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Abstract

In this paper, we study the two edge-coloring of Kj;, , such that K;;, ,, contains
a monochromatic subgraph K>, K, 3 or Ks ;. We find the relation between n, s by
investigating a two coloring of a checkerboard.

Keywords: Complete bipartite graph;Monochromatic subgraph
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Chapter 1

Introduction

We often encounter problems related the Ramsey numbers [1] in many Mathematical Com-
petitions of High School Students. In this thesis, we use the ideas of the Ramsey numbers on
the checkerboard problems. We follow [2] for the notations in graph theory and the definitions
of the complete bipartite graph K, ,, and follow [3] to construct the correspondence between
the checkerboards and complete bipartite graphs. Jiong-Sheng Li provides the minimal sizes
of k-colored square checkerboards which have monochromatic-rectangles in [3], we define the
generalized monochromatic-rectangles and discuss the existence of such rectangles in an m x n
checkerboard. In this thesis, we only consider the checkerboards which are arbitrarily colored
by two colors and we called it two-colored checkerboard.

In the second chapter, we discuss the minimal columns of the 2-colored checkerboard which
has (2,2)-monochromatic-rectangles by fixing the rows. At the end, we convert the results to
graphic problems. In the third chapter, we extend the second chapter to discuss the minimal
columns of the 2-colored checkerboard which has (2,t)-monochromatic-rectangles by fixing the
rows. At the end, we convert the results to graphic problems.

In the forth chapter, we discuss the minimal columns of the 2-colored checkerboard which has
(3,2)-monochromatic-rectangles by fixing the rows. At the end, we convert the results to graphic
problems. In the fifth chapter, we extend the forth chapter to discuss the minimal columns of
the 2-colored checkerboard which has (3,t)-monochromatic-rectangles by fixing the rows. At

the end, we convert the results to graphic problems.



In the second chapter to the fifth chapter, all results have been proved in [4], but we improve the
proof such that be more general and we also propose some amendments in the third chapter.

In the last two chapter, we propose the generalized conclusions. We discuss the minimal columns
of the 2-colored checkerboard which has (s,t)-monochromatic-rectangles by fixing the rows. At

the end, we convert the results to graphic problems.

By [3] we convert the grids of a checkerboard into the edges of a complete bipartite graph,
the number of rows and columns correspond to the number of vertices in complete partite sets,

X and Y, respectively.

Figure 1.1: m x n checkerboard

If the grid in the i-th row and the j-th column of the checkerboard is black, then the cor-
respond edge x;y; in the correspond complete bipartite graph is solid. And the white grid is
correspond the dashed edge. The following is a 2-colored m X n checkerboard correspond to a

2-coloring Ky, .

Figure 1.2: A 3 x 4 checkerboard and the correspond complete bipartite graph.



Chapter 2

(2,2)-Monochromatic-rectangles in a

Checkerboard

Definition 2.1. An m X n rectangle is called a (s,t)-monochromatic-rectangle,
if in first column there are s grids including the first one and the last one that have the same color,

and there are other t-1 columns including the last column that are copies of the first column.

Figure 2.1: A (2,2)-monochromatic-rectangle Figure 2.2: A (3,4)-monochromatic-rectangle



2.1 The Case of 2 x n Checkerboard

If there are two (2,1)-monochromatic-rectangles of the same color, then the checker-
board has a (2,2)-monochromatic rectangle. Otherwise, there is no (2,2)-monochromatic rect-

angle.

Figure 2.3: There are two (2,1)-monochromatic-rectangles of the same color in the checker-
board.

Figure 2.4: There is no two (2,1)-monochromatic-rectangles of the same color in the checker-
board.

Therefore, in a 2-colored 2 X n checkerboard a (2,2)-monochromatic-rectangle may not ex-

ist.




2.2 The Case of 3 x n Checkerboard

Definition 2.2. In a checkerboard, two (s,1)-monochromatic-rectangles of the same color are

the same, if one is a copy of the other one.

Definition 2.3. An 7 X 1 column contains a (s,1)-monochromatic-rectangle means that there
are s grids of the same color in the column.

Note: An n x 1 column contains at most C!' distinct (s,1)-monochromatic-rectangles.
We consider

Lemma 2.4. In every 2-colored 3 X n checkerboard, n = 7 is the smallest number such that

there exists a (2,2)-monochromatic-rectangle.

