Please use this identifier to cite or link to this item: https://ah.lib.nccu.edu.tw/handle/140.119/120264
題名: 體能運動與NMDA受體部分活化劑調節母體免疫激活小鼠引起的精神異常模型
Physical Exercise and NMDA Receptor Partial Agonist Modulate Psychiatric Phenotypes in Mouse Model of Maternal Immune Activation
作者: 洪筠婷
貢獻者: 詹銘煥
洪筠婷
關鍵詞: 母體免疫激活
精神疾病
運動
N-甲基-D-天冬氨酸受體
海馬迴
Maternal immune activation
Psychosis
Exercise
N-methyl-D-aspartate receptors
Hippocampus
日期: 2018
上傳時間: 1-Oct-2018
摘要: 母體免疫激活(MIA)對後代大腦發育有負向的傳導,導致神經化學因子異常和產生精神疾病行為。由於MIA子代中N-甲基-D-天冬氨酸受體(NMDAR)功能低下可能是精神疾病的重要病因。精神疾病患者的症狀改善也顯示與其海馬迴的結構和功能改變有正向影響。長期以來,許多精神疾病研究指出海馬迴一直扮演關鍵角色。體能運動能刺激成年的海馬迴而引起神經新生現象,支持在海馬迴功能的神經與精神疾病發生之間建立關聯。本研究旨在評估NMDAR調節劑和運動是否可以減緩由MIA引起的子代成年期間精神疾病之行為障礙。使用產前感染模型,在胚胎第12-17天(E12至E17)給予懷孕的ICR小鼠雙鏈RNA聚核糖肌苷酸 - 聚核糖酸[Poly(i:c)]或生理食鹽水6天。後代(P70-84)每天以腹腔注射給予NMDAR調節劑(100mg / kg)或體能運動兩週。成年子代進行活動性運動,社會互動,刻板行為和急性束縛壓力誘發的行為反應測試。並且應用流式細胞儀技術測定成年子代周邊血液的細胞表面標記物的表達水平。在活動力運動測試(LMT)中,與控制組相比,MIA子代在開闊場地行走的總距離相似。MIA子代在成人階段比起控制組,表現出較少的社會互動現象但在刻板挖掘的大理石埋藏實驗無明顯變化。此外,來自MIA成年後代的周邊血液中CD11b+細胞表達更高水平的巨噬細胞活化標記CD86和主要組織相容性複合體II類(MHC II類,I-A / I-E)。 NMDAR調節劑的慢性給藥和體能運動兩週減緩了由MIA誘導的社交缺陷,但在刻板動作挖掘中沒有明顯變化。此外,NMDAR調節劑在急性束縛壓力中,體能運動緩解了MIA子代的社交活動障礙,而不是減少活動量和重複性挖掘。這項工作提出了膳食補充NMDAR調節劑或運動,能成功的減緩MIA子代精神障礙有關的社交異常行為,為此打開了新的途徑。
Maternal immune activation (MIA) during pregnancy negatively transforms offspring brain development, resulting in neurochemical abnormalities and neuropsychiatric disorder behaviors. Since hypofunction of N-methyl-D-aspartate receptors (NMDARs) in offspring after MIA may be a convergence point for psychiatric symptoms. Improvements in the behavioral symptoms in psychosis are associated with positive changes in hippocampal structure and function as shown in patients with chronic schizophrenia, because hippocampus has been demonstrated for its critical involvement in many mental diseases. Physical exercise that stimulates adult hippocampal neurogenesis may improve the neuropsychological symptoms. This study was undertaken to evaluate whether NMDAR modulator and exercise could reduce MIA-induced behavioral impairments in the adult offspring. Using a prenatal infection model, the pregnant ICR mice were administrated with double-stranded RNA polyinosinic:polycytidylic acid [Poly(i:c)] or saline on embryonic days 12-17 (E12 to E17) for six days. The offspring (P70-84) were given (i.p.) daily with NMDAR modulator (100 mg/kg) and physical exercise for two weeks. Adult offspring were tested for spontaneous locomotion, social interaction, stereotyped behavior, and restraint stress induced behavioral responses. The expressing levels of cell surface markers from adult offspring peripheral blood were also determined by flow cytometry. In spontaneous locomotion test (LMT), MIA offspring traveled a similar total distance in open field compared with their control groups. MIA offspring at adult stage exhibited a less social interaction. Their stereotypic digging and marble burying performance was not different to control offspring. Moreover, peripheral blood CD11b+ cells from MIA adult offspring expressed a higher levels of activation markers, CD86 and major histocompatibility complex class II (MHC class II, I-A/I-E). Subchronic administration of NMDAR modulator and physical exercise for two weeks attenuated the social interaction deficits, but not stereotypic digging induced by MIA. Moreover, NMDAR modulator alleviated the social interaction deficits, but did not alter locomotion and stereotypic digging in MIA offspring after acute restraint stress. This work raises the possibility that dietary supplementation with NMDAR modulator or physical exercise may open new avenues for a successful attenuation of behavioral alterations relevant to psychiatric disorder about sociality in the adult MIA offspring.
