Please use this identifier to cite or link to this item:

Title: 以類神經網路建構風險值模型
Constructing a VaR model by Artificial Neural Network
Authors: 許力夫
Hsu, Li-Fu
Contributors: 林士貴

Lin, Shih-Kuei
Chang, Yi-Wu

Hsu, Li-Fu
Keywords: 風險值
Neural Network
Variance-covariance method
Historical simulation method
GARCH(1,1) model
Date: 2018
Issue Date: 2019-01-04 16:34:03 (UTC+8)
Abstract: 本研究利用2008/01/04至2018/09/28台灣加權指數進行分析與評估風險值之預測效果。研究成果與貢獻如下:一、延伸GARCH模型,假設即期波動度與非預期變動、歷史波動度呈非線性關係,透過類神經網路來捕捉更多非線性槓桿、波動叢集等效果。二、針對不同模型,分別利用最大概似法、反向傳播演算法等進行參數估計與訓練網路。實證結果顯示新模型對於波動度具有較好之配適能力。三、與變異數法、歷史模擬法、GARCH 模型比較,在95%信心水準下新模型所計算之風險值具有較低之穿透率。因此新模型所計算之風險值應可有效改善企業投資時所需提撥之準備金,主管機關亦可透過此模型來訂定投資人所需付出之保證金,皆可降低信用風險與穩定金融市場。本研究可提供上述產業評估風險時較為精準、客觀與較有效率之工具。
We analyze the VaR prediction by using the TWII data from 2008/01/04 to 2018/09/28. The contribution and results are as following: First, to extend the GARCH model, we assume spot volatility, unexpected volatility and historical volatility have non-linear relationship. By training neural network, we capture more non-linear lever effects and cluster volatility effects. Second, compared with different VaR models, we use Max Likelihood method to estimate the parameters and Backpropagation to train the neural network. The results show that the new model fits the volatility better than others. Third, compare the new model with other methods, VaR values predicted by new model have lower ABLF values. Therefore, the VaR values evaluated by new model can improve the reserve fund when the enterprise invests. The financial authority also can set the security deposit by using new model. This study can provide the abovementioned industrial a precise and objective tool to evaluate the risk.
Reference: 英文文獻
[1] Chen C.T. (2009), “Forecasting Value at Risk (VAR) in the futures market using Hybrid method of Neural Networks and GARCH model”, 2009 International Joint Conference on Computational Sciences and Optimization p17-21.
[2] Moreno J.J.(2011),”Artificial neural networks applied to forecasting time series”, Psicothema 2011. Vol. 23 n^。2, p322-329.
[3] Chen X.L(2009), “A Statistical Neural Network Approach for Value-at-Risk.”, 2009 International Joint Conference on Computational Sciences and Optimization p17-21.
[4] Engle(1982), “Autoregressive Conditional Heteroscedasticity with Estimation of the Variance in U.K. Inflation,” Econometrica, Vol. 50, 1982, p987-1008..
[5] Čorkalo Š (2011), “Comparison of a Value at Risk approaches on a stock portfolio”, Croatian Operational Research Review (CRORR) Vol. 2, 2011 p81-90.
[6] Arnerić1 J.(2014), “GARCH based artificial neural networks in forecasting conditional variance of stock returns”, Croatian Operational Research Review p329-343.
[7] Andjelic ́j G.(2010), “Application of VaR in emerging markets: A case of selected Central and Eastern European Countries”, African Journal of Business Management Vol. 4(17), p3666-3680.
[8] Tsay R.S. (2002),” Analysis of Financial Time Series,” ISBN-13: 978- 0470414354
[9] Kupiec(1995), “Techniques for Verifying the Accuracy of Risk
Measurement Models,” The Journal of Derivatives, winter, p73-84.
[10] Rumelhart & Hinton(1986),“Learning representations by back-propagating errors”, Nature volume 323, p533–536.
[11] Yan Liu(2005), “Value-at-Risk Model Combination Using Artificial Neural Networks”, Emory University. August 2005.

[1] 洪儒瑤、古永嘉、康健廷(2006),ARMA-GARCH 風險值模型預測績效實證,Journal of China Institute of Technology Vov.34-2006.6。
[2] 柯博倫、雷立芬(2010), GARCH 估測風險值績效之探討,臺灣銀行季刊第六十二卷第四期(p234) 。
[3] 黃華山、邱一薰(2005),類神經網路預測台灣50 股價指數之研究,
[4] 蔡玉娟、林家妃、張修明(2010),應用倒傳遞類神經網路及時間序列法建構股價報酬率預測模型-以台灣股市為例,國立屏東科技大學資訊管理系碩士班論文。
[5] 林建甫(1996),GARCH模型條件變異數結構變動的檢定,
[6] 蘇榮斌、蔡孟祥(2008),風險值之預測:以台灣、韓國、新加坡及馬來西亞等國家股票市場為例,Journal of China Institute of Technology Vol.39-2008.12
[7] 許和鈞(2013),利用風險值內部模型法提升證券商衍生性商品業務之風險控管效能,台灣證券交易所委託研究
[8] 葉怡成(2003),類神經網路模式應用與實作,臺北市:儒林。
Description: 碩士
Source URI:
Data Type: thesis
Appears in Collections:[應用數學系] 學位論文

Files in This Item:

File SizeFormat
015101.pdf1543KbAdobe PDF0View/Open

All items in 學術集成 are protected by copyright, with all rights reserved.

社群 sharing