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Simultaneous Decision on the Number of Latent
Clusters and Classes for Multilevel Latent Class Models

Hsiu-Ting Yu and Jungkyu Park
Department of Psychology, McGill University

The Multilevel Latent Class Model (MLCM) proposed by Vermunt (2003) has been shown to be
an excellent framework for analyzing nested data with assumed discrete latent constructs. The
nonparametric version of MLCM assumes 2 levels of discrete latent components to describe the
dependency observed in data. Model selection is an important step in any statistical modeling.
The task of model selection for MLCM amounts to the decision on the number of discrete latent
components at both higher and lower levels and is more challenging than standard Latent Class
Models. In this article, simulation studies were conducted to systematically examine the effects
of sample sizes, clusters/classes distinctness, and the number of latent clusters and classes on
the performance of various information criteria in recovering the true latent structure. Results
of the simulation studies are summarized and presented. The final section presents the remarks
and recommendations about the simultaneous decision regarding the number of latent classes
and clusters when applying MLCMs to analyze empirical data.

Discrete latent variables are useful tools in psychological re-
search to represent distinct latent components. Specifically,
levels of discrete latent variables can be used to capture
or symbolize latent categories of theoretical concepts, con-
structs, entities, or subgroups. Examples of such discrete la-
tent variables include Sternberg’s (1998) profile of thinking
styles; Ainsworth, Blehar, Waters, and Wall’s (1978) three
attachment styles (secure, anxious-resistant, and avoidant);
Bennett and Jordan’s (1975) teaching styles; Fischer and
Fischer’s (1979) styles of teaching and learning; and Jung’s
(1971) psychological types. The Latent Class Model (LCM)
(Lazarsfeld & Henry, 1968) is the classical analytical ap-
proach of using the discrete latent variable to explain depen-
dency in observed categorical responses. The LCM assumes
that the dependency between responses is due to population
heterogeneity. The different components in a discrete latent
variable are called latent classes, and subjects in the same
class will respond to items in a similar fashion.

When analyzing data with a nested structure, where the
observations are nested within a higher level unit (e.g., school
or company), additional considerations should be taken into
account because data with such a structure are generally not

Correspondence concerning this article should be addressed to Hsiu-
Ting Yu, McGill University, Department of Psychology, 1205 Dr. Penfield
Avenue, Montreal, Quebec H3A 1B1, Canada. E-mail: ht.yu@mcgill.ca

independent of each other. For example, the scores of an
achievement test may correlate more highly for students in
the same class than for students from other classes. This de-
pendency may be due to the commonalities they share by re-
ceiving the same teaching material and homework, having the
same instructor, or interacting with each other. Various multi-
level extensions have been proposed within the LCM frame-
work to model such additional dependency as well as de-
pendency due to population heterogeneity (e.g., Asparouhov
& Muthén, 2008; Di & Bandeen-Roche, 2011; Henry &
Muthén, 2010; Vermunt, 2003, 2004; Vermunt & Magidson,
2008). The Multilevel Latent Class Model (MLCM; Ver-
munt, 2003) is a proposed model used to incorporate pos-
sible dependency due to a nested structure by introducing
either a discrete or a continuous random effect to account for
systematic variation. The nonparametric version of MLCM
assumes discrete latent variables at both higher and lower
levels to account for dependency observed in collected data.

Model selection usually refers to selecting a statistical
model from a set of potential models for the final inter-
pretation of the results. Ideally, the selected model should
be able to describe the data reasonably well without un-
necessary complexity. In the context of LCM, the task of
model selection is to determine the number of discrete latent
components based on observed responses. These latent com-
ponents characterize different unobserved subgroups that are
internally homogenous. Among the many model selection

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
he

ng
ch

i U
ni

ve
rs

ity
] 

at
 2

0:
45

 0
5 

Ju
ly

 2
01

6 



MULTILEVEL LATENT CLASS MODELS 233

methods, selecting the model by Information Criteria (IC) is
a common and popular method for applied researchers. The
relative performance of various IC in selecting the number
of latent classes has been extensively studied in the context
of standard LCM and mixture models (e.g., Collins, Fidler,
Wugalter, & Long, 1993; Dias, 2004; Henson, Reise, & Kim,
2007; Lin & Dayton, 1997; Nylund, Asparouhov, & Muthén,
2007; Tofighi & Enders, 2007; Yang, 1998, 2006; Yang &
Yang, 2007).

The model selection task in MLCM is to determine the
number of latent classes at different levels of the hierarchical
structure. Determining the number of latent components at
both levels is more challenging than at a single level because
decisions (the number of latent components) at different lev-
els are not independent of each other. Two simulation studies
conducted by Lukočienė and Vermunt (2010) and Lukočienė,
Varriale, and Vermunt (2010) explored the performance of
IC for model selection in MLCM under various conditions.
These two studies focused mainly on the stepwise approach,
whereas the performance of the simultaneous approach has
not yet been examined extensively. The present study also
studied relatively more complex latent structures than previ-
ous studies, which dealt only with relatively simple structures
(two or three higher and lower classes).

The purpose of this article is to (a) review the methods
and approaches of model selection in MLCM, (b) investigate
the factors affecting the performance of IC in recovering
the true latent structure, (c) investigate the performance of
various IC for model selection simultaneously at higher and
lower levels, and (d) provide recommendations and practical
guidelines to use IC for determining the number of latent
classes simultaneously at both levels.