參考文獻: Abazyan B, Nomura J, Kannan G, Ishizuka K, Tamashiro KL, Nucifora F, Pogorelov V, Ladenheim B, Yang C, Krasnova IN, Cadet JL, Pardo C, Mori S, Kamiya A, Vogel MW, Sawa A, Ross CA, Pletnikov MV (2010) Prenatal interaction of mutant DISC1 and immune activation produces adult psychopathology. Biol Psychiatry 68:1172-1181.\nAltman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319-335.\nAkira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499-511.\nAndreasen NC, Flaum M, Swayze VW, Ii, Tyrrell G, Arndt S (1990) Positive and negative symptoms in schizophrenia: A critical reappraisal. Arch Gen Psychiatry 47:615-621.\nAngoa-Pérez M, Kane MJ, Briggs DI, Francescutti DM, Kuhn DM (2013) Marble Burying and Nestlet Shredding as Tests of Repetitive, Compulsive-like Behaviors in Mice. Journal of Visualized Experiments : JoVE.\nArmstrong JN, McIntyre DC, Neubort S, Sloviter RS (1993) Learning and memory after adrenalectomy-induced hippocampal dentate granule cell degeneration in the rat. Hippocampus 3:359-371.\nBaszczuk A, Kopczynski Z (2014) [Hyperhomocysteinemia in patients with cardiovascular disease]. Postepy Hig Med Dosw (Online) 68:579-589.\nBeebe LH, Tian L, Morris N, Goodwin A, Allen SS, Kuldau J (2005) Effects of exercise on mental and physical health parameters of persons with schizophrenia. Issues Ment Health Nurs 26:661-676.\nBeneyto M, Kristiansen LV, Oni-Orisan A, McCullumsmith RE, Meador-Woodruff JH (2007) Abnormal glutamate receptor expression in the medial temporal lobe in schizophrenia and mood disorders. Neuropsychopharmacology 32:1888-1902.\nBloom FE (1975) Modern concepts in electrophysiology for psychiatry. Psychopharmacol Commun 1:579-585.\nBoksa P (2010) Effects of prenatal infection on brain development and behavior: a review of findings from animal models. Brain Behav Immun 24:881-897.\nBrown AS, Schaefer CA, Wyatt RJ, Goetz R, Begg MD, Gorman JM, Susser ES (2000) Maternal exposure to respiratory infections and adult schizophrenia spectrum disorders: a prospective birth cohort study. Schizophr Bull 26:287-295.\nBruel-Jungerman E, Rampon C, Laroche S (2007) Adult hippocampal neurogenesis, synaptic plasticity and memory: facts and hypotheses. Rev Neurosci 18:93-114.\nBuynitsky T, Mostofsky DI (2009) Restraint stress in biobehavioral research: Recent developments. Neurosci Biobehav Rev 33:1089-1098.\nCarpenter WT, Tandon R (2013) Psychotic disorders in DSM-5. Asian J Psychiatr 6:266-268.\nChai GS, Jiang X, Ni ZF, Ma ZW, Xie AJ, Cheng XS, Wang Q, Wang JZ, Liu GP (2013) Betaine attenuates Alzheimer-like pathological changes and memory deficits induced by homocysteine. J Neurochem 124:388-396.\nCiaranello AL, Ciaranello RD (1995) The neurobiology of infantile autism. Annu Rev Neurosci 18:101-128.\nCollin L, Bindra J, Raju M, Gillberg C, Minnis H (2013) Facial emotion recognition in child psychiatry: a systematic review. Res Dev Disabil 34:1505-1520.\nCotlarciuc I et al. (2014) Effect of genetic variants associated with plasma homocysteine levels on stroke risk. Stroke 45:1920-1924.\nCraig SA (2004) Betaine in human nutrition. Am J Clin Nutr 80:539-549.\nDhabhar FS, McEwen BS (1996) Stress-induced enhancement of antigen-specific cell-mediated immunity. J Immunol 156:2608-2615.\nDuraiswamy G, Thirthalli J, Nagendra HR, Gangadhar BN (2007) Yoga therapy as an add-on treatment in the management of patients with schizophrenia--a randomized controlled trial. Acta Psychiatr Scand 116:226-232.