Please use this identifier to cite or link to this item:

Title: 一個卡特蘭等式的組合證明
A Combinatorial Proof of a Catalan Identity
Authors: 劉映君
Contributors: 李陽明
Keywords: 卡特蘭等式
Catalan Identity
Date: 2017
Issue Date: 2017-08-10 09:57:57 (UTC+8)
Abstract: 在這篇論文裡,我們探討卡塔蘭等式 (n + 2)Cn+1 = (4n + 2)C2 的證明
這篇論文主要是應用 Cn+1 壞路徑對應到打點 Cn 好路徑以及 Cn+1 好路
徑對應到打點 Cn 壞路徑的⽅式來證明卡特蘭等式。
In this thesis, we give another approach to prove Catalan identity,
(n + 2)Cn+1 = (4n + 2)C2. In the past we use the method of computation to show Catalan Identity, in this thesis we choose a combinatorial proof of the Catalan identity.
This thesis is primary using the functions from Cn+1 totally bad path to Cn dotted good path, and from Cn+1 good path to Cn dotted totally bad path.
Reference: Ronald Alter. Some remarks and results on Catalan numbers. pages 109–132, 1971.
[2] Ronald Alter and K. K. Kubota. Prime and prime power divisibility of Catalan numbers.
J. Combinatorial Theory Ser. A, 15:243–256, 1973.
[3] Federico Ardila. Catalan numbers. Math. Intelligencer, 38(2):4–5, 2016.
[4] Young-Ming Chen. The Chung-Feller theorem revisited. Discrete Math., 308(7):1328–
1329, 2008.
[5] Ömer E ̆gecioğlu. A Catalan-Hankel determinant evaluation. In Proceedings of the Fortieth
Southeastern International Conference on Combinatorics, Graph Theory and Computing,
volume 195, pages 49–63, 2009.
[6] R. Johnsonbaugh. Discrete Mathematics. Pearson/Prentice Hall, 2009.
[7] Thomas Koshy. Catalan numbers with applications. Oxford University Press, Oxford,
[8] Tamás Lengyel. On divisibility properties of some differences of the central binomial
coefficients and Catalan numbers. Integers, 13:Paper No. A10, 20, 2013.
[9] Youngja Park and Sangwook Kim. Chung-Feller property of Schröder objects. Electron.
J. Combin., 23(2):Paper 2.34, 14, 2016.
[10] Matej ̌Crepin ̌sek and Luka Mernik. An efficient representation for solving Catalan number
related problems. Int. J. Pure Appl. Math., 56(4):589–604, 2009.
Description: 碩士
Source URI:
Data Type: thesis
Appears in Collections:[應用數學系] 學位論文

Files in This Item:

File SizeFormat
101401.pdf1052KbAdobe PDF374View/Open

All items in 學術集成 are protected by copyright, with all rights reserved.

社群 sharing