Catholic Christianity).

The estimated transition probabilities P(X,| X, ;) are
presented in Table 3. For both clusters, latent state S2 shows
great stability (the probabilities of staying at the same state
are .91 for cluster A and .90 for cluster B). This finding
suggests that those whose values of a successful marriage
are focused on family life consistently expressed the same
views over time.

Regarding the change in the latent state membership
from Wave 3 to Wave 4, several similar transitions are
apparent in both latent clusters. More specifically, it is
very unlikely in both clusters to observe a transition from
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Table 4 Estimated latent cluster memberships of the 31 participating countries (multilevel latent Markov model [MLMM] and multilevel latent

class model [MLCM])

Country MLMM MLCM-W3 MLCM-W4 Country MLMM MLCM-W3 MLCM-W4

1 Austria (AT) A A B 16 Latvia (LV) A A B
2 Belgium (BE) B B B 17  Lithuania (LT) A A A
3 Bulgaria (BG) B B B 18 Luxembourg (LU) A A B
4  Belarus (BY) A A B 19 Malta (MT) B B B
5 Czech Republic (CZ) A A B 20 Netherlands (NL) A A A
6  Denmark (DK) A A A 21 Poland (PL) B B B
7  Estonia (EE) A A A 22 Portugal (PT) A A A
8  Finland (FI) A A A 23 Romania (RO) B B B
9  France (FR) B B B 24 Russian Federation (RU) A A B
10 Germany (DE) A A A 25  Slovakia (SK) A A B
11 Greece (GR) B B B 26  Slovenia (SI) A A A
12 Hungary (HU) B B B 27  Spain (ES) A A A
13 Iceland (IS) A A A 28 Sweden (SE) A B A
14 TIreland (IE) B B B 29  Ukraine (UA) B B B
15 Ttaly (IT) A A A 30  Great Britain (GB-GBN) A A A

31 Northern Ireland (GB-NIR) A A B

S1 to S3 or from S3 to S1, and the probabilities are also
low for participants in S2 to transit to other states be-
tween the two waves. This pattern suggests that partici-
pants in S2 for both clusters were very likely to stay in
the same state over time. For instance, participants in the
“family-oriented” state tend to hold the same view about
the criteria for a successful marriage over time. When
examining the transition pattern separately for each clus-
ter, we found that participants from countries in cluster B
were relatively more stable than those in cluster A.
About 33 % of the participants in cluster A moved from
S1 to S2, but only 15 % of the participants in cluster B did so.
However, participants in cluster A appear to be more likely to
change their view of a successful marriage.

Multilevel latent class models

The MLCM is a special case of MLMM applying to data
collected at a single time point, but possible data dependen-
cy due to the nested data structure is also taken into account
in the MLCM. More specifically, model parameters are
allowed to be different for participants in different groups
(higher-level units). In order to identify and differentiate the
clustering effects at different levels, the nested data structure
needed to be clearly represented in the notation system.
Therefore, the observed response vector is denoted as Y,
(instead of Y,) to indicate a participant’s higher-level member-
shipg (i.e., participant 7 is a member of group g).

A version of multilevel extension of LCM was proposed
by Vermunt (2003). In his version of the MLCM, Vermunt

@ Springer

(2003) used random effects to account for higher-level ef-
fects, as is done in the classical multilevel modeling frame-
work. The random-effects MLCM can be regarded as an
extension of a random-coefficient logistic regression model
(Agresti, Booth, Hobert, & Caffo, 2000; Hedeker, 1999,
2003; Hedeker & Gibbons, 1994; Wedel & DeSarbo,
1994; Wong & Mason, 1985) with a latent, instead of
observable, dependent variables.