Proof. To prove that we need to exhibit a 2-colored 3 x 6 checkerboard that has no (2,2)-
monochromatic-rectangles. In a column, there are at most Cg’ distinct black (2,1)-monochromatic-
rectangles. So we can distribute the Cg distinct black (2,1)-monochromatic-rectangles and the
C% distinct white (2,1)-monochromatic-rectangles to the 6 columns, then the 2-colored 3 x 6
checkerboards have no (2,2)-monochromatic-rectangles.

By pigeonhole principle, there are at least [3%71 = 11 grids of the same color. Without loss
of generality, let the color be black. Then we have i d; > 11, where d; is the number of
black grids of the i*" column of the checkerboard. As;:rllle 2-colored 3 x 7 checkerboard has a
coloring such that there is no (2,2)-monochromatic-rectangle, then any two columns don’t con-
tain the same black (2,1)-monochromatic-rectangles, each column contains Cgi distinct black

(2,1)-monochromatic-rectangles, and the total number of distinct black (2,1)-monochromatic-

rectangles is not more than Cg’. So we have
d d d 3
C21+C22+"'+C27 S C2 (2.21)
Letd; +dy+---+dy =11+ t, where t € IN. Then we can transform (2.2.1) to

di+di+ - +d3 <17+t (2.2.2)



By Cauchy—Schwarz inequality, we get

(@ +dB+- - +d2) 12+ 12+ +12) > (dy +do + - +d7)?

= (17 +t) x 7> (11 +t)?

So we have

2 4+15t+2<0

But t € IN, we reach a contradiction in the last inequality. Therefore, every 2-coloring of 3 X 7

checkerboard yields a (2,2)-monochromatic-rectangle. [J

Figure 2.5: Every 2-colored 3 X 7 checkerboard contains a (2,2)-monochromatic-rectangle.

Figure 2.6: There is a 2-colored 3 X 6 checkerboard containing no (2,2)-monochromatic-
rectangles.

2.3 The Case of 4 x n Checkerboard

Lemma 2.5. In every 2-colored 4 X n checkerboard, n = 7 is the smallest number such that

there exists a (2,2)-monochromatic-rectangle.

Proof. By Lemma2.4, in every 2-colored 3 x 7 checkerboard, there is a (2,2)-monochromatic-



rectangle. Therefore, in every 2-colored 4 X 7 checkerboard, there is a (2,2)-monochromatic-

rectangle. [

Figure 2.7: Every 2-colored 4 x 7 checkerboard contains a (2,2)-monochromatic-rectangle.

2.4 The Case of 5 x n Checkerboard

Lemma 2.6. In every 2-colored 5 X n checkerboard, n = 5 is the smallest number such that

there exists a (2,2)-monochromatic-rectangle.

Proof.To prove that we need to exhibit a 2-colored 5 x 4 checkerboard that has no (2,2)-
monochromatic-rectangles. By the Lemma2.5, we have a 2-colored 4 X 5 checkerboard which
doesn’t have (2,2)-monochromatic-rectangles. We rotate the checkerboard, so we have the 2-
colored 5 x 4 checkerboard that has no (2,2)-monochromatic-rectangles.

By pigeonhole principle, there are at least [%W = 13 grids of the same color. Without loss
of generality, let the color be black. Then we have i d; > 13, where d; is the number of
black grids of the i*" column of the checkerboard. Assluznlle two colored 5 x 5 checkerboard has
a coloring such that there is no (2,2)-monochromatic-rectangles, then any two columns don’t
contain the same black (2,1)-monochromatic-rectangles, each column contains Cg " distinct black

(2,1)-monochromatic-rectangles, and the total number of distinct black (2,1)-monochromatic-

rectangles is not more than Cg. So we have

Ch4+Clt- +CPF <G 2.4.1)



Figure 2.8: There is a 2-colored 4 X 6 checkerboard containing no (2,2)-monochromatic-
rectangles.

Letd; +dy+---+ds =13 4+ t, where t € IN. Then we can transform (2.4.1) to
di+d3+ - +di <23+t (2.4.2)
By Cauchy—Schwarz inequality, we get

(B3 +d5+- +d5) (1P + 12+ +1%) > (dy +da+ -+ d5)°

= (2341) x 5> (13 + t)?

So we have

2421t +54<0

But t € IN, we reach a contradiction in the last inequality. Therefore, every 2-colored 5 x 5

checkerboard yields a (2,2)-monochromatic-rectangle. [

Figure 2.9: Every 2-colored 5 x 5 checkerboard contains a (2,2)-monochromatic-rectangle.