\nEcheverry MB, Guimarães FS, Del Bel EA (2004) Acute and delayed restraint stress-induced changes in nitric oxide producing neurons in limbic regions. Neuroscience 125:981-993.\nEriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313-1317.\nEscobar M, Crouzin N, Cavalier M, Quentin J, Roussel J, Lante F, Batista-Novais AR, Cohen-Solal C, De Jesus Ferreira MC, Guiramand J, Barbanel G, Vignes M (2011) Early, time-dependent disturbances of hippocampal synaptic transmission and plasticity after in utero immune challenge. Biol Psychiatry 70:992-999.\nFatemi SH, Emamian ES, Kist D, Sidwell RW, Nakajima K, Akhter P, Shier A, Sheikh S, Bailey K (1999) Defective corticogenesis and reduction in Reelin immunoreactivity in cortex and hippocampus of prenatally infected neonatal mice. Mol Psychiatry 4:145-154.\nFujita Y, Ishima T, Hashimoto K (2016) Supplementation with D-serine prevents the onset of cognitive deficits in adult offspring after maternal immune activation. Sci Rep 6:37261.\nFerguson BR, Gao WJ (2018) PV Interneurons: Critical Regulators of E/I Balance for Prefrontal Cortex-Dependent Behavior and Psychiatric Disorders. Frontiers in Neural Circuits 12.\nFinkelstein JD, Harris BJ, Kyle WE (1972) Methionine metabolism in mammals: kinetic study of betaine-homocysteine methyltransferase. Arch Biochem Biophys 153:320-324.\nGao XM, Sakai K, Roberts RC, Conley RR, Dean B, Tamminga CA (2000) Ionotropic glutamate receptors and expression of N-methyl-D-aspartate receptor subunits in subregions of human hippocampus: effects of schizophrenia. Am J Psychiatry 157:1141-1149.\nGeyer MA, Wilkinson LS, Humby T, Robbins TW (1993) Isolation rearing of rats produces a deficit in prepulse inhibition of acoustic startle similar to that in schizophrenia. Biol Psychiatry 34:361-372.\nGilmore JH, Fredrik Jarskog L (1997) Exposure to infection and brain development: cytokines in the pathogenesis of schizophrenia. Schizophr Res 24:365-367.\nGogtay N, Vyas NS, Testa R, Wood SJ, Pantelis C (2011) Age of onset of schizophrenia: perspectives from structural neuroimaging studies. Schizophr Bull 37:504-513.\nGonzalez-Burgos G, Cho RY, Lewis DA (2015) Alterations in cortical network oscillations and parvalbumin neurons in schizophrenia. Biol Psychiatry 77:1031-1040.\nGordon JA (2010) Testing the glutamate hypothesis of schizophrenia. Nat Neurosci 13:2-4.\nGrace AA (2012) Dopamine system dysregulation by the hippocampus: implications for the pathophysiology and treatment of schizophrenia. Neuropharmacology 62:1342-1348.\nGross G, Huber G (2008) [Psychopathology of schizophrenia and brain imaging]. Fortschr Neurol Psychiatr 76 Suppl 1:S49-56.\nGust ID, Hampson AW, Lavanchy D (2001) Planning for the next pandemic of influenza. Rev Med Virol 11:59-70.\nHagar H, Al Malki W (2014) Betaine supplementation protects against renal injury induced by cadmium intoxication in rats: role of oxidative stress and caspase-3. Environ Toxicol Pharmacol 37:803-811.\nHan M, Zhang JC, Yao W, Yang C, Ishima T, Ren Q, Ma M, Dong C, Huang XF, Hashimoto K (2016) Intake of 7,8-Dihydroxyflavone During Juvenile and Adolescent Stages Prevents Onset of Psychosis in Adult Offspring After Maternal Immune Activation. Sci Rep 6:36087.\nHarvey L, Boksa P (2012) Prenatal and postnatal animal models of immune activation: relevance to a range of neurodevelopmental disorders. Dev Neurobiol 72:1335-1348.\nHarrison PJ, Weinberger DR (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10:40-68; image 45.