The higher-level effects used to account for the group
effects can come from some forms of parametric or non-
parametric distributions (Vermunt, 2003). The MLCM
discussed in this article are conceptually equivalent to the
nonparametric MLCM discussed in Vermunt’s (2003) arti-
cle, in which the group-level differences in lower-level
parameters are explained by discrete random effects. As is
also discussed in Vermunt’s (2003) article, the higher-level
effects can be imposed on either the latent class probabilities
or the conditional response probabilities. However, the spe-
cial case of having a common measurement model (i.e.,
conditional response probabilities) across clusters is consid-
ered in the toolbox.

More specifically, a discrete random variable H, having L
possible outcomes is hypothesized to represent the L unique
higher-level latent clusters. Each outcome of the discrete
random variable can be conceptualized as a latent cluster
consisting of homogeneous (Level 2) groups sharing the same
latent class distribution. This discrete random variable re-
quires a parameter P(H,=/) to describe the distributions (i.c.,
cluster sizes) of the latent clusters. The differences between
clusters are demonstrated in a cluster’s latent class probabili-
ties. Explicitly, the latent class probabilities P(X;,=m) can



Behav Res (2013) 45:1036—-1047

1043

differ depending on the latent cluster membership (/,), and
are represented specifically as P(X;o=m| H,=1). Let y;o; denote
the response of participant i of group g to the jth item.

P(yg) - Zf:l (P(Hg - l) Hjil [Zle P(ng =m |Hg =

Assuming that there are n, participants in the gth group, the
probability of observing the response vector of all participants
of group g is

DL, Pl X =m)]) - )

A matrix P(X| H) of size MxL is used to represent the
estimated M latent class probabilities for each of the L clusters.
The columns of the matrix P(X| H) describe the within-cluster
distributions of the latent classes. Accordingly, the entries in
each column sum to 1. Conceptually, each latent cluster
can have a unique pattern of conditional response prob-
abilities. However, as was also discussed in Vermunt’s
(2003) article, different conditional response probabili-
ties among clusters can be ambiguous and subject to
questionable interpretations. Therefore, invariant condi-
tional response probabilities are assumed in the models
fitted with the MDLV toolbox.

Fitting MLCM using the MDLV toolbox

The various MLCMs with different numbers of clusters and
classes were fitted to the EVS data separately for Wave 3 and
Wave 4. The MATLAB codes for fitting each model are
presented in Appendix B2. The results of the model fit indexes
are summarized in Table 2. As is shown there, both the AIC
and BIC values suggest that the two-cluster and three-class
model provided the best fit for both Wave 3 and Wave 4 data.
The estimated latent cluster probabilities P(H,=1), conditional
latent class probabilities P(X;;=m| H,=[), and conditional
response probabilities P(y;;| X;=m) are listed in Table 3, sep-
arately for each wave.

The estimated parameters for the MLCM listed in
Table 3 suggest that the three classes have similar
patterns for conditional response probabilities in both
waves, like the three classes analyzed by the LCM below.
That is, C1 is the “all aspects” class, C2 values the “family-
oriented criteria,” and C3 is the class that values mainly “faith-
fulness,” as well as the two specific criteria of “children” and

.36

for Wave 3; that is, about 2/3 of the countries are in cluster A,
and 1/3 are in cluster B. The estimated P(X| H) for Wave 3 is

.08 22

46 .59

46 .19

As can be seen from this matrix, classes C2 and C3
are the dominant classes, with similar sizes (about 46 %
each) for countries in cluster A. Class C1 is much

“happy sexual relationship.” The estimated P(H,=/) is { '64]

smaller (about 8 %) for countries in cluster A. In
contrast, class C2 is the major class (about 59 %) for
countries in cluster B. The other two classes for coun-
tries in cluster B are of similar sizes (22 % in Cl and
19 % in C3). The pattern of P(X|H) for Wave 4 is
similar to that for Wave 3. However, the latent cluster
distributions are quite different between the two waves:
Cluster A is the larger of the two clusters for Wave 3,
but cluster B is the larger one for Wave 4.