2.5 Summary

The case of m X n checkerboard, where m > 6, can be obtained by rotation of the

rectangles. For example, 6 x 5 checkerboard can be considered to 5 x 6 checkerboard, so it has

a (2,2)-monochromatic-rectangle.

We can convert the above theorems to graphic problems. We have the following proposition.
» If n > 6, every 2-coloring of K3 ;, contains a monochromatic Kj 5.
 If n > 6, every 2-coloring of Ky ;, contains a monochromatic K.

» If n > 4, every 2-coloring of K5, contains a monochromatic K 5.



Example 2.7. Every 2-coloring of K37 exists a monochromatic K » subgraph.

Figure 2.10: The subgraph induced by {X73, X3, Y2, Y7} is a monochromatic copy of K 5.

Example 2.8. There is a 2-coloring of K3 s no a monochromatic K3 » subgraph.

10



Example 2.9. Every 2-coloring of Ky 7 exists a monochromatic Kj» subgraph.

Figure 2.11: The subgraph induced by {Xj, X3, Y2, Y7} is a monochromatic copy of K3 ».

Example 2.10. There is a 2-coloring of K4 ¢ no a monochromatic K5 » subgraph.

11



Example 2.11. Every 2-coloring of K5 5 exists a monochromatic K3 » subgraph.

Figure 2.12: The subgraph induced by {X4, X5, Y2, Y5} is a monochromatic copy of K 5.

12



Chapter 3

(2,t)-monochromatic-rectangles in a

Checkerboard

3.1 The Case of 2 X n Checkerboard

If there are f (2,1)-monochromatic-rectangles of the same color, then the checkerboard

has a (2,t)-monochromatic-rectangle. Otherwise, there is no (2,t)-monochromatic-rectangle.

3.2 The Case of 3 x n Checkerboard

Theorem 3.1. Ifn > (6t — 6), where t > 2, then in every 2-colored 3 X n checkerboard. There

is a (2,t)-monochromatic-rectangle.

Proof. Ifn = (6t — 6) + 1 = 6t — 5 (Only prove that every coloring of two colors 3 X (6t —
5) checkerboard, there is a (2,t)-monochromatic-rectangle.) By pigeonhole principle, there are
at least [@1 = 3t — 2 columns that have at least two of same color grids. Without loss
of generality, let the color be black. Thend; > 2 i = 1,2,...,(3t — 2) , where d; is the
number of black grids of the i column of the checkerboard. Assume two colored 3 x (6t — 5)
checkerboard has a coloring such that there is no (2,t)-monochromatic-rectangles, then any ¢
columns don’t contain the same black (2,1)-monochromatic-rectangles, each column contains

Cgi distinct black (2,1)-monochromatic-rectangles, and the total number of distinct black (2,1)-

13



monochromatic-rectangles is not more than ( — 1) - Cg . So we have,
Chychy. .. ycPr2<(t-1)-G

Because d; > 2

G+C4-+ Q< C O

combining the two results shows

CG+C+---+CG<(t-1)-C

=3t —-2<3t-3

1 < 0 we reach a contradiction. So, If n > (6t — 6), where t > 2, then in every 2-coloring of

3 x n checkerboard. There is a (2,t)-monochromatic-rectangle. [

3.3 The Case of 4 x n Checkerboard

Theorem 3.2. [fn > (6t —6), wheres > 2, then in every 2-colored 4 x n checkerboard. There

is a (2,t)-monochromatic-rectangle.

Proof. By Theorem 3.1, in every 2-colored 3 x (6t — 6) checkerboard, there is a (2,t)-
monochromatic-rectangle. Therefore, in every 2-colored 4 x (6t — 6) checkerboard, there is a

(2,t)-monochromatic-rectangle. [J

3.4 The Case of 5 x n Checkerboard

Theorem 3.3. Ifn > (5t — 6), where t > 2, then in every 2-colored 5 X n checkerboard. There
is a (2,t)-monochromatic-rectangle, where t is even. And Cgl + Cg2 +-- 4 Cg” > (2t-3)-C

where d; is the number of black grids of the it" column of the checkerboard.

Proof. Suppose t = 2k — 2, where k is integer greater than two, we use induction on k, If

n = (10k — 16) + 1 = 10k — 15 (Only prove that every coloring of two colors 5 x (10k — 15)

14



checkerboard, there is a (2k — 2, 2)-monochromatic-rectangle.
Basis step: When k = 2, by the Lemma 2.6 we have in every 2-coloring of 5 x 5 checkerboard,
there is a (2,2)-monochromatic-rectangle. Suppose k = sistrue, s > 2 and s € IN for all

2-coloring of 5 x (10s — 15) checkerboard, there is a (2,2s — 2)-monochromatic-rectangle.