In the following sections, the statistical specification of
the MLCM is introduced. Several methods including IC as
methods of model selection are reviewed and compared. Sim-
ulation studies were conducted to examine the performance
of IC in deciding the number of classes at both higher and
lower levels simultaneously. The results of these simulations
are presented and discussed. This article concludes with re-
marks on the usage of IC as a model selection method and
general recommendations to applied researchers for using IC
for model selection in the MLCM.

MULTILEVEL LATENT CLASS MODELS

The primary purpose of the MLCM (Vermunt, 2003) is to
account for possible data dependency with discrete latent
variables for the nested data structure. Due to the nature of
the nested data structure, the independence assumption of the
standard LCM is often violated. To account for such depen-
dency, the MLCM incorporates parametric or nonparamet-
ric random parameters that are allowed to be varied across
higher level units. Because the goal of this article is to study
the performance of IC in recovering the number of latent

components simultaneously at higher and lower levels, we
focus on the nonparametric MLCM, which assumes discrete
latent components at both levels.

MLCM can be formally specified as follows: the latent
variable (Hg) is the discrete latent variable at higher level
(groups) with L latent clusters, and Xgi denotes the dis-
crete latent variables at lower level (individuals) with M

latent classes. Each outcome of discrete random variables
can be conceptualized as a latent cluster/class consisting of
groups/individuals that are homogenous within each clus-
ter/class but distinct between clusters/classes in the response
patterns. The terms “clusters” and “classes” are used to dif-
ferentiate the higher and lower classes. Let Ygij be the re-
sponse to thej th item of a subject (i) in a group (g), where
g = 1, . . . ,G, i = 1, . . . , ng , and j = 1, . . . , J . The vector
Ygi represents J responses for a subject i nested in group g,
and Yg denotes the full vector of responses for all subjects
in group g.

The standard LCM could be defined by a latent variable
at individual level Xi without consideration of group level;
therefore, the density of the response of subject i on item j is

P (Yij ) =
M∑

m=1

P (Xi = m)
J∏

j=1

P (Yij |Xi = m). (1)

An MLCM is defined by two separate equations for higher
and lower levels. For the higher level the subscript i in Equa-
tion (1) is replaced by g. So the probability of observing a
certain response pattern for all subjects nested in group g is

P (Yg) =
L∑

l = 1

P (Hg = l)
ng∏

i = 1

P (Ygi |Hg = l). (2)

Equation (2) assumes that each group belongs to only one
l(latent cluster), and conditional densities for each of the
ng (individuals) within the g (group) are independent of
each other given the latent cluster membership. The first
term, P (Hg = l), is represented by a vector with each ele-
ment representing the probabilities of g being in the cluster
l (l = 1, . . . , L). Because the clusters are assumed to be ex-
haustive and mutually exclusive, elements of this vector can
be conceptualized as cluster sizes and thus the sum of this
vector equals 1.

At the individual level, the probability of obtaining a cer-
tain response pattern for each subject is

P (Ygi |Hg = l) =
M∑

m= 1

P (Xgi = m|Hg = l)

×
J∏

j=1

f (Ygij |Xgi =m,Hg = l). (3)

The term P (Xig = m|Hg = l) denoted as πml is the condi-
tional latent class probabilities. It represents the distribution
of latent class probabilities within a particular latent cluster.
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234 YU AND PARK

The conditional response density, f (Ygij |Xgi = m,Hg =
l), is the probability of observing a particular response on
variable j of individual i in group g given the latent cluster
membership (l) and latent class membership (m). In most
multilevel extensions of LCM (e.g., Asparouhov & Muthén,
2008; Vermunt, 2003, 2004; Vermunt & Magidson, 2008), a
restricted model is preferred by imposing a constraint on the
conditional response density.

This constraint implies that the conditional response den-
sity is affected only by the latent class memberships but not
the higher level latent cluster membership. This assumption
not only reduces the number of parameters and simplifies
the model but also makes interpretation of the results more
intuitive: only the latent class membership has effects on
the observed responses. In addition, the local independence
assumption, which is typically made in the latent variable
modeling, is also assumed. By combining Equations (2) and
(3) with the assumption of no effects of latent cluster mem-
bership to response probabilities and the assumption of local
independence, the MLCM is

P (Yg) =
L∑

l=1

P (Hg = l)

×
(

ng∏
i=1

M∑
m=1

P (Xgi = m|Hg = l)
J∏

j=1

f (Ygij |Xgi = m)

)
. (4)

The density f (Ygij |Xgi = m) depends on the assumed
distributions of responses. Suppose the response vector
Ygi = (Ygi1, Ygi2, . . . , YgiJ )T consists of J binary variables.
Then, the mth latent class density is given by f (Ygij |Xgi =
m) = ρ

Ygij

mj (1 − ρmj )1−Ygij ,where ρmj denotes the probability
of endorsing item j for an individual belonging to latent class
m. The conditional response probabilities can take the form
of multinomial or other more general distributions such as
Poisson. The estimations of model parameters in an MLCM
can be obtained through a modified version of the exception-
maximization algorithm (Vermunt, 2003, 2004), which is
available in Latent GOLD 4.5 (Vermunt & Magidson, 2008).
Other specifications of MLCM are discussed by other au-
thors: for example, Henry and Muthén (2010) presented three
different versions of MLCMs having normally distributed
random effects (i.e., the parametric approach) at different
levels, whereas Di and Bandeen-Roche (2011) introduced an
MLCM with a Dirichlet distributed random effect.