Following model fitting, the posterior probabilities of
being in each of the two latent clusters were obtained for
each country. Each country was then assigned to the
cluster with higher posterior probability. The resulting
latent cluster memberships for the 31 countries are
presented in Table 4. The cluster compositions found in
Table 4 suggest that major factors for differentiating the
clusters may be religion, geopolitics, and socioeconomic
system. In Wave 3, the countries categorized into cluster
A are identical to the findings with the MLMM, except
for one country (Sweden). Therefore, the interpretation
for the two clusters can follow the possible lines related
to geographical location and historical majority religion
described earlier for the MLMM. As was described ear-
lier, cluster B is larger in Wave 4: Seven countries move
from cluster A to cluster B, and only one moves from
cluster B to cluster A.

Latent Markov models

Wiggins (1973) extended the simple Markov model to an
LMM to take into account measurement imperfection (i.e.,
assuming latent variables). An LMM can be viewed as the
combination of the unrestricted latent class model and a
single Markov chain. In other words, the LMM is an exten-
sion of the LCM in the time dimension to account for
temporal dependency. Under the framework of discrete la-
tent variables, the LMM is a special case of MLMM that
applies to data without nested structure.

To formally define the LMM, let y;;, denote the response of
participant i on item j at time ¢, and let y;=(i1s» Vizer---» Vise)
denote the observed response vector of participant i to J items at
time ¢, where i=1, ..., Iand t=1, ..., T. Furthermore, let y,=(y;;,
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Yi2,--., Yi7) denote the response vector of a single participant i
over T'occasions. The discrete latent variable for participant i at
time ¢ is denoted by X;,, where a particular latent state at time # is
denoted as m,. For simplicity, the numbers of latent states are

Py;) = Z:Ilzl ZZFI Zfrzl (P(X“ =mi) Hthzp(X

assumed to be equal, with M latent states at each time point.
Making the assumption of conditional independence and com-
bining similar terms, the probability of observing the response
vector of participant i over 7 occasions is

=m |Xj1 = mt—l) I_LT:1 szlp(yijt X = mt))7
(3)

The three terms of Eq. 3explicitly show the three compo-
nents in an LMM. The first component, P(X;;=m,), is called
the latent class probability,” which can be conceptualized as
the probability of randomly selecting an individual who be-
longs to the latent class m at the first time point. It can also be
viewed as the prevalence of classes at the first time point—in
other words, “class size.” The second term, P(X;=m,| X;, 1=
m, 1), is called the transition probability, giving the probabil-
ities of moving between latent states between two adjacent
occasions. The specification of P(X;,=m,| X;, 1=m,;) implies
that the current state (m,) is only affected by the state at the
previous time point (m,_;). This specification is usually known
as the “lag 1 Markov model.” A more restricted and simpler
model assuming identical transition probabilities between any
two adjacent time points is considered in this article. This is
typically referred to as a “time-homogeneous” Markov chain.

The last term, P(y;| X;;=my,), is the conditional response
probability that characterizes the measurement model for the
occasion . The conditional response probability represents
how individuals respond to items when the individuals belong
to a certain latent state at a particular time point. Typically, the
conditional response probabilities of items at each time point
are fixed to be the same across occasions. Thus, the differ-
ences in responding to items between the two time points can
be attributed to the transitions between latent states.

Fitting LMM using the MDLV toolbox

The synthetic longitudinal data created by linking Wave 3 and
Wave 4 data were fitted with LMM by ignoring the nested
structure of the data. The codes used to fit LMM are included
in Appendix B3 of the supplemental materials. The likelihood,
numbers of parameters, and fit indices (AIC and BIC) for two-
to five-state LMMs are presented in Table 2. The AIC and BIC
both suggest that a five-state LMM has the best fit among the
four models. The estimated conditional response probabilities
and transition matrix for the five-state model are presented at
the bottom of the LMM column in Table 5.

