Please use this identifier to cite or link to this item: https://ah.nccu.edu.tw/handle/140.119/119277


Title: 以社群網路分析探討雙系統大腦決策機制
Dual Process Theory of Decision Making: A Social Network Analysis
Authors: 劉家宏
Liu, Chia-Hung
Contributors: 梁定澎
周彥君

Liang, Ting-Peng
Chou, Yen-Chun

劉家宏
Liu, Chia-Hung
Keywords: 社群網絡分析
功能性磁振造影
決策科學
認知神經科學
雙系統決策理論
Social network analysis
Dual process theory
fMRI
Cognitive Science
Date: 2018
Issue Date: 2018-08-10 10:26:05 (UTC+8)
Abstract: 我們日常生活中的行為、決策都深受著我們思考模式的影響,近年來在資管領域中,也越來越多的學者開始研究軟體專案經理在不同情況下進行專案決策時背後的決策思考機制。過去在研究人類決策與思考機制的學者,提出一了套雙系統理論(Dual Proccess Theory),將人類的決策機制分成兩種不一樣的系統。系統一的決策機制屬於較自動化、依靠情感與直覺;系統二的決策屬於非自動化、依靠邏輯與證據分析。近年來有許多大腦思考模式的相關研究,透過功能性磁振造影(Functional Magnetic Reasoning Imaging, fMRI)來更深入了解不同決策機制下的腦區反應機制,但由於實驗的情境不同與大腦本身的複雜性,使得各個研究的腦區反應結果不盡相同,讓後續學者更難以解讀實驗結果腦區與決策機制的關聯性。
本研究整理近年來與雙系統思考模式相關文獻的實驗結果,並透過Social Network Analysis(SAS,社群網路分析)來分析實驗結果,探討雙系統不同思考模式下,腦區資料的差異以及兩個系統的相關腦區在決策時的關聯性。
Human behavior and decisions are deeply influenced by our thinking mechanisms. In recent years, scholars have investigated the decision making mechanism under different circumstances. A few theories have been proposed. One of which is the dual systems theory of the brain that divides human decision process into two subsystems: one is faster and intuitive while the other is slower and reasoning. System 1 is more automatic and heuristics-based, while system 2 is more deliberate and logical. A number of prior studies have revealed that these two systems coexist and are employed in different decision tasks. Cognitive theories called the dual process theories are also developed based on the dual systems model of the brain.
A large volume of papers in business and decision sciences have been published based on the dual process theories. However, most of them are behavioral in nature that derives interpretations from questionnaire survey or experimental data.
Recent development in cognitive neural science has allowed us to further examine how different brain areas are activated through the use of special instruments such as functional magnetic reasoning Imaging (fMRI) to better understand this dual systems model. Many research results under different contexts have been reported, but different experimental settings and the complexity of the human brains often result in inconsistent observations that are hard to see the complete picture.
The purpose of this study is to conduct a meta-analysis on existing studies that adopted the dual systems theory to develop a better understanding of how these two subsystem works. We collected experimental results of published literatures and aggregated their findings with the social network analysis, which is a data mining technique used for finding relationships among objects. The circuits of both subsystems are derived and evaluated. The result allows us to better understand the collaboration of brain areas in these two systems.
Reference: 一、 中文部分
彭仁柏 (民105)。軟體專案承諾升級的研究─自我辯護理論與框架效應 (未出版之碩士論文)。國立政治大學,臺北市。
梁定澎 (民101)。資訊管理理論。新北市:前程文化。

二、 英文部分
Adolphs, R. (2010). What does the amygdala contribute to social cognition?. Annals of the New York Academy of Sciences, 1191(1), 42-61.
Akil, H., Martone, M. E., & Van Essen, D. C. (2011),“Challenges and opportunities in mining neuroscience data,” Science (New York, NY), 331(6018), 708.
Andrews-Hanna, J. R. (2012). The brain’s default network and its adaptive role in internal mentation. The Neuroscientist, 18(3), 251-270.