MODEL SELECTION METHODS

Statistical tests and fit indices have been proposed as the
model selection methods in determining the number of latent
classes. The application of the likelihood ratio test (LRT)
has been questioned because the parameters tested are at
the boundary of the parameter space. In such a case, the

test statistic does not follow the chi-square distribution (see
Aitkin & Rubin, 1985; Clogg, 1995; Everitt, 1981, 1988;
McLachlan & Peel, 2000). Moreover, Read and Cressie
(1988) indicated that the likelihood ratio statistic might also
not follow the chi-square distribution for sparse data. The us-
age of LRT for model selection is usually not recommended
in LCM, although there have been several attempts to de-
termine a proper distribution of the test statistic (e.g., Lo,
Mendell, & Rubin, 2001; Vuong, 1989).

Several alternative methods have been proposed for de-
termining the number of latent classes. For example, the
bootstrapped likelihood ratio test (BLRT), which is based
on resampling techniques, was proposed to obtain the ap-
proximate p values through empirical sampling distributions
(Dias & Vermunt, 2008; McLachlan, 1987; McLachlan &
Peel, 2000). The BLRT is reported to be the most accu-
rate and consistent tool for determining a number of classes
among adjusted likelihood ratio tests (Nylund et al., 2007).
However, these methods are computationally intensive, espe-
cially when there are many candidate models to choose from.
Moreover, the performance of these alternative methods has
not been systematically studied when applying to multilevel
models, thus there are no standards or guidelines available to
assist researchers in the task of model selection.

Information Criteria

Information criteria (IC) were suggested as an alternative to
overcome the problem of LRT. IC are measures of the relative
goodness of fit of a statistical model and can be formulated
in this general form:

IC = −2 log L + C. (5)

The first term,−2 log L, is the negative logarithm of the max-
imum likelihood, which decreases when model complexity
increases. The second term, C, penalizes the complexity of
the model. Therefore, IC aim to find a good balance between
model fitness (trying to maximize the likelihood function)
and parsimony (penalizing additional complexity).

Akaike information criterion (AIC; Akaike, 1973) was
one of the earlier propositions of information criteria. AIC
chooses a model that minimizes Equation (5) with C = 2p,
where p is the number of parameters in the model. Sev-
eral studies reported the tendencies to overestimate the num-
ber of latent classes (e.g., Celeux & Soromenho, 1996;
Dias, 2004; Soromenho, 1993). Nevertheless, Gonzalo and
Pitarakis (1996) showed that AIC outperforms other IC in
models with high-dimensional parameter spaces. Two mod-
ified versions of AIC were suggested by Bozdogan (1987,
1993) for multivariate normal mixture models: AIC3 and
consistent Akaike information criterion (CAIC). AIC3 uses
the value of 3 as the cost of fitting an additional parameter
instead of 2 in the regular AIC (i.e., C = 3p). CAIC includes
the sample size as part of the penalty term and has been
shown to consistently outperform AIC (Nylund et al., 2007;
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MULTILEVEL LATENT CLASS MODELS 235

TABLE 1
Summary of Information Criteria

Criterion Definition Reference

AIC −2LL + 2P Akaike, 1973
AIC3 −2LL + 3P Bozdogan, 1993
CAIC −2LL + (1 + log(n))P Bozdogan, 1987
BIC −2LL + log(n)P Schwarz, 1978
ABIC −2LL + log((n + 2)/24)P Sclove, 1987

Note. CAIC = consistent AIC; ABIC = adjusted BIC.

Yang, 2006). From a different theoretical background, the
Bayesian information criterion (BIC; Schwarz, 1978) aims
to find an appropriate modification of maximum likelihood
by studying the asymptotic behavior of Bayes’s estimators
under a class of proper priors, which assigns a positive prob-
ability on the same lower dimensional spaces of the param-
eter vector. The penalty term for the BIC is C = p log N .
Sclove (1987) suggested the adjusted BIC (ABIC) using
C = p log((N + 2)/24) as a penalty term for the models
with limited sample sizes.

The discussed IC are summarized in Table 1. Note that
AIC and AIC3 depend only on the number of parameters,
whereas CAIC, BIC, and ABIC involve both the number of
parameters and the sample size in the penalty term. Consid-
ering the penalty term, CAIC usually imposes the greatest
penalty among discussed IC when sample size is more than
100, and BIC has a slightly smaller penalty than CAIC. This
property makes CAIC and BIC better for smaller models.
On the other hand, AIC and ABIC have a relatively smaller
weight on the number of parameters, so they favor larger
models. The amount of penalty of ABIC will exceed AIC
when the sample size becomes more than 176.

MODEL SELECTION METHODS FOR MLCM

Previous studies of model selection for standard LCMs have
addressed three important components that determine the
overall performance of IC in selecting the true number of la-
tent classes: sample sizes, model complexity, and conditional
response probabilities (e.g., Lukočienė et al., 2010; Nylund
et al., 2007; Yang & Yang, 2007).

In general, larger sample sizes yield better accuracy of
IC (e.g., Lin & Dayton, 1997). There are two definitions of
sample sizes in MLCM: the number of higher level units
(G) and the total number of lower level units (N). The per-
formance of IC using either definition has not been studied
extensively but is systematically investigated in the present
study. Model complexity concerns the number of parameters
to be estimated in a model. The performance of IC decreases
as the number of latent classes increases in LCM. However,
the total number of parameters in a MLCM is determined by
the number of latent clusters, the number of latent classes,

and the number of items. How these three factors affect the
performance of IC in a MLCM is also examined in the sim-
ulation study of this article.

