Please use this identifier to cite or link to this item: https://ah.lib.nccu.edu.tw/handle/140.119/101131
DC FieldValueLanguage
dc.contributor.advisor賴桂珍zh_TW
dc.contributor.author蔡欣學zh_TW
dc.creator蔡欣學zh_TW
dc.date2016en_US
dc.date.accessioned2016-09-01T16:14:47Z-
dc.date.available2016-09-01T16:14:47Z-
dc.date.issued2016-09-01T16:14:47Z-
dc.identifierG0100754009en_US
dc.identifier.urihttp://nccur.lib.nccu.edu.tw/handle/140.119/101131-
dc.description碩士zh_TW
dc.description國立政治大學zh_TW
dc.description神經科學研究所zh_TW
dc.description100754009zh_TW
dc.description.abstract微小膠細胞(microglia)為中樞神經系統中主要免疫功能的神經膠細胞,並且具有吞噬的功能用來移除生病或邁向死亡的細胞。但是近年來越來越多實驗發現微小膠細胞也會調控神經細胞的增生以及分化,甚至可能與調控神經新生有關係。\n在腎上腺摘除(ADX)之後發現到齒狀迴(dentate gyrus)中的DGCs死亡以及activated microlgia數量增加,而且這些microglia與NPCs培養後會影響NPCs的分化,因此我們想要利用此模式進一步來了解同樣在hippocampus中的cornus ammonis(CA)以及掌管我們認知行為的PFC腦區在腎上腺摘除之後的microglia否會影響NPCs。實驗結果顯示在ADX後microglia與NPCs共養後,會影響NPCs的cell number以及neurite length。而在CA區取出的ADX microglia-condition medium培養NPCs後發現到會減少NPCs的cell number。從以上可以得知在ADX後的microglia的確改變了自身功能進而影響到了NPCs的分化以及生長,而且來自PFC腦區的Microglia與來自CA腦區的Microglia對於NPCs的影響也不同。zh_TW
dc.description.tableofcontents中文摘要--------------------------------------------------1\n英文摘要--------------------------------------------------2\n縮寫表----------------------------------------------------3\n第一章 緒論-----------------------------------------------7\n一、 成年神經新生(Adult neurogenesis) --------------------7\n二、 微小膠細胞(Microglia) -------------------------------8\n三、 Microglia 與成體神經新生-----------------------------9\n四、 Microglia與腎上線移除手術(Adrenalectomy,ADX)------11\n五、 研究動機--------------------------------------------12\n六、 研究目標--------------------------------------------13\n第二章 材料方法------------------------------------------14\n一、 實驗流程--------------------------------------------14\n二、 實驗動物--------------------------------------------14\n三、 腎上腺移除手術(Adrenalectomy,ADX) -----------------14\n6\n四、 初代細胞培養(primary cell culture) -----------------16\n第三章 結果----------------------------------------------26\n一、 Adrenalectomy(ADX)後 hippocampus CA 腦區 and PFC 腦區\n的microglia 與 DG 腦區的 NPCs 共同培養的觀察--------26\n二、 Microglia conditioned medium對DG NPCs的影響-------38\n三、 Medium與coculture比較-----------------------------49\n第四章 討論----------------------------------------------51\n參考文獻-------------------------------------------------55zh_TW
dc.source.urihttp://thesis.lib.nccu.edu.tw/record/#G0100754009en_US
dc.subject微小膠細胞zh_TW
dc.title在腎上腺摘除模式下觀察微小膠細胞與成體神經前驅細胞之間的關係zh_TW
dc.titleMicroglia regulation of adult neural progenitor cellsen_US
dc.typethesisen_US
dc.relation.referenceAarum, J., Sandberg, K., Haeberlein, S. L., & Persson, M. A. (2003). Migration and differentiation of neural precursor cells can be directed by microglia. Proc Natl Acad Sci U S A, 100(26), 15983-15988. doi: 10.1073/pnas.2237050100\nAguzzi, A., Barres, B. A., & Bennett, M. L. (2013). Microglia: scapegoat, saboteur, or something else? Science, 339(6116), 156-161. doi: 10.1126/science.1227901\nAltman, & Das. (1965). POST-NATAL ORIGIN OF MICRONEURONES IN THE RAT BRAIN.\nBattista, D., Ferrari, C. C., Gage, F. H., & Pitossi, F. J. (2006). Neurogenic niche modulation by activated microglia: transforming growth factor beta increases neurogenesis in the adult dentate gyrus. Eur J Neurosci, 23(1), 83-93. doi: 10.1111/j.1460-9568.2005.04539.x\nBedard, & Parent. (2004). Evidence of newly generated neurons in the human olfactory bulb. Brain Res Dev Brain Res, 151(1-2), 159-168. doi: 10.1016/j.devbrainres.2004.03.021\nChoi, S. H., Veeraraghavalu, K., Lazarov, O., Marler, S., Ransohoff, R. M., Ramirez, J. M., & Sisodia, S. S. (2008). Non-cell-autonomous effects of presenilin 1 variants on enrichment-mediated hippocampal progenitor cell proliferation and differentiation. Neuron, 59(4), 568-580. doi: 10.1016/j.neuron.2008.07.033\nCouch, Y., Anthony, D. C., Dolgov, O., Revischin, A., Festoff, B., Santos, A. I., . . . Strekalova, T. (2013). Microglial activation, increased TNF and SERT expression in the prefrontal cortex define stress-altered behaviour in mice susceptible to anhedonia. Brain Behav Immun, 29, 136-146. doi: 10.1016/j.bbi.2012.12.017\nCunningham, C. L. M.