Bakalash, T., & Riemer, H. (2013). Exploring ad-elicited emotional arousal and memory for the ad using fMRI. Journal of Advertising, 42(4), 275-291.
Bassett DS, Bullmore ET. 2009. Human brain networks in health and disease. Curr Opin Neurol 22:340–347.
Bechara, A., Damasio, H., Tranel, D., & Damasio, A. R. (1997). Deciding advantageously before knowing the advantageous strategy. Science, 275(5304), 1293-1295.
Bechara, A., Damasio, H., & Damasio, A. R. (2003). Role of the amygdala in decision‐making. Annals of the New York Academy of Sciences, 985(1), 356-369.
Borgatti, S. P., & Li, X. (2009). On social network analysis in a supply chain context. Journal of Supply Chain Management, 45(2), 5–22.
Botvinick, M., Nystrom, L. E., Fissell, K., Carter, C. S., & Cohen, J. D. (1999). Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature, 402(6758), 179.
Brewer, J. B., Zhao, Z., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. (1998). Making memories: Brain activity that predicts how well visual experience will be remembered. Science, 281(5380), 1185-1187.
Brown, L. L., Schneider, J. S., & Lidsky, T. I. (1997). Sensory and cognitive functions of the basal ganglia. Current opinion in neurobiology, 7(2), 157-163.
Bucci, D. J. (2009). Posterior parietal cortex: An interface between attention and learning? Neurobiology of Learning and Memory, 91(2), 114-120.
Buckner, R. L., Andrews‐Hanna, J. R., & Schacter, D. L. (2008). The brain's default network. Annals of the New York Academy of Sciences, 1124(1), 1-38.
Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186.
Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12(1), 1-47.
Cardinal, R. N., Parkinson, J. A., Hall, J., & Everitt, B. J. (2002). Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neuroscience & Biobehavioral Reviews, 26(3), 321-352.
Carlson, N. R. (2012). Physiology of Behavior 11th Edition. Pearson. pp. 83; 268; 273-275
Causse, M., Péran, P., Dehais, F., Caravasso, C. F., Zeffiro, T., Sabatini, U., & Pastor, J. (2013). Affective decision making under uncertainty during a plausible aviation task: An fMRI study. NeuroImage, 71, 19-29.
Chan, R. C., Shum, D., Toulopoulou, T., & Chen, E. Y. (2008). Assessment of executive functions: Review of instruments and identification of critical issues. Archives of clinical neuropsychology, 23(2), 201-216.
Chang, H. J. J., O'Boyle, M., Anderson, R. C., & Suttikun, C. (2016). An fMRI study of advertising appeals and their relationship to product attractiveness and buying intentions. Journal of Consumer Behaviour, 15(6), 538-548.
Coricelli, G., & Nagel, R. (2010). The neural basis of bounded rational behavior.
Costafreda, S. G., Brammer, M. J., David, A. S., & Fu, C. H. (2008). Predictors of amygdala activation during the processing of emotional stimuli: a meta-analysis of 385 PET and fMRI studies. Brain research reviews, 58(1), 57-70.
Crinion, J. T., Lambon‐Ralph, M. A., Warburton, E. A., Howard, D., & Wise, R. J. (2003). Temporal lobe regions engaged during normal speech comprehension. Brain, 126(5), 1193-1201.
Curtis, C. E., & D'Espositio, M. (2004). The effects of prefrontal lesions on working memory perfromance and theory. Cognitive, Affective, and Behavioral Neuroscience, 4(4), 528-539.
Davis, M. (1992). The role of the amygdala in fear and anxiety. Annual review of neuroscience, 15(1), 353-375.
D'Argembeau, A., Ruby, P., Collette, F., Degueldre, C., Balteau, E., Luxen, A., et al. (2007). Distinct regions of the medial prefrontal cortex are associated with self-referential processing and perspective taking. Journal of Cognitive Neuroscience, 19(6), 935-944.