5><(1025—15)-|

By pigeonhole principle, there are at least | = 25s — 37 grids of the same color.

10s—15
Without loss of generality, let the color be black. So, we have d; = 25s — 37, and
i=1
CP+C 4+ Cpo ™ > (25 —3)-CF
Induction step: Whenk = s+ 1, n = 10(s + 1) — 15 = 10s — 5, by pigeonhole principle,

there are at least (%0575)] = 25s — 12 grids of the same color in 5 x (10s — 5) checker-

board. Without loss of generality, let the color be black. We have 1(_)515 d; = 25s —12. By
i—

induction hypothesis, 1'052_5 d; = 25s — 37, so ‘12% d;i = 25 and Cgi is the number of black

(2,1)-monochromatic-r;‘:;ngles in the " colum;z,li =1,2,--+,(10s — 5). Assume two col-

ored 5 x (10s — 5) checkerboard has a coloring such that there is no (2, 2s)-monochromatic-

rectangles, then any 2s columns don’t contain the same black (2,1)-monochromatic-rectangles,

each column contains Cgi distinct black (2,1)-monochromatic-rectangles, and the total number

of distinct black (2,1)-monochromatic-rectangles is not more than (2s — 1) - C3. So we have
Ch4 ol g s < (25—1)-CF (3.4.1)
By induction hypothesis
CIn ¢z ... coss > (25 —3) . C

So, we have

Chypcly ... 4cv<c(2s—1).C5—(25—3)-C

Chyp 4. 4w <20

15



By the definition of combination we get

di(dh — 1) N dy(d2 — 1) R d1o(d1o — 1)

> > > <20

multiple 2 in both side

(d2+d5+ - +d3y) — (d1 +do+---+dyg) < 40

di+d}+ - +di) <65

By Cauchy—Schwarz inequality
(d3+d5+ - +d3y) - 10> (dy +dy + - - -+ dyp)?

2, 32 2y o 25
(di +d3 + - +dyp) =Ty

— 62.5< (df+di+ - +d3) <64

. d; are integer .*. (d3 +d5 + - - - + d3,) must be 63 or 64
Casel:d?+d5+---+d3, =63

dB+di+ - +d5y=63—d

and

d2+d3+---+d10:25—d1

By Cauchy—Schwarz inequality

16



(d34+d%+- +d3) 9> (do+ds+---+dyp)?

(63 —d3)-9 > (25 —d;)?

10d3 — 50d; +58 < 0

1.83 < dy < 3.17

and dis integer, so d; must be 2 or 3. Similarly, d»,ds, - - - ,d1o must be 2 or 3 But dq + d» +
-« +dyg = 25,s0dq,dp, - - -, dyg consists of five 2's and five 3's Therefore, d3 +d3 + - - - +
d%o = 65 # 63, we reach a contradiction.

Case2 : d? +d3+ - - -+ d3, = 64

A3+ d5+ -+ d3y = 64— d?

and

d2+d3+---+d10:25—d1

By Cauchy—Schwarz inequality

(d34+d%+- - +d3) 9> (do+ds+---+dyp)?

(64 —d3)-9 > (25 —d;)?

10d3 — 50d; +49 <0

17



134 < d; < 3.66

and d;is integer, so d1 must be 2 or 3. Similarly, d»,d3,- - - ,d1o must be 2 or 3. But dy +

dy+ -+ +dyg=255s0dqy,dy, -+ ,dqg consists of five 2’s and five 3’s. Therefore, d% + d% +
-+ +d%, = 65 # 64, we reach a contradiction.

So for all 2-colored 5 x (10s — 5) checkerboard, there is a (2,2s)-monochromatic rectangle.

By induction, Vk > 2 and k € IN, in every 2-colored 5 x (5t — 6) checkerboard, there is a

(2, t)-monochromatic rectangle, where t = 2k — 2.

Lemma 3.4. In every 2-colored 5 x 11 checkerboard, there is a (2,3)-monochromatic-rectangle.

Proof. By pigeonhole principle, there are at least [52—11} = 28 grids of the same color.