3 The same name, “latent class probabilities,” is used here and in the
discussion of the LCM, but “latent class probabilities” in an LMM refer
only to the distributions of latent classes at the first time point.
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The estimated latent class probabilities [.33 .30 .22 .08
.06] listed in Table 5 indicate that Wave 3 includes three
relatively larger states and two smaller states. The latent
state S4 is similar to the “all aspects™ class (C1) described
below in the results of the analysis with LCM. The state S3
resembles the “family-oriented” class (C2), and the state S2
is most similar to class C3, expressing “faithfulness” as
being the single most important criterion, and “children”
and “happy sexual relationship” as being minor criteria for
a successful marriage.

The estimated transition matrix P(X;,=m,| X;, 1=m, ) is
displayed in the bottom panel of Table 5. The data shown in
the diagonal suggest that the three larger states (S1, S2, and
S3) are more stable than the two smaller states (S3 and S4).
Participants in states S1, S2, and S3 at Wave 3 are more
likely to stay in the same states or to move to the other two
larger states at Wave 4 (see the upper-diagonal 3 x 3 matrix).
In addition, participants in states S4 and S5 at Wave 3 tend
to move to one of the three larger states at Wave 4.

Latent class models

The LCM seeks to explain the observed relationships among
the discrete manifest variables with a set of mutually exclu-
sive and exhaustive latent classes, and is the base model in
the proposed discrete latent variable framework. The LCM
was first considered in the 1950s by Green (1951),
Anderson (1954), and Gibson (1959). Lazarsfeld and
Henry (1968) provided more comprehensive examinations
and reviews. The LCM gained increasing popularity be-
cause of the subsequent work of Goodman (1974b),
Haberman (1974, 1979), and Clogg (1979, 1981).

To formally represent the LCM, let X be the latent variable
consisting of M mutually exclusive and exhaustive latent clas-
ses. The latent classes are indexed by m, where m=1,2, ..., M.
In addition, ¥; denotes the random variable representing the
response of participant i to the jth item (1<j<J), and y;; repre-
sents a realization of the random variable ¥j;. The class-specific
conditional probability of observing y;; for item j and partici-
pant i in class m is P(Y;=y;| X=m), which is also called the
conditional response probability or latent conditional
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Table 5 The estimated model parameters of the fitted latent Markov (LMM) and latent class (LCM) models
LMM LCM (Wave3) LCM (Wave 4)
S1 S2 S3 S4 S5 Cl C2 C3 Cr' c2' c3' c4' Ccs'
PX) 33 .30 22 .08 .06 13 .50 37 .14 .20 .08 34 23
P(Y=y| X=m) P(Y=y| X=m) P(Y=y| X=m)
Items m=1 m=2 m=3 m=4 m=5 m=1 m=2 m=3 m=1 m=2 m=3 m=4 m=5
1 Faithfulness .89 72 .86 .96 95 95 .87 .76 91 .67 1.00 .87 .88
2 Adequate income .09 15 .83 .87 .63 .85 44 .10 72 .08 .92 .14 .68
3 Social background .06 .03 A1 77 54 .62 12 .04 23 .01 1.00 .05 12
4 Shared religious beliefs .14 .04 .07 .80 .87 .68 .19 .07 35 .03 .88 .10 13
5 Good housing .19 .09 .76 97 .64 93 47 .07 .64 .04 1.00 .07 .85
6 Agreement on politics .03 .01 .04 .54 .16 43 .03 .01 .09 .00 .60 .03 .06
7 Living apart in-laws .56 17 .60 .86 25 75 .57 21 .26 17 77 .50 .70
8 Sexual relationship 79 .20 79 98 44 91 77 33 24 11 .94 73 91
9 Sharing chores 49 .06 52 .90 32 .83 A5 11 22 .01 .87 49 .66
10 Children .63 .37 78 .95 71 95 74 40 .60 32 91 .57 .82
P()(ij:mt| )(i,t—lzmt—l)
S1 S2 S3 S4 S5
S1 41 27 A5 .10 .08
S2 27 35 25 .08 .05
S3 .20 24 40 .10 .06
S4 .28 28 21 12 11
S5 22 32 23 .07 15

probability. In the LCM, the probability of obtaining the re-
sponse pattern y; for participant i, P(Y;=y;), is a weighted
average of the M class-specific conditional response probabil-
ities, P(Y;=y,| X=m); that is,