\nHolsboer F (1988) Implications of altered limbic-hypothalamic-pituitary-adrenocortical (LHPA)-function for neurobiology of depression. Acta Psychiatr Scand Suppl 341:72-111.\nHooshmand B, Solomon A, Kareholt I, Leiviska J, Rusanen M, Ahtiluoto S, Winblad B, Laatikainen T, Soininen H, Kivipelto M (2010) Homocysteine and holotranscobalamin and the risk of Alzheimer disease: a longitudinal study. Neurology 75:1408-1414.\nHowes OD, McCutcheon R (2017) Inflammation and the neural diathesis-stress hypothesis of schizophrenia: a reconceptualization. Translational psychiatry 7:e1024.\nHwu HG, Faraone SV, Liu CM, Chen WJ, Liu SK, Shieh MH, Hwang TJ, Tsuang MM, OuYang WC, Chen CY, Chen CC, Lin JJ, Chou FH, Chueh CM, Liu WM, Hall MH, Tsuang MT (2005) Taiwan schizophrenia linkage study: the field study. Am J Med Genet B Neuropsychiatr Genet 134B:30-36.\nJung GY, Won SB, Kim J, Jeon S, Han A, Kwon YH (2013) Betaine Alleviates Hypertriglycemia and Tau Hyperphosphorylation in db/db Mice. Toxicol Res 29:7-14.\nKempermann G, Krebs J, Fabel K (2008) The contribution of failing adult hippocampal neurogenesis to psychiatric disorders. Current opinion in psychiatry 21:290-295.\nKimura M, Toth LA, Agostini H, Cady AB, Majde JA, Krueger JM (1994) Comparison of acute phase responses induced in rabbits by lipopolysaccharide and double-stranded RNA. Am J Physiol 267:R1596-1605.\nKharbanda KK (2007) Role of transmethylation reactions in alcoholic liver disease. World J Gastroenterol 13:4947-4954.\nKnuesel I, Chicha L, Britschgi M, Schobel SA, Bodmer M, Hellings JA, Toovey S, Prinssen EP (2014) Maternal immune activation and abnormal brain development across CNS disorders. Nat Rev Neurol 10:643-660.\nKronenberg G, Reuter K, Steiner B, Brandt MD, Jessberger S, Yamaguchi M, Kempermann G (2003) Subpopulations of proliferating cells of the adult hippocampus respond differently to physiologic neurogenic stimuli. J Comp Neurol 467:455-463.\nLante F, Meunier J, Guiramand J, Maurice T, Cavalier M, de Jesus Ferreira MC, Aimar R, Cohen-Solal C, Vignes M, Barbanel G (2007) Neurodevelopmental damage after prenatal infection: role of oxidative stress in the fetal brain. Free Radic Biol Med 42:1231-1245.\nLiu XP, Qian X, Xie Y, Qi Y, Peng MF, Zhan BC, Lou ZQ (2014) Betaine suppressed Abeta generation by altering amyloid precursor protein processing. Neurol Sci 35:1009-1013.\nLodge DJ, Grace AA (2011) Hippocampal dysregulation of dopamine system function and the pathophysiology of schizophrenia. Trends Pharmacol Sci 32:507-513.\nMazzanti M, Shirka E, Gjergo H, Hasimi E (2018) Imaging, Health Record, and Artificial Intelligence: Hype or Hope? Curr Cardiol Rep 20:48.\nMednick SA, Machon RA, Huttunen MO, Bonett D (1988) Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch Gen Psychiatry 45:189-192.\nMeyer U, Feldon J (2010) Epidemiology-driven neurodevelopmental animal models of schizophrenia. Prog Neurobiol 90:285-326.\nMeyer U, Knuesel I, Nyffeler M, Feldon J (2010) Chronic clozapine treatment improves prenatal infection-induced working memory deficits without influencing adult hippocampal neurogenesis. Psychopharmacology (Berl) 208:531-543.\nMeyer U, Feldon J, Dammann O (2011) Schizophrenia and Autism: Both Shared and Disorder-Specific Pathogenesis Via Perinatal Inflammation? Pediatr Res 69:26R.\nMielnik CA, Horsfall W, Ramsey AJ (2014) Diazepam improves aspects of social behaviour and neuron activation in NMDA receptor-deficient mice. Genes, brain, and behavior 13:592-602.