The conditional response probabilities directly reflect the
degree of separation between classes in an LCM (Yang &
Yang, 2007), and the performance of IC is better when
classes are well separated. In the present study, we use the
term “clusters/classes distinctness” to characterize the clus-
ters and classes defined by the conditional response probabil-
ities (ρmj ) and the conditional latent class probability (πml)
in an MLCM and expect the IC to perform better when clus-
ters/classes are more distinct from each other. However, we
also note that in addition to the clusters/classes distinctness,
the separation of classes and clusters in the MLCM also re-
lates to the previously mentioned factors of sample size and
model complexity. Lukočienė et al. (2010) described how
those three factors in higher and lower levels influence the
degree of separation among clusters and classes.

The prior studies have different conclusions in the per-
formance of individual information criteria in recovering
the number of latent classes. For the single-level LCM, re-
searchers have suggested using BIC as a standard measure to
determine the number of latent classes because it consistently
outperforms other IC (e.g., Hagenaars & McCutcheon, 2002;
Magidson & Vermunt, 2004). Fonseca and Cardoso (2007)
also reported that BIC works well when the responses are
continuous; however, other studies (e.g., Yang, 1998) re-
ported that BIC sometimes underestimates the number of
latent classes especially when the sample size is small or
classes are not well defined. The simulation conducted by
Andrews and Currim (2003) and Dias (2004) showed that
AIC3 was the best criterion for the model selection in the
single-level LCM with categorical responses, whereas other
authors advocated ABIC for the same type of model (e.g.,
Nylund et al., 2007; Yang, 2006).

For model selection in other types of single-level mixture
models such as Factor Mixture Models (Arminger, Stein, &
Wittenberg, 1999; Dolan & Van Der Maas, 1998) or Growth
Mixture Models (Muthén & Shedden, 1999), ABIC has been
reported as the best index in recovering the number of mix-
ture components (Henson et al., 2007; Tofighi & Enders,
2007), whereas Nylund et al. (2007) concluded that BIC out-
performs ABIC.

Two Model Selection Approaches

One recommended model selection strategy in MLCM is
the simultaneous approach. Specifically, a set of candidate
models with combinations of L and M are fitted, and then
the IC obtained from the models are compared to determine
the optimal combination. For example, Bijmolt, Paas, and
Vermunt (2004) determined the country-level latent classes
and consumer-level latent classes by comparing the models
with particular ranges in L and M(1 to 15 for M and 1 to
8 for L). The simultaneous approach usually requires more
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236 YU AND PARK

models to be fitted than the iterative approach; however, this
approach is more straightforward and can be easily applied
in empirical applications.

The decisions at higher and lower levels are related be-
cause the decisions are made based on the data with a
nested structure. Specifically, the clusters specified in Equa-
tion (4) are defined by marginalizing over the distribution
of classes. This specification implies that cluster member-
ship is defined through the class membership of individu-
als in the same group, not directly through their responses.
Thus, the latent structure at the lower level (classes; e.g.,
the number of classes and the distinctness among classes)
has an impact on the decision of the number of latent
clusters at the higher level. Although less prominent, the
higher level structure, such as the number of clusters and
cluster distinctness, also affects the decision at the lower
level. For example, well-separated clusters will provide ad-
ditional information on individuals’ class membership when
responses within the same group are similar. Therefore,
the model selection at a given level is influenced not only
by the factors in the same level but also by the latent struc-
ture at the other level. One advantage of the simultaneous
approach is to take into account the between-level depen-
dency in the same step.

An alternative strategy to determine the number of dis-
crete latent components in an MLCM is the stepwise ap-
proach originally proposed by Vermunt (2003). Lukočienė
et al. (2010) proposed a three-step approach to determine the
optimal number of latent clusters and classes in an iterative
fashion. The first step of this method is to determine the op-
timal number of classes (M) when assuming there is only
one latent cluster (i.e., L = 1). The next step is to decide the
number of clusters (L) by fixing the number of latent classes
(M) to the value obtained in the first step. The third step is
to redetermine M by fixing L to the value chosen from the
previous step. The second and third steps are then iterated
until there is no change in the number of the latent clusters
and classes.

When discrete latent variables are assumed at both levels,
the iterative procedure has the advantage of greater efficiency,
as the decision of the current step is “guided” by the previous
step and thus fewer candidate models are needed to be fitted in
the process. However, the main disadvantage of the stepwise
approach is that the dependency between the two decisions
is only partially accounted for in each step. Moreover, the
task of model selection needs to be conducted separately at
each level because different definitions of “sample sizes” are
used at higher and lower levels for IC with sample size in the
penalty term.

SIMULATION STUDY

The simulation study has three goals: (a) to explore the effects
of factors determining the performance of IC, (b) to compare

the performance of different IC for choosing the correct num-
ber of latent classes, and (c) to compare the simultaneous and
stepwise approaches in recovering true multilevel latent class
structures under a variety of conditions.

Seven factors were included in the design to create various
levels of cluster/class distinctness: (a) number of clusters, (b)
number of classes, (c) conditional latent class probabilities,
(d) conditional response probabilities, (e) higher level sample
sizes, (f) lower level sample sizes, and (g) number of items
(binary). The probabilities of assigning groups to clusters
P (Hg = l) were assumed to be equal; in other words, the
clusters had the same sizes.

In this study, the numbers of clusters and classes were
specified as varying between two and five, respectively. In
theory, this specification results in a total of 16 models. How-
ever, our experience in estimating the parameters of MLCM
with complex higher level structures (i.e., having more clus-
ters than classes) has suggested a much poorer fit. Therefore,
only models with an equal or smaller number of clusters
than classes were considered in the simulation study. This
constraint resulted in 10 different MLCMs: models with
the same number of latent classes and clusters (denoted as
L2M2, L3M3, L4M4, and L5M5) and models with fewer
clusters than classes (L2M3, L2M4, L2M5, L3M4, L3M5,
and L4M5). These 10 models covered a wide range of possi-
ble latent structures in empirical applications of the MLCM.