De Martino, B., Kumaran, D., Seymour, B., & Dolan, R. J. (2006). Frames, biases, and rational decision-making in the human brain. Science, 313(5787), 684-687.
Delgado, M. R., Frank, R. H., & Phelps, E. A. (2005). Perceptions of moral character modulate the neural systems of reward during the trust game. Nature neuroscience, 8(11), 1611.
Delgado, M. R., Miller, M. M., Inati, S., & Phelps, E. A. (2005). An fMRI study of reward-related probability learning. Neuroimage, 24(3), 862-873.
Deppe, M., Schwindt, W., Kugel, H., Plassmann, H., & Kenning, P. (2005). Nonlinear responses within the medial prefrontal cortex reveal when specific implicit information influences economic decision making. Journal of Neuroimaging, 15(2), 171-182.
Edwards, W. (1954). The theory of decision making. Psychological bulletin, 51(4), 380.
Eldaief, M. C., Deckersbach, T., Carlson, L. E., Beucke, J. C., & Dougherty, D. D. (2011). Emotional and cognitive stimuli differentially engage the default network during inductive reasoning. Social cognitive and affective neuroscience, 7(4), 380-392.
Elliott, R. (2003). Executive functions and their disorders: Imaging in clinical neuroscience. British medical bulletin, 65(1), 49-59.
Epstein, S. 1994. Integration of the cognitive and the psychodynamic unconscious. American Psychologist 49 (8): 709–724.
Evans, J. 2005. Insight and self-insight in reasoning and decision making. In The Shape of Reason: Essays in Honour of Paolo Legrenzi, edited by Girotto, V., and P. Johnson-Laird, 27–48. London, U.K.:Psychology Press.
Evans, J. 2006. The heuristic-analytic theory of reasoning: Extension and evaluation. Psychonomic Bulletin and Review 13 (3): 378–395.
Evans, J. 2008. Dual-processing accounts of reasoning, judgment, and social cognition. Annual Review of Psychology 59: 255–278.
Evans, J. S. B., & Stanovich, K. E. (2013). Dual-process theories of higher cognition: Advancing the debate. Perspectives on psychological science, 8(3), 223-241.
Evans, Jonathan (1984). "Heuristic and analytic processes in reasoning". British Journal of Psychology. 75: 451–468.
Ferreira, N. F., Oliveira, V. D., Amaral, L., Mendonça, R., & Lima, S. S. (2003). Analysis of parahippocampal gyrus in 115 patients with hippocampal sclerosis. Arquivos de neuro-psiquiatria, 61(3B), 707-711.
Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673-9678.
Freeman, L.C., 1979. Centrality in Social Networks: Conceptual Clarification. Social Networks, 1, 215-239..
Gazzaniga, M.S., Ivry, R.B. and Mangun, G.R., Cognitive Neuroscience, the Biology of the Mind, third edition, 2009, W.W. Norton, publishers. pgs. 395–401
Giuliani, E., & Bell, M. (2005). The micro-determinants of meso-level learning and innovation: Evidence from a Chilean wine cluster. Research Policy, 34(1), 47–68.
Goel V, Dolan R J. Explaining modulation of reasoning by belief. Cognition, 2003, 87: 11~22
Grahn, J. A., Parkinson, J. A., & Owen, A. M. (2009). The role of the basal ganglia in learning and memory: neuropsychological studies. Behavioural brain research, 199(1), 53-60.
Greene, J. D., Nystrom, L. E., Engell, A. D., Darley, J. M., & Cohen, J. D. (2004). The neural bases of cognitive conflict and control in moral judgment. Neuron, 44(2), 389-400.
Güth, W., Schmittberger, R., Schwarze, B. (1982). An experimental-analysis of ultimatum bargaining. J. Econ. Behav. Org. 3 (4), 367–388.
Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. (2000). The distributed human neural system for face perception. Trends in cognitive sciences, 4(6), 223-233.