\nMillian NS, Garrow TA (1998) Human betaine-homocysteine methyltransferase is a zinc metalloenzyme. Arch Biochem Biophys 356:93-98.\nMiwa M, Tsuboi M, Noguchi Y, Enokishima A, Nabeshima T, Hiramatsu M (2011) Effects of betaine on lipopolysaccharide-induced memory impairment in mice and the involvement of GABA transporter 2. J Neuroinflammation 8:153.\nMoffitt TE, Caspi A, Rutter M (2005) Strategy for investigating interactions between measured genes and measured environments. Arch Gen Psychiatry 62:473-481.\nMoghaddam B, Javitt D (2012) From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology 37:4-15.\nMoy SS, Nadler JJ, Perez A, Barbaro RP, Johns JM, Magnuson TR, Piven J, Crawley JN (2004) Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. Genes, brain, and behavior 3:287-302.\nNurjono M, Lee J, Chong SA (2012) A Review of Brain-derived Neurotrophic Factor as a Candidate Biomarker in Schizophrenia. Clinical psychopharmacology and neuroscience : the official scientific journal of the Korean College of Neuropsychopharmacology 10:61-70.\nOzawa K, Hashimoto K, Kishimoto T, Shimizu E, Ishikura H, Iyo M (2006) Immune Activation During Pregnancy in Mice Leads to Dopaminergic Hyperfunction and Cognitive Impairment in the Offspring: A Neurodevelopmental Animal Model of Schizophrenia. Biol Psychiatry 59:546-554.\nPajonk FG, Wobrock T, Gruber O, Scherk H, Berner D, Kaizl I, Kierer A, Muller S, Oest M, Meyer T, Backens M, Schneider-Axmann T, Thornton AE, Honer WG, Falkai P (2010) Hippocampal plasticity in response to exercise in schizophrenia. Arch Gen Psychiatry 67:133-143.\nPatterson PH (2002a) Maternal infection: window on neuroimmune interactions in fetal brain development and mental illness. Curr Opin Neurobiol 12:115-118.\nPatterson PH (2002b) Maternal infection: window on neuroimmune interactions in fetal brain development and mental illness. Curr Opin Neurobiol 12:115-118.\nPian JP, Criado JR, Milner R, Ehlers CL (2010) N-methyl-D-aspartate receptor subunit expression in adult and adolescent brain following chronic ethanol exposure. Neuroscience 170:645-654.\nPiontkewitz Y, Arad M, Weiner I (2011) Risperidone administered during asymptomatic period of adolescence prevents the emergence of brain structural pathology and behavioral abnormalities in an animal model of schizophrenia. Schizophr Bull 37:1257-1269.\nProzialeck WC, Edwards JR (2012) Mechanisms of cadmium-induced proximal tubule injury: new insights with implications for biomonitoring and therapeutic interventions. J Pharmacol Exp Ther 343:2-12.\nRapoport JL, Addington AM, Frangou S, Psych MR (2005) The neurodevelopmental model of schizophrenia: update 2005. Mol Psychiatry 10:434-449.\nRice F, Harold GT, Boivin J, van den Bree M, Hay DF, Thapar A (2010) The links between prenatal stress and offspring development and psychopathology: disentangling environmental and inherited influences. Psychol Med 40:335-345.\nReif A, Schmitt A, Fritzen S, Lesch KP (2007) Neurogenesis and schizophrenia: dividing neurons in a divided mind? Eur Arch Psychiatry Clin Neurosci 257:290-299.\nReisinger S, Khan D, Kong E, Berger A, Pollak A, Pollak DD (2015) The poly(I:C)-induced maternal immune activation model in preclinical neuropsychiatric drug discovery. Pharmacol Ther 149:213-226.\nScola G, Duong A (2017) Prenatal maternal immune activation and brain development with relevance to psychiatric disorders. Neuroscience 346:403-408.