11

Without loss of generality, let the color be black. Then we have Y d; > 28, where d; is the
i=1

number of black grids of the i column of the checkerboard. Assume two colored 5 x 11

checkerboard has a coloring such that there is no monochromatic-rectangles, then any three
columns don’t contain the same black (2,1)-monochromatic-rectangles, each column contains
Cgi distinct black (2,1)-monochromatic-rectangles, and the total number of distinct black (2,1)-

monochromatic-rectangles is not more than 2 - Cg. So we have
ol +CP 4+ G <2%xC (3.4.2)
Letdy +dy+---+dyg =28+ t, where t € IN. Then we can transform (3.4.2) to
B+d3+- -+l <68+t (3.4.3)
By Cauchy—Schwarz inequality, we get
(di+d5+ - +di)(P+12+ - +1%) > (dy+dp+ - - +dpp)?

= (68 + 1) x 11 > (28 + t)?

18



So we have

2+ 45t +36 <0

Butt € IN, the last inequality is contradiction. Therefore, every 2-colored 5 x 11 checkerboard

yields a (2,3)-monochromatic-rectangle. [

Figure 3.1: There is a 2-colored 5 X 10 checkerboard containing no a (2,3)-monochromatic-
rectangle.

19



Theorem 3.5. Ifn > (5t — 5), wheret > 2, then in every 2-colored 5 X n checkerboard. There
is a (2,t)-monochromatic-rectangle, where s is odd. And Cgl + ng + Cg” > (2t-2)-C5

where d; is the number of black grids of the it" column of the checkerboard.

Proof. Suppose t = 2k — 1, where k is integer greater than two, we use induction on k, If
n = (10k — 10) + 1 = 10k — 9 (Only prove that every 2-colored 5 x (10k — 9) checkerboard,
there is a (2, 2k — 1)-monochromatic-rectangle.
Basis step: When k = 2, by the Lemma 3.4 we have in every 2-colored 5 x 11 checker-
board, there is a (2,3)-monochromatic-rectangle. Suppose k = s istrue,s > 2ands € IN

for all 2-colored 5 x (10s —9) checkerboard, there is a (2,2s — 1)-monochromatic-rectangle.

By pigeonhole principle, there are at least (ww = 255 — 22 grids of the same color.
10t—9

Without loss of generality, let the color be black. So, we have Y d; = 25s — 22, and
i=1

Ch4Cl o 4 O > (25— 2) - C3

Induction step: Whenk = s+ 1, n = 10(s+ 1) — 9 = 10s + 1, by pigeonhole principle,
W] = 255 + 3 grids of the same color in 5 X (10s + 1) checkerboard.

10s+1
Without loss of generality, let the color be black. We have Y~ d; = 25s + 3. By induction
i=1

there are at least |

10s—5 10
hypothesis, Y d; =255 —22,s0 Y d; = 25 and Cg" is the number of black-bars in the 7"
i=11 i=1

column,i =1,2,---,(10s + 1). Assume two colored 5 x (10s +- 1) checkerboard has a color-
ing such that there is no (2,2s + 1)-monochromatic-rectangles, then any 2s + 1 columns don’t
contain the same black (2,1)-monochromatic-rectangles, each column contains Cg " distinct black
(2,1)-monochromatic-rectangles, and the total number of distinct black (2,1)-monochromatic-

rectangles is not more than 2s - Cg. So we have
dy dy d10s-+1 5
C2 +C2 +"'+C2 SZS'CZ (3.4.4)
By induction hypothesis

an + szilz 4ot Cg105+1 > (25 —2) - Cg

20



So, we have

Chypcly. .. 4clvc2s.C5—(25—2)-C
Chych 4. 4o <20
By the definition of combination we get

di(di —1) | do(dr—1) dio(d1o — 1)
+ +...+—

20
2 2 2 <

multiple 2 in both side

(A2 +d54 - 4 d3y) — (dy +dp+ -+ +dyg) < 40

di+d3+ -+ d7y <65

By Cauchy—Schwarz inequality

(B 4d+ - +d3) - 10> (d+dy + -+ +dyp)?

2 2 2 252
(d1+d2++d10) Zﬁ

= 625 < (A3 +d3+---+d3y) <64

. d; are integer ", (d3 +d5 + - - - + d?,) must be 63 or 64
Casel:d?+d5+---+d3, =63

B+di+ - +d5y=63—d

and
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d2+d3+---+d10:25—d1

By Cauchy—Schwarz inequality

(d5+d5+- +d3y) 9> (da+ds+ - +dy)?

(63 —d2)-9 > (25 —dy)?