Heekeren, H. R., Marrett, S., & Ungerleider, L. G. (2008). The neural systems that mediate human perceptual decision making. Nature Reviews Neuroscience, 9(6), 467-479.
Helion, C., & David, A. P. (2015). Beyond Dual-Processes: The Interplay of Reason and Emotion in Moral Judgment. In J. Clausen & N. Levy (Eds.), Handbook of neuroethics(pp. 109–125).
Hsu, M., Bhatt, M., Adolphs, R., Tranel, D., & Camerer, C. F. (2005). Neural systems responding to degrees of uncertainty in human decision-making. Science, 310(5754), 1680-1683.
Hutchinson, J. B., Uncapher, M. R., & Wagner, A. D. (2009). Posterior parietal cortex and episodic retrieval: Convergent and divergent effects of attention and memory. Learning and Memory, 16, 343-356.
Kahneman, D., and S. Frederick. 2004. Attribute substitution in intuitive judgment. In Models of a Man:Essays in Memory of Herbert A. Simon, edited by Augier, M., and J. March, 411–432.
Kahneman, D., and S. Frederick. 2005. A model of heuristic judgment. In The Cambridge Handbook of Thinking and Reasoning, edited by Holyoak, K., and R. Morrison, 267–294.
Keil, M., & Mann, J. (1997). The nature and extent of it project escalation: Results from a survey of IS audit and control professionals. IS Audit and Control Journal, 40-49.
Keil, M., Mann, J., & Rai, A. (2000). Why software projects escalate: An empirical analysis and test of four theoretical models. Mis Quarterly, 631-664.
Khader, P. H., Pachur, T., Meier, S., Bien, S., Jost, K., & Rösler, F. (2011). Memory-based decision-making with heuristics: evidence for a controlled activation of memory representations. Journal of Cognitive Neuroscience, 23(11), 3540-3554.
Kirk, U., Downar, J., & Montague, P. R. (2011). Interoception drives increased rational decision-making in meditators playing the ultimatum game. Frontiers in neuroscience, 5, 49.
Krawczyk, D. C., McClelland, M. M., Donovan, C. M., Tillman, G. D., & Maguire, M. J. (2010). An fMRI investigation of cognitive stages in reasoning by analogy. Brain research, 1342, 63-73.
Lieberman, M. 2007. Social cognitive neuroscience: A review of core processes. Annual Review of Psychology 58: 259–289.
Mars, R. B., Neubert, F. X., Noonan, M. P., Sallet, J., Toni, I., & Rushworth, M. F. (2012). On the relationship between the “default mode network” and the “social brain”. Frontiers in human neuroscience, 6, 189.
Marsden, C. D., & Obeso, J. A. (1994). The functions of the basal ganglia and the paradox of stereotaxic surgery in Parkinson's disease. Brain, 117(4), 877-897.
Mohr, P. N., Biele, G., & Heekeren, H. R. (2010). Neural processing of risk. Journal of Neuroscience, 30(19), 6613-6619.
Monsell, S. (2003). Task switching. Trends in cognitive sciences, 7(3), 134-140.
Murch, K. B. (2010). Dual process models of decision making: an fMRI investigation of framing effects and individual differences (Doctoral dissertation).
Nerur, S., Sikora, R., Mangalaraj, G. & Balijepally V., 2005. Assessing the Relative Influence of Journals in a Citation Network, Communications of The Acm, 48(11), 71-74.
Newman, M. E. J., “Modularity and community structure in networks,"PNAS (103:23), 2006, pp.8577-8582.
Newman, M., “The Structure and Function of complex Networkss," SIAM Review (45:2), 2003.
Newman, S. D., Carpenter, P. A., Varma, S., & Just, M. A. (2003). Frontal and parietal participation in problem solving in the Tower of London: fMRI and computational modeling of planning and high-level perception. Neuropsychologia, 41(12), 1668-1682.
Nooy, W.D., Exploratory Network Analysis with Pajek, New York: Cambridge University Press, 2005.
