Please use this identifier to cite or link to this item:

Title: Applied neural network model to search for target credit card customers
Authors: Li, Jong Peir
Contributors: 資管系
Keywords: Backpropagation;Data mining;Decision trees;Eigenvalues and eigenfunctions;Neural networks;Sales;Soft computing;Back propagation neural networks;Credit cards;Data classification;Eigenvalues;Error rate;Neural network model;Big data
Date: 2016
Issue Date: 2017-09-01 10:06:27 (UTC+8)
Abstract: Many credit card businesses are no longer profitable due to antiquated and increasingly obsolete methods of acquiring customers, and as importantly, they followed suit when identifying ideal customers. The objective of this study is to identify the high spending and revolving customers through the development of proper parameters. We combined the back propagation neural network, decision tree and logistic methods as a way to overcome each method’s deficiency. Two sets of data were used to develop key eigenvalues that more accurately predict ideal customers. Eventually, after many rounds of testing, we settled on 14 eigenvalues with the lowest error rates when acquiring credit card customers with a significantly improved level of accuracy. It is our hope that data mining and big data can successfully utilize these advantages in data classification and prediction.
Relation: Communications in Computer and Information Science, 652, 13-24
Data Type: conference
DOI 連結:
Appears in Collections:[資訊管理學系] 會議論文

Files in This Item:

File SizeFormat
13.pdf24588KbAdobe PDF209View/Open

All items in 學術集成 are protected by copyright, with all rights reserved.

社群 sharing