10d3 — 50d; +58 <0

1.83 < dy < 3.17

and dis integer, so d; must be 2 or 3. Similarly, d,,d3, - - - ,d1o must be 2 or 3 But dq + dy +
<o~ +dyg=25,s0dq,ds,- - - ,dqo consists of five 2s and five 3’s Therefore, d% +di+ -+
d2, = 65 # 63, we reach a contradiction. Case2 : d5 + d5 + - - -+ d3, = 64

B+d+ - +d3y=64—d3

and

d2+d3—l—---—{—d10:25—d1

By Cauchy—Schwarz inequality

(d34+d%+- +d3) 9> (do+ds+---+dyp)?

(64 —d3)-9 > (25 —d;)?
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10d% —50d; +49 <0

134 < d; < 3.66

and d;is integer, so di must be 2 or 3. Similarly, d»,d3,- - - ,d19 must be 2 or 3. But dy +
dy+ -+ +dyg=25s0dy,dy, - ,dig consists of five 2’s and five 3's. Therefore, d2 + d5 +
st d%o = 65 # 64, we reach a contradiction.

So for all 2-colored 5 x (10s — 5) checkerboard, there is a (2, 2s + 1)-monochromatic rect-
angle.

By induction, Vk > 2 and k € IN, in every 2-colored 5 x (5t — 5) checkerboard, there is a

(2, t)-monochromatic rectangle,where t = 2k — 1. [

3.5 Summary

We can convert the above theorems to graphic problems. We have the following proposition.

Lets > 2
« If n > 6(t — 1), every 2-coloring of K3 ,, exists a monochromatic Kj ; subgraph.

« If n > 6(t — 1), every 2-coloring of Ky ,, exists a monochromatic Ky ; subgraph.

L]

If n > (10t — 16), every 2-coloring of K5, exists a monochromatic Kj (5;_») subgraph.

If n > (10t — 10), every 2-coloring of K5, exists a monochromatic K; (5;_1) subgraph.
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Chapter 4

(3,2)-Monochromatic-rectangles in a

Checkerboard

4.1 The Case of 3 X n Checkerboard

If there are two columns of all grids are of the same color, then the checkerboard has a

(3,2)-monochromatic-rectangle. Otherwise, there is no (3,2)-monochromatic-rectangle.

4.2 The Case of 4 x n Checkerboard

If every column of a 4 X n checkerboard has two black grids and two white grids, then it
doesn’t have s a (3,2)monochromatic-rectangle. Therefore, for every two color 4 X n checker-
board exists a coloring such that has no (3,2)-monochromatic-rectangles in the 4 x n checker-

board.

4.3 The Case of 5 x n Checkerboard

Lemma 4.1. In every 2-colored 5 X n checkerboard, n = 21 is the smallest number such that

there exists a (3,2)-monochromatic-rectangle.

Proof. To prove that we need to exhibit a two colored 5 X 20 checkerboard has no (3,2)-
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monochromatic-rectangles. In a column, there are at most Cg distinct black (3,1)-monochromatic-
rectangles. So we can distribute the Cg distinct black (3,1)-monochromatic-rectangles and the
Cg distinct white (3,1)-monochromatic-rectangles to the 20 columns, then the two colored 5 x 20
checkerboards have no (3,2)-monochromatic-rectangles.

By pigeonhole principle, there are at least [%1 = 11 columns with at least three grids of the
same color. Without loss of generality, let the color be black. Thend; >3 i=1,2,...,11,
where d; is the number of black grids of the i*" column of the checkerboard. Assume 2-colored
5 x 21 checkerboard has a coloring such that there is no (3,2)monochromatic-rectangles, then
any two columns don’t contain the same black (3,1)-monochromatic-rectangles, each column
contains Cg" distinct black (3,1)-monochromatic-rectangles, and the total number of distinct

black (3,1)-monochromatic-rectangles is not more than Cg. So we have
CoL L CR ot GO 2. CS

Because d; > 3

G+CG+ -+ <P+ +Cn

combining the two results shows

G+CG+ - +C3 <3

=11 <10

11 < 10 iwe reach a contradiction in the last inequality. So, If n > 21, then in every 2-coloring

of 5 x n checkerboard. There is a (3,2)monochromatic-rectangle. [

4.4 The Case of 6 x n Checkerboard

Lemma 4.2. In every 2-colored 6 X n checkerboard, n = 21 is the smallest number such that

there exists a (3,2)-monochromatic-rectangle.
Proof. By Lemma4.1, in every 2-colored 5 x 21 checkerboard, there is a (3,2)monochromatic-
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Figure 4.1: There is a 2-colored 5 X 20 checkerboard containing no a (3,2)-monochromatic-
rectangle.

rectangle. Therefore, in every 2-colored 6 x 21 checkerboard, there is a (3,2)monochromatic-

rectangle. [

Figure 4.2: There is a 2-colored 6 X 20 checkerboard containing no a (3,2)-monochromatic-
rectangle.