Pape, H. C., & Pare, D. (2010). Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiological reviews, 90(2), 419-463.
Pérez Álvarez, F., & Timoneda Gallart, C. (2007). An fMRI Study of Emotional engagement in decicion-making. © Transaction advanced research, 2007, vol. 2, p. 45-51.
Phelps, E. A., & LeDoux, J. E. (2005). Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron, 48(2), 175-187.
Rampl, L. V., Opitz, C., Welpe, I. M., & Kenning, P. (2016). The role of emotions in decision-making on employer brands: insights from functional magnetic resonance imaging (fMRI). Marketing letters, 27(2), 361-374.
Rissman, J., Eliassen, J. C., & Blumstein, S. E. (2003). An event-related fMRI investigation of implicit semantic priming. Journal of cognitive neuroscience, 15(8), 1160-1175.
Sakagami, M., & Watanabe, M. (2007). Integration of cognitive and motivational information in the primate lateral prefrontal cortex. Annals of the New York Academy of Sciences, 1104, 89-107.
Spreng, R. N. (2012). The fallacy of a “task-negative” network. Frontiers in psychology, 3, 145.
Sylcott, B., Cagan, J., & Tabibnia, G. (2011, January). Understanding of emotions and reasoning during consumer tradeoff between function and aesthetics in product design. In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (pp. 165-176). American Society of Mechanical Engineers.
Talati, A., & Hirsch, J. (2005). Functional specialization within the medial frontal gyrus for perceptual go/no-go decisions based on “what,”“when,” and “where” related information: an fMRI study. Journal of cognitive neuroscience, 17(7), 981-993.
Tanji, J., & Hoshi, E. (2008). Role of the Lateral Prefrontal Cortex in Executive Behavioral Control. Physiological Reviews, 88(1), 37-57.
Tanji, J., Shima, K., & Mushiake, H. (2007). Concept-based behavioral planning and the lateral prefrontal cortex. Trends in Cognitive Sciences, 11(12), 528-534.
Utter, A. A., & Basso, M. A. (2008). The basal ganglia: an overview of circuits and function. Neuroscience & Biobehavioral Reviews, 32(3), 333-342.
Vogt, B. A., & Laureys, S. (2005). Posterior cingulate, precuneal and retrosplenial cortices: cytology and components of the neural network correlates of consciousness. Progress in brain research, 150, 205-217.
Weissman, D. H., Gopalakrishnan, A., Hazlett, C. J., & Woldorff, M. G. (2004). Dorsal anterior cingulate cortex resolves conflict from distracting stimuli by boosting attention toward relevant events. Cerebral cortex, 15(2), 229-237.
Wellman, B. "Which Types of Ties and Networks Give What Kinds of Social Support?" Advances in Group Processes 9 (1992): 207-35.
Westen, D., Blagov, P. S., Harenski, K., Kilts, C., & Hamann, S. (2006). Neural bases of motivated reasoning: An fMRI study of emotional constraints on partisan political judgment in the 2004 US presidential election. Journal of cognitive neuroscience, 18(11), 1947-1958.
Yin, H. H., & Knowlton, B. J. (2006). The role of the basal ganglia in habit formation. Nature Reviews Neuroscience, 7(6), 464.
Zander, T., Horr, N. K., Bolte, A., & Volz, K. G. (2016). Intuitive decision making as a gradual process: investigating semantic intuition‐based and priming‐based decisions with fMRI. Brain and behavior, 6(1).
Zhang, X., Tokoglu, F., Negishi, M., Arora, J., Winstanley, S., Spencer, D. D., & Constable, R. T. (2011). Social network theory applied to resting-state fMRI connectivity data in the identification of epilepsy networks with iterative feature selection. Journal of neuroscience methods, 199(1), 129-139.
Zysset, S., Wendt, C. S., Volz, K. G., Neumann, J., Huber, O., & von Cramon, D. Y. (2006). The neural implementation of multi-attribute decision making: a parametric fMRI study with human subjects. Neuroimage, 31(3), 1380-1388.