\nShahab SZ, Glezen WP (1994) Influenza Virus. In: Viral Diseases in Pregnancy (Gonik B, ed), pp 215-223. New York, NY: Springer New York.\nShi L, Fatemi SH, Sidwell RW, Patterson PH (2003) Maternal Influenza Infection Causes Marked Behavioral and Pharmacological Changes in the Offspring. The Journal of Neuroscience 23:297-302.\nSquire LR (1992) Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev 99:195-231.\nShenton ME, Dickey CC, Frumin M, McCarley RW (2001) A review of MRI findings in schizophrenia. Schizophr Res 49:1-52.\nSugranyes G, Kyriakopoulos M, Corrigall R, Taylor E, Frangou S (2011) Autism spectrum disorders and schizophrenia: meta-analysis of the neural correlates of social cognition. PLoS One 6:e25322.\nSzoke A (2013) [Epidemiology of schizophrenic disorders, genetic and environmental risk factors]. Rev Prat 63:331-335.\nTanskanen P, Ridler K, Murray GK, Haapea M, Veijola JM, Jaaskelainen E, Miettunen J, Jones PB, Bullmore ET, Isohanni MK (2010) Morphometric brain abnormalities in schizophrenia in a population-based sample: relationship to duration of illness. Schizophr Bull 36:766-777.\nThibaut F (2017) Neuroinflammation: new vistas for neuropsychiatric research. Dialogues Clin Neurosci 19:3-4.\nTanaka S, Ide M, Shibutani T, Ohtaki H, Numazawa S, Shioda S, Yoshida T (2006) Lipopolysaccharide-induced microglial activation induces learning and memory deficits without neuronal cell death in rats. J Neurosci Res 83:557-566.\nTandon R, Nasrallah HA, Keshavan MS (2009) Schizophrenia, "just the facts" 4. Clinical features and conceptualization. Schizophr Res 110:1-23.\nValsamis B, Schmid S (2011) Habituation and Prepulse Inhibition of Acoustic Startle in Rodents. Journal of Visualized Experiments : JoVE.\nvan Praag H, Kempermann G, Gage FH (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2:266-270.\nVilain J, Galliot AM, Durand-Roger J, Leboyer M, Llorca PM, Schurhoff F, Szoke A (2013) [Environmental risk factors for schizophrenia: a review]. Encephale 39:19-28.\nVrajova M, Stastny F, Horacek J, Lochman J, Sery O, Pekova S, Klaschka J, Hoschl C (2010) Expression of the hippocampal NMDA receptor GluN1 subunit and its splicing isoforms in schizophrenia: postmortem study. Neurochem Res 35:994-1002.\nWexler BE, Zhu H, Bell MD, Nicholls SS, Fulbright RK, Gore JC, Colibazzi T, Amat J, Bansal R, Peterson BS (2009) Neuropsychological near normality and brain structure abnormality in schizophrenia. Am J Psychiatry 166:189-195.\nWolf SA, Melnik A, Kempermann G (2011) Physical exercise increases adult neurogenesis and telomerase activity, and improves behavioral deficits in a mouse model of schizophrenia. Brain Behav Immun 25:971-980.\nXu MY, Wong AHC (2018) GABAergic inhibitory neurons as therapeutic targets for cognitive impairment in schizophrenia. Acta Pharmacol Sin 39:733-753.\nZuckerman L, Rehavi M, Nachman R, Weiner I (2003) Immune activation during pregnancy in rats leads to a postpubertal emergence of disrupted latent inhibition, dopaminergic hyperfunction, and altered limbic morphology in the offspring: a novel neurodevelopmental model of schizophrenia. Neuropsychopharmacology 28:1778-1789.
描述: 碩士
國立政治大學
神經科學研究所
105754003
資料來源: http://thesis.lib.nccu.edu.tw/record/#G0105754003
資料類型: thesis
Appears in Collections:學位論文

Files in This Item:
File SizeFormat
400301.pdf2.96 MBAdobe PDF2View/Open
Show full item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.