The values of the conditional latent class probabilities
(πml) and conditional response probabilities (ρmj ) were sys-
tematically manipulated. These two factors are referred to
as cluster distinctness and class distinctness following the
definition in Yang and Yang (2007). Although the distinct-
ness among clusters/classes can be defined in many ways
in practice, the construct of cluster/class distinctness is very
close to the construct of uniqueness among clusters/classes.
Two sets of values were chosen to generate different degrees
of distinctness among clusters and classes, respectively. The
values of πml were set to differ greatly among the clusters
in the conditions designed to have more distinctive clusters.
Meanwhile, the values of πml were designed to be more
evenly distributed in less distinctive conditions.

Likewise, the values of ρmj were designed to differ to a
greater extent across classes in the more distinctive condi-
tions among classes, whereas the values of ρmj were more
evenly distributed in the less distinctive conditions. These
specifications resulted in four conditions of class and cluster
distinctness; they are referred to as H-H (more distinctive
clusters and classes), H-L (more distinctive clusters and less
distinctive classes), L-H (less distinctive clusters and more
distinctive classes), and L-L (less distinctive clusters and
classes). The exact values used in the simulation study are
presented in the Appendix.

The sample sizes were manipulated by specifying the
number of groups (G) and number of individuals per group
(ng). The number of groups was set to 50 and 100, with 10,
25, and 50 individuals per group to represent small, medium,
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MULTILEVEL LATENT CLASS MODELS 237

and large groups. These specifications resulted in five levels
of total sample size (N ): 500, 750, 1,000, 2,500, and 5,000.
The specified number of individuals per group was similar to
the design in Lukočienė et al. (2010; ng = 5, 10, 20, and 50),
but the number of groups in their study (G = 30, 100, 1,000)
was generally larger than the values chosen in this study. The
number of items in the simulation was set as either 8 or 12.

The specifications described earlier resulted in 480 (10 ×
2 × 2 × 3 × 2 × 2) conditions. For each condition, 50 data
sets were generated according to the parameter specifications
of that particular condition. Each data set was then fitted to
the 10 possible models with different numbers of clusters
and classes. Among the 10 possible models, one of them
was the “true” model with a latent structure identical to the
structure that the data were generated from. The other 9
models were “wrong” models and had latent structures dif-
ferent from the true model. Data generation was conducted
using MATLAB V7.13 (R2011b), and Latent Gold 4.5 with
a syntax module (Vermunt & Magidson, 2008) was used to
estimate the model parameters. The log-likelihood values of
each data set fitted to each model were recorded to compute
the eight IC (including ABIC, AIC, AIC3, BIC, and CAIC
with two different N values) for further analyses.

SIMULATION RESULTS

The specifications of the seven factors described earlier re-
sulted in different degrees of difficulty in simultaneously
recovering the true numbers of the latent classes and clus-
ters. The probability of correctly recovering the true model
by chance was only 0.1 because there were only 10 possible
latent structures to choose from. To gain a better sense of
the overall difficulty level of the design, the results show that

about 15% of the conditions had an average recovery rate
greater than 80% when combining all the levels of the seven
controlled factors, and about 50% of the conditions created
in the simulation study had an average recovery rate lower
than 20%. Therefore, because the majority of the conditions
designed in our simulation are considered “difficult” in terms
of recovering the true number of latent clusters and classes,
the analyses and reports focus on comparing the relative per-
formance between the levels of the controlled factors rather
than the absolute recovery rate of the true latent structure.

A linear mixed-effect model was fitted to the data; the
fixed effects included the seven design factors, the interac-
tions of each of the factors with the IC, and the pairs among
the seven factors interacting with the IC. Among the seven
factors, the cluster distinctness and class distinctness were
combined and regarded as one factor with four levels to in-
vestigate the effect in a more integrative manner. Five IC,
including ABIC, AIC, AIC3, BIC, and CAIC, were consid-
ered within factors. For IC with the sample size (N) in the
equation (i.e., ABIC, BIC, and CAIC), two different versions
were computed for using the total sample size (N = G × ng)
and the number of groups (G) as the penalty term. The IC
with different “sample sizes” as penalty terms were denoted
by their corresponding subscript (i.e., ICN, and ICG). The
dependent variable was the percentage of correctly recov-
ering the latent structure simultaneously at both the higher
and lower levels. In the following sections, the results are
presented separately for each of the controlled factors.

Distinctness Among Latent Clusters and Classes

The overall recovery rates between the four levels
of cluster/class distinctness are significantly different
(FG(3, 224) = 4.98, p < 0.01). As shown in Figure 1, all IC

FIGURE 1 The mean recovery rate of the two sets of ICN, ICG under the four scenarios of cluster/class distinctness.
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238 YU AND PARK

FIGURE 2 The mean recovery rate of ICN and ICG under different numbers of lower level sample sizes.

clearly performed better in recovering the true latent structure
under the conditions that classes were more distinctive (H-H
and L-H conditions) than the conditions of less distinctive
classes (H-L and L-L conditions). This result suggests that
a greater degree of distinctness among classes gives better
recovery rates for all IC regardless of the clusters being more
or less distinctive; however, having more distinctive clusters
does not improve recovery rates, especially in the conditions
that classes are less distinctive. In other words, the distinct-
ness among classes is pivotal in correctly recovering the true
latent structure compared with the distinctness among clus-
ters. This result is not surprising because the cluster structure
in an MLCM is built based on the information of class mem-
bership. Therefore, when classes are not well separated at the
lower level, the higher level clusters are not well defined.