研究樣本文獻:
Bakalash, T., & Riemer, H. (2013). Exploring ad-elicited emotional arousal and memory for the ad using fMRI. Journal of Advertising, 42(4), 275-291.
Bolla, K. I., Eldreth, D. A., Matochik, J. A., & Cadet, J. L. (2005). Neural substrates of faulty decision-making in abstinent marijuana users. Neuroimage, 26(2), 480-492.
Bush, G., Vogt, B. A., Holmes, J., Dale, A. M., Greve, D., Jenike, M. A., & Rosen, B. R. (2002). Dorsal anterior cingulate cortex: a role in reward-based decision making. Proceedings of the National Academy of Sciences, 99(1), 523-528.
Causse, M., Péran, P., Dehais, F., Caravasso, C. F., Zeffiro, T., Sabatini, U., & Pastor, J. (2013). Affective decision making under uncertainty during a plausible aviation task: An fMRI study. NeuroImage, 71, 19-29.
Chang, H. J., O'Boyle, M., Anderson, R. C., & Suttikun, C. (2016). An fMRI study of advertising appeals and their relationship to product attractiveness and buying intentions. Journal of Consumer Behaviour, 15(6), 538-548.
Coricelli, G., & Nagel, R. (2012). The neural basis of bounded rational behavior. Revista Internacional de Sociología, 70, 39-52.
De Martino, B., Kumaran, D., Seymour, B., & Dolan, R. J. (2006). Frames, biases, and rational decision-making in the human brain. Science, 313(5787), 684-687.
Deppe, M., Schwindt, W., Kugel, H., Plassmann, H., & Kenning, P. (2005). Nonlinear responses within the medial prefrontal cortex reveal when specific implicit information influences economic decision making. Journal of Neuroimaging, 15(2), 171-182.
Delgado, M. R., Frank, R. H., & Phelps, E. A. (2005). Perceptions of moral character modulate the neural systems of reward during the trust game. Nature neuroscience, 8(11), 1611.
Eldaief, M. C., Deckersbach, T., Carlson, L. E., Beucke, J. C., & Dougherty, D. D. (2011). Emotional and cognitive stimuli differentially engage the default network during inductive reasoning. Social cognitive and affective neuroscience, 7(4), 380-392.
Ernst, M., Nelson, E. E., McClure, E. B., Monk, C. S., Munson, S., Eshel, N., ... & Blair, J. (2004). Choice selection and reward anticipation: an fMRI study. Neuropsychologia, 42(12), 1585-1597.
Farrell, A. M., Goh, J. O., & White, B. J. (2014). The effect of performance-based incentive contracts on system 1 and system 2 processing in affective decision contexts: fMRI and behavioral evidence. The Accounting Review, 89(6), 1979-2010.
FitzGerald, T. H., Seymour, B., & Dolan, R. J. (2009). The role of human orbitofrontal cortex in value comparison for incommensurable objects. Journal of Neuroscience, 29(26), 8388-8395.
Grabenhorst, F., Rolls, E. T., & Parris, B. A. (2008). From affective value to decision‐making in the prefrontal cortex. European Journal of Neuroscience, 28(9), 1930-1939.
Greene, J. D., Nystrom, L. E., Engell, A. D., Darley, J. M., & Cohen, J. D. (2004). The neural bases of cognitive conflict and control in moral judgment. Neuron, 44(2), 389-400.
Greene, J. D., Sommerville, R. B., Nystrom, L. E., Darley, J. M., & Cohen, J. D. (2001). An fMRI investigation of emotional engagement in moral judgment. Science, 293(5537), 2105-2108.
Hare, T. A., Camerer, C. F., & Rangel, A. (2009). Self-control in decision-making involves modulation of the vmPFC valuation system. Science, 324(5927), 646-648.