Piy) =" Px=m][

j=1
where P(X=m) denotes the probability of a randomly sampled
participant in the sample belonging to latent class m, which is
usually called the latent class probability. Conceptually, latent
class probabilities can be considered as the class size of
the latent class in the population. An LCM assumes local
independence within each class, so that the joint probabil-
ity of response pattern y; in class m is the product of all
conditional probabilities of items within this class (the
second term of Eq. 4). An LCM also needs to satisfy
the identification constraints of Goodman (1974a, 1974b),
who showed that latent class models are identifiable by the

constraint -7 P(X =m) = 1.

P(yy |Xi =m), (4)

Fitting LCM using the MDLV toolbox

Appendix B4 of the supplemental materials shows the
MATLAB codes used to fit LCM to the sampled data from
the 1999 and 2008 waves of the EVS. The log-likelihood
values, numbers of parameters, AIC, and BIC of fitting

models having two to five classes for each wave are
presented in Table 2. The AIC preferred the five-class solu-
tion, but the BIC suggested that the three-class model is
appropriate for the Wave 3 EVS data. On the other hand,
both indices suggested that the five-class model is preferred
among the four models for the Wave 4 EVS data. The
estimated conditional response probabilities [P(Y=y| X=
m)] and latent class probabilities [P(X)] of the three-class
fit for Wave 3 and the five-class fit for Wave 4 are summa-
rized in Table 5. The estimated latent class probabilities for
Wave 3 indicated that about half (50 %) of the participants
were in class C2, 13 % in class C1, and 37 % in class C3.
From examining the item response probabilities, the three
classes (C1, C2, and C3) represented high, medium, and low
tendencies to rate the various criteria as being important for
successful marriage in general. When comparing the relative
ratings among criteria within each class, class C1 could be
considered as a class of individuals who value all of the ten
criteria as being important for a successful marriage. Class
C2 consisted of half of the participants and was character-
ized by having the attitude that a successful marriage does
not require husbands and wives to share the same religious
belief, to agree in politics, or to come from similar social
backgrounds. Class C3 represented individuals who regard
“faithfulness” as being the most important criterion for a
successful marriage, and “children” and a “happy sexual
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relationship” as being relatively more important than the
remaining seven criteria.

The results of the five-class solution for conditional re-
sponse probabilities of the ten items for Wave 4 are listed in
Table 5. It should be noted that the labeling is arbitrary for
these five classes. By examining the item response probabil-
ities, it was found that class C3' resembled the “all aspects are
important” class (C1) in Wave 3, and Class C5' was similar to
Class C2, which emphasized mainly family-oriented values
for a successful marriage. Class C2' was quite similar to C3, in
that it seemed to be based on a view that only faithfulness is
very important, and that having children is the next most
important criterion, but less so than for Class C3. The classes
C1' and C4' may be regarded as emphasizing the utilitarian
and romantic aspects of marriage, respectively, since the
members of C1' valued faithfulness, adequate income, and
good housing more, whereas the members of C4' valued
criteria such as faithfulness and sexual relationship.

The MDLV MATLAB toolbox

The Models With Discrete Latent Variables (MDLV) MATLAB
toolbox comprises a collection of functions to estimate param-
eters of the four families of models depicted in Fig. 1. The
MDLV MATLAB toolbox was implemented using MATLAB
Version V7.2 (R2006a; The MathWorks, Natick, MA) on an
IBM-compatible PC running on the Windows XP Professional
OS. The toolbox has been tested with MATLAB V7.6
(R2008a) and MATLAB V7.13 (R2011b). The MDLYV toolbox
can be downloaded directly from www.psych.mcgill.ca/labs/
yulab/software MDLV.html. In addition to the main estima-
tion functions, the toolbox also includes functions to simu-
late data for each model with specified parameters. A
collection of utility functions is also included, to facilitate
data preparation or to serve as supporting subroutines for
the main estimation functions. The codes and scripts of all
illustrative examples used in this article are also included in
the toolbox.