4.5 Summary

We can convert the above theorems to graphic problems. We have the following proposition.
» If n > 20, every 2-coloring of K5, contains a monochromatic K3 ».

» If n > 20, every 2-coloring of K¢ ,, contains a monochromatic K3 .
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Chapter 5

(3,t)-Monochromatic-rectangles in a

Checkerboard

5.1 The Case of 5 X n Checkerboard

Theorem 5.1. If n > 20(t — 1), where t > 2, then in every 2-colored 5 x n checkerboard,

there is an (3,t)-Monochromatic-rectangle.

Proof. If n = (20t — 20) + 1 = 20t — 19 (Only prove that every 2-colored 5 x (20t — 19)
checkerboard, there is a s-monochromatic-rectangle.) By pigeonhole principle, there are at least
(M} = 10t — 9 columns that have at least three of same color grids. Without loss of
generality, let the color be black. Thend; > 3 i = 1,2,...,(10t —9) , where d; is the
number of black grids of the i column of the checkerboard. Assume 2-colored 3 x (20t — 19)
checkerboard has a coloring such that there is no (3,t)-Monochromatic-rectangles, then any s
columns don’t contain the same black (3,1)-monochromatic-rectangles, each column contains
Cgli distinct black (3,1)-monochromatic-rectangles, and the total number of distinct black (3,1)-

monochromatic-rectangles is not more than (t — 1) - Cg’. So we have,

C31+ng+___+cg10t—9 < (t—l)-Cg
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Because d; > 3

C§+C§+"-+C§ < C§1+Cg2+...+cg10t—9
combining the two results shows

G+CG+---+C3<(t-1)-G

= 10t — 9 <10t — 10

1 < 0 we reach a contradiction in the last inequality. So, If n > (20t — 20), where t > 2, then

in every 2-colored 5 X n checkerboard. There is an (3,t)-Monochromatic-rectangle. [J

5.2 The Case of 6 X n Checkerboard

Theorem 5.2. If n > 20(t — 1), where s > 2, then in every 2-colored 6 X n checkerboard,

there is a (3,t)-Monochromatic-rectangle.

Proof. By Theorem 5.1, in every 2-colored 5 x (20t — 20) checkerboard, there is a (3,t)-
Monochromatic-rectangle . Therefore, in every 2-colored 6 x (20f —20) checkerboard, there

is a (3,t)-Monochromatic-rectangle. [J

5.3 Summary

We can convert the above theorems to graphic problems. We have the following proposition.

Lets > 2
« If n > 20(t — 1), every 2-coloring of K5, exists a monochromatic K3 ; subgraph.

« If n > 20(t — 1), every 2-coloring of Kg ,, exists a monochromatic K3 ; subgraph.
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Chapter 6

(s,2)-Monochromatic-rectangles in a

Checkerboard

6.1 The Case of (25 — 2) x n Checkerboard

If every column of a (2s — 2) x n checkerboard has s-1 black grids and s-1 white grids, then
it doesn’t have s a (s,2)-monochromatic-rectangle. Therefore, for every two color 2s — 2 X n
checkerboard exists a coloring such that has no (s,2)-monochromatic-rectangle in the (2s —

2) x n checkerboard.

6.2 The Case of (2s — 1) x n Checkerboard

Lemma 6.1. In every 2-colored (25 — 1) x n checkerboard, n = (2C2~1 4 1) is the smallest

number such that there exists a (2,2)-monochromatic-rectangle.

Proof.To prove that we need to exhibit a 2-colored (25 — 1) x 2C25~! checkerboard that has
no (2,2)-monochromatic-rectangles. In a column, there are at most C25~1 distinct black (s,1)-
monochromatic-rectangles. So we can distribute the C2°~! distinct black (s,1)-monochromatic-
rectangles and the Cgs —1 distinct white (s,1)-monochromatic-rectangles to the 2C§S ~1 columns,
then the 2-colored (2s — 1) x 2C2~! checkerboards have no (s,2)-monochromatic-rectangles.