There is a significant interaction between the IC
and cluster/class distinctness (FG(12, 224) = 5.78, p <

0.01, FN (12, 224) = 4.30, p < 0.01). AIC is inferior to
other IC in most conditions regardless of cluster or class dis-
tinctness. The IC imposing a relatively larger penalty, such
as CAIC and BIC, perform better under the condition with
more distinctive classes (H-H and L-H conditions), but AIC3
works best in the condition with less distinctive classes (H-
L and L-L conditions). In general, the two sets of IC (ICN

and ICG) have similar patterns of recovery rates, except for
the ABICG, which is poorer than ABICN due to insufficient
penalty.

Sample Sizes

For the effects of the number of higher level sample sizes,
the two levels of group size (50 and 100) did not differ in
terms of the recovery rates among IC when using N in the
penalty term. However, there was a significant interaction

between the number of groups and ICG (FG(4, 224) = 6.68,

p < 0.05). Further examinations found that ABICG performs
much worse than IC with a smaller group size (G = 50),
which may result from the fact that the ABICG does not
impose sufficient penalties when using G in the penalty term.

The effects of lower level sample sizes are pre-
sented in Figure 2. The results suggest that recov-
ery rates sharply increase as the number of sub-
jects in a group (ng) increases (FN (2, 224) = 81.55, p <

0.01, FG(2, 224) = 31.61, p < 0.01). The recovery rates
were only around 20% with the small sample sizes (ng =
10), but increased to almost 70% when the sample size was
large (ng = 50). This pattern suggests that having sufficient
number of subjects in a group is a major factor in improving
the accuracy of IC. This pattern is consistent in ICN and ICG.

A significant interaction between IC and lower level
sample sizes was observed (FG(8, 224) = 27.55, p <

0.01, FN (8, 224) = 3.07, p < 0.01). As shown in Figure 2,
CAIC, BIC, and AIC3 maintained high recovery rates when
the sample sizes were medium (ng = 25) and large (ng = 50).
On the other hand, AIC showed a slightly higher recovery
rate than CAIC, BIC, and AIC3 when the sample size was
small (ng = 10), but it performed worse than IC with larger
sample sizes (ng = 25 and 50). In addition, ABIC was the
worst criterion with a number of groups (G) as the “sample
size,” especially in the conditions of medium and large sam-
ple sizes, but ABIC outperformed other IC when using N in
the penalty term.

Figure 3 presents the recovery rates of ICN under differ-
ent levels of sample size and four conditions of class/cluster
distinctness. The recovery rates for small sample size
(ng = 10) were considerably lower than other sample sizes
across all four conditions of class/cluster distinctness. The
overall recovery rate of IC was about 30%, even in more
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MULTILEVEL LATENT CLASS MODELS 239

FIGURE 3 The effects of lower level sample size for ICN in recovering the true latent structure under four levels of cluster/class distinctness.

distinctive cluster and class conditions (H-H). The rates of
recovery rapidly increased as the sample size increased in
all four conditions for all IC, although this rate of improve-
ment was not as strong for AIC. There was an interesting
pattern observed in the H-H condition: the largely improved
recovery rate was observed only in the large sample size (ng
= 50). This pattern suggests that even in more distinctive
cluster/class conditions, if the number of subjects is fewer
than 25, it will not warrant a satisfactory recovery rate. Fur-
ther examinations also found that having a small sample size
leads to poor performance (< 40%) when interacting with
other controlled factors in this study, suggesting that a suffi-
cient number of subjects per group is crucial to achieve better
recovery rates.

Numbers of Latent Classes and Clusters

The patterns of recovery rates of ICN and ICG, with respect
to number of clusters and classes, were similar, except that
ABICG performed much worse than ABICN; thus, the mean
recovery rates of ICN of different numbers of latent clusters
and classes were plotted in Figure 4. Unlike a decreasing pat-
tern of recovery rate under the more complex model typically
found in related studies (e.g., Yang & Yang, 2007), there was

no clear pattern in terms of the overall performance related
to the number of latent classes and clusters in the present
simulation study. However, the recovery rate of individual
IC significantly interacted with different numbers of classes
(FN (12, 224) = 4.31, p < 0.01).

BIC and CAIC performed well under the model with
smaller numbers of classes (simpler structure), but the recov-
ery rates gradually decreased as the latent structures became
more complex by imposing more penalties than necessary.
The mean recovery rates of AIC, AIC3, and ABIC exhibited
U-shaped patterns, signifying that performance was better in
the most simple and complex conditions. One possible ex-
planation for this pattern is that the number of classes affects
both class and cluster separation but in an opposite direction
(see Lukočienė et al., 2010, p. 261). The classes became less
separated as the number of classes increased, but having a
greater numbers of classes provided additional information
among the clusters and led to better separated clusters.

The performance of AIC3 was between AIC and
CAIC/BIC because of the balanced penalty term imposed.
Further examinations found that AIC performed relatively
worse than other IC in most conditions but that it outper-
formed other IC in the most complex conditions (L = 5 and
M = 5). Moreover, the performance of ABICN was relatively
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FIGURE 4 The mean recovery rate of ICN under different numbers of latent clusters and classes.

stable under different numbers of classes. Specifically, the
recovery rate of ABIC was higher/lower than AIC and AIC3
in simpler/more complex structures. Similarly, the recovery
rate of ABIC was lower/higher than BIC and CAIC in sim-
pler/more complex structures.