-C., V.Noctor, S. C. (2013). Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J Neurosci, 33(10), 4216-4233. doi: 10.1523/JNEUROSCI.3441-12.2013\nEriksson, PERFILIEVA, NORDBORG, BJÖRK-ERIKSSON, PETERSON, ALBORN, & GAGE. (1998). Neurogenesis in the adult human hippocampus.\nHerrera, A. J., Espinosa-Oliva, A. M., Carrillo-Jimenez, A., Oliva-Martin, M. J., Garcia-Revilla, J., Garcia-Quintanilla, A., . . . Venero, J. L. (2015). Relevance of chronic stress and the two faces of microglia in Parkinson`s disease. Front Cell Neurosci, 9, 312. doi: 10.3389/fncel.2015.00312\nHinwood, M., Tynan, R. J., Charnley, J. L., Beynon, S. B., Day, T. A., & Walker, F. R. (2013). Chronic stress induced remodeling of the prefrontal cortex: structural re-organization of microglia and the inhibitory effect of minocycline. Cereb Cortex, 23(8), 1784-1797. doi: 10.1093/cercor/bhs151\nInokuchi. (2011). Adult neurogenesis and modulation of neural circuit function. Curr Opin Neurobiol, 21(2), 360-364. doi: 10.1016/j.conb.2011.02.006\nKettenmann, Hanisch, Noda, & Verkhratsky. (2011). Physiology of Microglia. Physiol Rev. doi: 10.1152/physrev.00011.2010.-Microglial\nMoga, Dempah, & Zhou. (2005). Annexin 7-immunoreactive microglia in the hippocampus of control and adrenalectomized rats. Neurosci Lett, 380(1-2), 42-47. doi: 10.1016/j.neulet.2005.01.022\nMorgan, S. C., Taylor, D. L., & Pocock, J. M. (2004). Microglia release activators of neuronal proliferation mediated by activation of mitogen-activated protein kinase, phosphatidylinositol-3-kinase/Akt and delta-Notch signalling cascades. J Neurochem, 90(1), 89-101. doi: 10.1111/j.1471-4159.2004.02461.x\nNichols, N. R., Agolley, D., Zieba, M., & Bye, N. (2005). Glucocorticoid regulation of glial responses during hippocampal neurodegeneration and regeneration. Brain Res Brain Res Rev, 48(2), 287-301. doi: 10.1016/j.brainresrev.2004.12.019\nNimmerjahn, Kirchhoff, & Helmchen. (2005\n). Resting Microglial Cells Are Highly Dynamic Surveillants of Brain Parenchyma in Vivo. Science,\n.\nPaolicelli, R. C. I. (2011). Synaptic pruning by microglia is essential for normal brain development. Science.\nPostigo, Werf, Korf, & Krugers. (1998). Altered expression of the cell cycle regulatory protein cyclin D1 in the rat dentate gyrus after adrenalectomy-induced granular cell loss. Neurosci Lett.\nPraag, Christie, Sejnowski, & Gage. (1999). Running enhances neurogenesis, learning, and long-term potentiation in mice.\nSierra, A., Encinas, J. M., Deudero, J. J., Chancey, J. H., Enikolopov, G., Overstreet-Wadiche, L. S., . . . Maletic-Savatic, M. (2010). Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell, 7(4), 483-495. doi: 10.1016/j.stem.2010.08.014\nVukovic, J., Colditz, M. J., Blackmore, D. G., Ruitenberg, M. J., & Bartlett, P. F. (2012). Microglia modulate hippocampal neural precursor activity in response to exercise and aging. J Neurosci, 32(19), 6435-6443. doi: 10.1523/JNEUROSCI.5925-11.2012\nWalton, N. M., Sutter, B. M., Laywell, E. D., Levkoff, L. H., Kearns, S. M., Marshall, G. P., 2nd, . . . Steindler, D. A. (2006). Microglia instruct subventricular zone neurogenesis. Glia, 54(8), 815-825. doi: 10.1002/glia.20419\nZiv, Y., & Schwartz, M. (2008). Immune-based regulation of adult neurogenesis: implications for learning and memory. Brain Behav Immun, 22(2), 167-176. doi: 10.1016/j.bbi.2007.08.006zh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
item.fulltextNo Fulltext-
item.openairetypethesis-
item.grantfulltextnone-
item.cerifentitytypePublications-
Appears in Collections:學位論文
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.