Hsu, M., Bhatt, M., Adolphs, R., Tranel, D., & Camerer, C. F. (2005). Neural systems responding to degrees of uncertainty in human decision-making. Science, 310(5754), 1680-1683.
Khader, P. H., Pachur, T., Meier, S., Bien, S., Jost, K., & Rösler, F. (2011). Memory-based decision-making with heuristics: evidence for a controlled activation of memory representations. Journal of Cognitive Neuroscience, 23(11), 3540-3554.
Kim, J., & Hastak, M. (2018). Social network analysis: Characteristics of online social networks after a disaster. International Journal of Information Management, 38(1), 86-96.
Kirk, U., Downar, J., & Montague, P. R. (2011). Interoception drives increased rational decision-making in meditators playing the ultimatum game. Frontiers in neuroscience, 5, 49.
Knutson, B., Westdorp, A., Kaiser, E., & Hommer, D. (2000). FMRI visualization of brain activity during a monetary incentive delay task. Neuroimage, 12(1), 20-27.
Krawczyk, D. C., McClelland, M. M., Donovan, C. M., Tillman, G. D., & Maguire, M. J. (2010). An fMRI investigation of cognitive stages in reasoning by analogy. Brain research, 1342, 63-73.
Mohr, P. N., Biele, G., & Heekeren, H. R. (2010). Neural processing of risk. Journal of Neuroscience, 30(19), 6613-6619.
Murch, K. B. (2010). Dual process models of decision making: an fMRI investigation of framing effects and individual differences (Doctoral dissertation).
Prado, J., & Noveck, I. A. (2007). Overcoming perceptual features in logical reasoning: A parametric functional magnetic resonance imaging study. Journal of Cognitive Neuroscience, 19(4), 642-657.
Pérez Álvarez, F., & Timoneda Gallart, C. (2007). An fMRI Study of Emotional engagement in decicion-making. © Transaction advanced research, 2007, vol. 2, p. 45-51.
Rampl, L. V., Opitz, C., Welpe, I. M., & Kenning, P. (2016). The role of emotions in decision-making on employer brands: insights from functional magnetic resonance imaging (fMRI). Marketing letters, 27(2), 361-374.
Rolls, E. T., Grabenhorst, F., & Parris, B. A. (2010). Neural systems underlying decisions about affective odors. Journal of Cognitive Neuroscience, 22(5), 1069-1082.
Sanfey, A. G., Rilling, J. K., Aronson, J. A., Nystrom, L. E., & Cohen, J. D. (2003). The neural basis of economic decision-making in the ultimatum game. Science, 300(5626), 1755-1758.
Shad, M. U., Bidesi, A. S., Chen, L. A., Thomas, B. P., Ernst, M., & Rao, U. (2011). Neurobiology of decision-making in adolescents. Behavioural brain research, 217(1), 67-76.
Sylcott, B., Cagan, J., & Tabibnia, G. (2011, January). Understanding of emotions and reasoning during consumer tradeoff between function and aesthetics in product design. In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (pp. 165-176). American Society of Mechanical Engineers.
Westen, D., Blagov, P. S., Harenski, K., Kilts, C., & Hamann, S. (2006). Neural bases of motivated reasoning: An fMRI study of emotional constraints on partisan political judgment in the 2004 US presidential election. Journal of cognitive neuroscience, 18(11), 1947-1958.
Zysset, S., Wendt, C. S., Volz, K. G., Neumann, J., Huber, O., & von Cramon, D. Y. (2006). The neural implementation of multi-attribute decision making: a parametric fMRI study with human subjects. Neuroimage, 31(3), 1380-1388.
Description: 碩士
國立政治大學
資訊管理學系
105356011
Source URI: http://thesis.lib.nccu.edu.tw/record/#G0105356011
Data Type: thesis
Appears in Collections:[資訊管理學系] 學位論文

Files in This Item:

File SizeFormat
601101.pdf1424KbAdobe PDF37View/Open


All items in 學術集成 are protected by copyright, with all rights reserved.


社群 sharing