Comparisons Between the Simultaneous
Approach and the Stepwise Approach

We compared the three-step approach proposed by
Lukočienė et al. (2010) and the simultaneous approach in-
vestigated in this article in terms of the performance of IC
in recovering the true latent structure. The overall recovery
rate of each IC using the three-step procedure, simultaneous
approach using N in the penalty term, and simultaneous ap-
proach using G in the penalty term are plotted in Figure 5. As
shown in Figure 5, the mean recovery rates of AIC3, BIC, and
CAIC performed better under the three-step approach than
the simultaneous approach, whereas the ABICN outperforms
the ABIC in the three-step procedure, and the performance
of AIC is similar in both approaches. However, we note that
the two approaches are not exactly comparable. First, the
design in the present simulation concerned a restricted set of
10 models (i.e., models with more numbers of latent classes
than clusters), but the stepwise procedure considered 5 mod-
els with a fixed number of classes or clusters at each step.

DISCUSSION AND CONCLUSIONS

Model selection is an important step of any statistical analy-
sis. The goal is to find a model that has minimal discrepancy
between the predicted data and the empirically observed data.
Employing IC has commonly been proposed as the model se-

lection method for LCM; however, the performance of IC as
the model selection method for MLCM has not been exten-
sively studied. The two most relevant studies, conducted by
Lukočienė and Vermunt (2010) and Lukočienė et al. (2010),
recommended determining the number of latent classes at
the lower and higher levels with a stepwise fitting strategy to
make the two dependent decisions more efficient.

This study took a simultaneous approach to model selec-
tion in MLCM. The results suggest that the performance of
IC largely depends on factors that affect class and cluster sep-
arations. The performance of IC increased significantly as the
classes (lower level) became more distinct, whereas the effect
of cluster distinctness was not clearly observed in the study.

FIGURE 5 The comparisons of mean recovery rate of IC between the
simultaneous approach and three-step approach.
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The results related to the effect of sample size suggested
that there was no significant difference between the two lev-
els of the number of groups (G = 50 and 100). This result
may be due to the lack of sufficient differences among the
specified values to exhibit the difference in the performance
of IC. However, the larger group sizes (ng), in general, led
to better performance in recovering the latent structure for
all compared IC. The improvement in the recovery rate was
very clear when the group size was large. The accuracy rate
reached 90% under the condition of more distinct clusters
and classes. Therefore, we recommend that researchers take
this into consideration when designing studies. CAIC, BIC,
and AIC3 performed better than AIC and ABIC in most con-
ditions, whereas AIC worked well only when the sample was
small (ng = 10).

The results of the simulation study also showed that the
complexity of the latent structure affected the performance
of IC. Generally speaking, the simplest latent structure (e.g.,
H2L2) can easily be recovered by most IC. In addition, we
observed some unique patterns in the recovery rates, that is,
the recovery rates for BIC and CAIC dropped as the number
of classes increased, but AIC, AIC3, and ABIC performed
relatively better even in the condition of five latent classes.

One main characteristic of nested data is that lower level
units are grouped into higher level units, and this nested
structure may lead to several possible choices of Nas the
penalty term in IC. The results of our simulation study sug-
gested that using G (number of groups) led to a slightly better
performance than N (total sample size) in BIC and CAIC.
Specifically, the penalty that using N in the formula is too
harsh for BIC and CAIC and led to poorer recovery rates
than ICG. One exception was ABIC, which performed much
better when total sample size (N) was used in the penalty
term. This result is in agreement with the recommendation
of Lukočienė et al. (2010).

IC are simple and feasible methods for model selection in
MLCM. Further, IC are generally part of the standard output
in most statistical software. It is important to note that the de-
fault setting of N may differ in different software, and the cal-
culation of IC may require additional steps to ensure that the
proper N is used. As most software reports the log-likelihood
value in the output, IC can be easily calculated by hand before
proceeding to the step of selecting the best model.

The performance of an individual information criterion
largely varied depending on the level of separation between
classes. In general, BICG and CAICG could be great tools
under the conditions of well-separated classes, such as having
sufficient number of lower level samples and well-defined
class structures. On the other hand, AIC is a more favorable
criterion than others when sample sizes at the lower level
are limited. Lukočienė and Vermunt (2010) recommended
using AIC3 and BICG for model selection in MLCM using
the stepwise approach, and our simulation study supported
this recommendation. We also recommend ABICN because
it reached a recovery rate similar to that of AIC3 and BICG

in our simulation study.

Another key factor in the model selection of MLCM re-
lates to the model’s latent structure. The distinctness among
classes plays an important role in correctly recovering the
true latent structure. Although the true latent structure of the
data is “unknown,” the literature review, substantive knowl-
edge of the topics, or the patterns of estimated conditional
response probabilities can provide clues about the true la-
tent structure. This information can guide the selection of the
appropriate IC to make a more confident decision.

One limitation of this study is the performance between
the simultaneous and stepwise approach cannot be directly
compared because of the simulation design of this study. In
addition, the recommendations of model selection using IC
in this study are limited to the MLCM with discrete latent
variables at both levels. Future research can explore related
models such as the Multilevel Mixture Factor Model (Varri-
ale & Vermunt, 2012) or Multilevel Growth Mixture Model
(Palardy & Vermunt, 2010).