The parameters of the four models are estimated using
the expectation maximization (EM) algorithm (Dempster,
Laird, & Rubin, 1977). The forward—backward, or Baum—
Welch, algorithm (Baum, Petrie, Soules, & Weiss, 1970) is
used to estimate the parameters for LMM. The standard EM
algorithm was found to be impractical for MLMM, however,
due to its complexity. For the MLMM, the E-step is modified
using the upward—downward algorithm (Vermunt, 2002,
2003, 2004). The upward—downward algorithm is analogous
to the forward—backward algorithm (or Baum—Welch algo-
rithm) for the estimation of hidden Markov models with large
numbers of time points (Baum et al., 1970; Frithwirth-
Schnatter, 2006). Details of the parameter estimation proce-
dure can be found in Yu (2007).
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The current version of the MDLV toolbox handles only
binary data and is limited to a two-level data structure (e.g.,
students within schools, citizens within countries). The
numbers of individuals in groups are assumed to be equal.
However, functions can be modified to accommodate un-
equal group sizes. Details of the required data formats, the
inputs and outputs of the main estimation functions, and
functions to simulate data for the four models, as well as
some useful utility functions included in the toolbox are
described in Appendix C of the supplemental materials.

Discussion and conclusions

Discrete latent constructs or concepts have advantageous
properties for capturing distinct latent quantities, and thus
have great potential to be utilized in order to form theories
or hypotheses in the social sciences. A framework based on
a 2x2 matrix of models for analyzing data with discrete
latent variables has been introduced in this article. By cate-
gorizing different features of the data according to temporal
and structural characteristics, the LCM, LMM, MLCM, and
MLMM are placed in the corresponding quadrants of this
modeling framework. The modeling framework not only
offers a concise matrix for conceptualizing theories, it also
assists and guides researchers in selecting an appropriate
model for data analysis.

Several commercial statistical software packages can be
used to fit individual models under this framework. For
example, LEM (Vermunt, 1997) can be used to fit an
LCM, the Hidden Markov Model Toolbox for MATLAB
(Murphy, 1998) can fit an LMM, and the PROC LCA
(Lanza, Collins, Lemmon, & Schafer, 2007) and PROC
LTA (Lanza & Collins, 2008) procedures in SAS are avail-
able, respectively, for an LCM and an LMM. No single
software covers all four of these models, except for the
newer version of Latent GOLD 4.5 with syntax module
(Vermunt & Magidson, 2008). However, the developed
MDLV MATLAB toolbox covers all four models in this
framework of modeling discrete latent structures, and it
offers a convenient and accessible instrument for parameters
estimations. The illustrations of how to fit various models
with the MDLV MATLAB toolbox provide step-by-step
examples of empirical applications to real data.

Modeling with discrete latent variables offers many in-
teresting possible applications in psychology and the social
sciences. The two types of models, distinguished by the
temporal characteristics of the data, offer excellent ap-
proaches to study the static latent structure and the dynamic
transitions among latent states. In addition, since dependencies
in multilevel data structures have gained substantial attention
in the social sciences, the proposed framework and toolbox
have the desirable capability of accommodating possible
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nested dependencies in the data. This possibility of handling a
nested data structure widens the range of applications available
when studying static and dynamic latent structure.

In sum, the proposed framework offers comprehensive
coverage of different models under the common theme of
modeling data with discrete latent variables. The implemented
MDLV MATLAB toolbox bridges the theoretical models to
empirical applications by providing accessible tools and re-
sources. It is hoped that bringing together the statistical model-
ing framework and the corresponding estimating toolbox will
facilitate applications of discrete latent variables in empirical
studies.
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