25—1
By pigeonhole principle, there are at least (2(:“—2“1 = C2~1 4+ 1 columns with at least s
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grids are of the same color. Without loss of generality, let the color be black. Then d; >
s i=1,2,..., C;?S*1 + 1, where d; is the number of black grids of the ith column of the
checkerboard. Assume 2-colored 2s — 1 x 2C%~! 4 1 checkerboard has a coloring such that
there is no (s,2)monochromatic-rectangles, then any two columns don’t contain the same black
(s,1)-monochromatic-rectangles, each column contains Cgi distinct black (s,1)-monochromatic-
rectangles, and the total number of distinct black (s,1)-monochromatic-rectangles is not more

than C2*~1. So we have
cxly
Z Cgk < Cgsfl
k=1

Because d; > s
Cx-141 ;
CG+Ci+--+C < ), CF
k=1

combining the two results shows

CHCi o8 <t

= el +1<ce!

1 < 0 we reach a contradiction in the last inequality. So, If n > ZCSS’1 + 1, then in every
2-colored (2s — 1) x (2C2~1 + 1) checkerboard. There is a (s,2)-monochromatic-rectangle.

O

6.3 The Case of 2s x n Checkerboard

Lemma 6.2. In every 2-colored (25) x (2C2~1 4 1) checkerboard, there is a (s,2)monochromatic-

rectangle.

Proof. By Lemma6.1, in every 2-colored (2s — 1) x (2C2*~1 + 1) checkerboard, there is
a (s,2)monochromatic-rectangle. Therefore, in every 2-colored (2s) x (2C2~1 + 1) checker-

board, there is a (s,2)monochromatic-rectangle. []
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6.4 Summary

We can convert the above theorems to graphic problems. We have the following proposition.
« If n > (2C%~1 4+ 1), every 2-coloring of K(2s-1),n contains a monochromatic K; .

e Ifn > (ZCS?S_1 + 1), every 2-coloring of Ky, ,, contains a monochromatic K .
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Chapter 7

(s,t)-Monochromatic-rectangles in a

Checkerboard

7.1 The Case of (2s — 1) x n Checkerboard

Theorem 7.1. In every 2-colored (2s — 1) x (2(t — 1)C2~ + 1) checkerboard, there is a

(s,t)ymonochromatic-rectangle.

Proof. By pigeonhole principle, there are at least (Lﬂﬂw = (t—-1)C» 1 +1
columns with at least s grids are of the same color. Without loss of generality, let the color be
black. Thend; >t i =1,2,...,(t —1)C2~1 + 1, where d; is the number of black grids of the

" column of the checkerboard. Assume 2-colored 25 — 1 x 2(t — 1)C2~1 4 1 checkerboard
has a coloring such that there is no (s,t)monochromatic-rectangle, then any s columns don’t
contain the same black (s,1)-monochromatic-rectangles, each column contains Cg i distinct black
(s,1)-monochromatic-rectangles, and the total number of distinct black (s, 1)-monochromatic-
rectangles is not more than (t — 1)C2~1. So we have

(t—=1)C% 141

Yy Cl< (-1

k=1
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Because d; > s
(t-1)CxF 141
CHC+---+C< Yk
k=1

combining the two results shows

CS4+C 4 +C<(t—1)C> !

= (t—1)CE 11 <(t—1)Cc* !

1 < 0 we reach a contradiction in the last inequality. So, If n > 2(t — 1)C25~! 4 1, then in
every 2-colored (25 — 1) x (2(t — 1)C%~1 4 1) checkerboard. There is a (s,t)-monochromatic-

rectangle. [J

7.2 The Case of 2s X n Checkerboard

Theorem 7.2. In every 2-colored (2s) x (2(t — 1)CZ 1 4 1) checkerboard, there is a (s,t)monochromatic-

rectangle.

Proof. By Theorem7.1, in every 2-colored (2s — 1) x (2(t — 1)C?~! + 1) checkerboard,
there is a (s,t)monochromatic-rectangle. Therefore, in every 2-colored (2s) x (2(t —1)CZ~1 4

1) checkerboard, there is a (s,t)monochromatic-rectangle. [

7.3 Summary

We can convert the above theorems to graphic problems. We have the following proposition.

« Ifn > (2(t —1)C>~! + 1), every 2-coloring of K(2s-1),n contains a monochromatic

Kslt .

« Ifn > (2(t — 1)C2~1 4 1), every 2-coloring of K , contains a monochromatic K ;.
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