In summary, this study investigated the degree of clus-
ters/class distinctness, sample sizes, and model complexity
in relation to the performance of IC in recovering the true
latent structure of MLCM. Issues such as the iterative ver-
sus the simultaneous approach and the choice of Nas part
of the penalty term in IC were also reviewed and discussed.
As MLCMs have been shown to have a wide range of possi-
ble applications, this article provides practical guidelines and
recommendations to researchers regarding model selection
when analyzing empirical data.
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APPENDIX

Specifications of the Conditional Latent Class Probabilities (πml) for More and Less Distinct Clusters.
More distinct clusters

L = 2 L = 3 L = 4 L = 5

M = 2

[
.9 .1
.1 .9

]

M = 3

⎡
⎣ .8 .1

.1 .1

.1 .8

⎤
⎦

⎡
⎣ .8 .1 .1

.1 .1 .8

.1 .1 .8

⎤
⎦

M = 4

⎡
⎢⎢⎣

.7 .1

.1 .1

.1 .1

.1 .7

⎤
⎥⎥⎦

⎡
⎢⎢⎣

.7 .1 .1

.1 .7 .1

.1 .1 .1

.1 .1 .7

⎤
⎥⎥⎦

⎡
⎢⎢⎣

.7 .1 .1 .1

.1 .7 .1 .1

.1 .1 .7 .1

.1 .1 .1 .7

⎤
⎥⎥⎦

M = 5

⎡
⎢⎢⎢⎢⎣

.6 .1

.1 .1

.1 .1

.1 .1

.1 .6

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

.6 .1 .1

.1 .1 .1

.1 .6 .1

.1 .1 .1

.1 .1 .6

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

.6 .1 .1 .1

.1 .6 .1 .1

.1 .1 .1 .1

.1 .1 .1 .6

.1 .1 .1 .6

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

.6 .1 .1 .1 .1

.1 .6 .1 .1 .1

.1 .1 .6 .1 .1

.1 .1 .1 .6 .1

.1 .1 .1 .1 .6

⎤
⎥⎥⎥⎥⎦

Less distinct clusters

L = 2 L = 3 L = 4 L = 5

M = 2

[
.85 .15
.15 .85

]

M = 3

⎡
⎣ .7 .15

.15 .15

.15 .7

⎤
⎦

⎡
⎣ .7 .15 .15

.15 .7 .15

.15 .15 .7

⎤
⎦

M = 4

⎡
⎢⎢⎣

.55 .15

.15 .15

.15 .55

.15 .55

⎤
⎥⎥⎦

⎡
⎢⎢⎣

.55 .15 .15

.15 .55 .15

.15 .15 .15

.15 .15 .55

⎤
⎥⎥⎦

⎡
⎢⎢⎣

.55 .15 .15 .15

.15 .55 .15 .15

.15 .15 .55 .15

.15 .15 .15 .55

⎤
⎥⎥⎦

M = 5

⎡
⎢⎢⎢⎢⎣

.40 .15

.15 .15

.15 .15

.15 .15

.15 .40

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

.40 .15 .15

.15 .15 .15

.15 .40 .15

.15 .15 .15

.15 .15 .40

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

.40 .15 .15 .15

.15 .40 .15 .15

.15 .15 .15 .15

.15 .15 .40 .15

.15 .15 .15 .40

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

.40 .15 .15 .15 .15

.15 .40 .15 .15 .15

.15 .15 .40 .15 .15

.15 .15 .15 .40 .15

.15 .15 .15 .15 .40

⎤
⎥⎥⎥⎥⎦
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Specifications of Conditional Response Probabilities (ρmj ) for More and Less Distinct Classes.

More distinct classes Less distinct classes

M = 2

[
.8 .8 .8 .8 .8 .8 .8 .8
.2 .2 .2 .2 .2 .2 .2 .2

] [
.7 .7 .7 .7 .7 .7 .7 .7
.3 .3 .3 .3 .3 .3 .3 .3

]

M = 3

⎡
⎣ .8 .8 .8 .8 .8 .8 .8 .8

.2 .2 .2 .2 .8 .8 .8 .8

.2 .2 .2 .2 .2 .2 .2 .2

⎤
⎦

⎡
⎣ .7 .7 .7 .7 .7 .7 .7 .7

.3 .3 .3 .3 .7 .7 .7 .7

.3 .3 .3 .3 .3 .3 .3 .3

⎤
⎦

M = 4

⎡
⎢⎢⎣

.8 .8 .8 .8 .8 .8 .8 .8

.2 .2 .2 .2 .8 .8 .8 .8

.8 .8 .8 .8 .2 .2 .2 .2

.2 .2 .2 .2 .2 .2 .2 .2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

.7 .7 .7 .7 .7 .7 .7 .7

.3 .3 .3 .3 .7 .7 .7 .7

.7 .7 .7 .7 .3 .3 .3 .3

.3 .3 .3 .3 .3 .3 .3 .3

⎤
⎥⎥⎦

M = 5

⎡
⎢⎢⎢⎢⎣

.8 .8 .8 .8 .8 .8 .8 .8

.2 .2 .2 .2 .8 .8 .8 .8

.2 .2 .2 .8 .8 .2 .2 .2

.8 .8 .8 .8 .2 .2 .2 .2

.2 .2 .2 .2 .2 .2 .2 .2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

.7 .7 .7 .7 .7 .7 .7 .7

.3 .3 .3 .3 .7 .7 .7 .7

.3 .3 .3 .7 .7 .3 .3 .3

.7 .7 .7 .7 .3 .3 .3 .3

.3 .3 .3 .3 .3 .3 .3 .3

⎤
⎥⎥⎥⎥⎦

Note. The same pattern is doubled when item = 12.
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