Please use this identifier to cite or link to this item: https://ah.nccu.edu.tw/handle/140.119/124213


Title: 以動態因子模型估算台灣股市報酬的中長期波動
Estimating Long-run Fluctuation of Taiwan Stock Market Return with Dynamic Factor Model
Authors: 曾建豪
Zeng, Jian-Hao
Contributors: 徐士勛
曾建豪
Zeng, Jian-Hao
Keywords: 動態因子模型
主成份分析法
頻譜分析
台灣加權股價指數
金融危機
Date: 2019
Issue Date: 2019-07-01 11:03:03 (UTC+8)
Abstract: 本研究主要利用Forni, Hallin, Lippi, and Reichlin (2005)的動態因子模型架構搭配頻域分析與主成份分析法,同時參考Altissimo et al. (2001)與Cristadoro et al. (2005)在建構歐元區相關金融指標的技巧,估算了台灣股市報酬的中長期波動。希望藉由本論文我們能夠了解:(1)台灣加權股價指數的中長期波動趨勢為何? (2)當台灣加權股價指數遇到2008年美國次級房貸、2011年歐洲債務危機、2015年國際油價崩跌與Fed進入升息循環及2018年中美貿易戰的衝擊時,短期波動會偏離中長期波動程度為何?在進行分析時,我們參考文獻的方法,將資料分為第一類:台灣加權股價指數報酬率個類股指數(30筆解釋變數)、第二類:國際主要市場指數(27筆解釋變數)、第三類:各國匯率與國債殖利率(27筆解釋變數)、第四類:國際原物料市場(17筆解釋變數),並將時間切割為三個時段:第一、2007年至2019年、2007年至2016年及2010年至2019年。
我們的估計步驟基本上可以分為三大步驟:首先,我們將資料的自共變異數矩陣利用傅立葉主換的技巧將其轉換至頻域維度上並利用動態因子模型估方法計出中長期共同因子後,再利用逆傅立葉技巧將其轉換回時間維度上。最後,我們利用主成份分析法建構出台灣加權股價指數中長期估計值。透過此實證結果,我們確切地將台灣加權股價指數的中長期波動趨勢拆解出來,並在前述的四個金融危機階段時間內發現,其波動均屬於中長期波動。此外,在我們研究的四個金融危機中,2008年美國次級房貸為台灣加權股價指數帶來的短期衝擊最為強烈,且持續時間也最久。而我們也發現2018年中美貿易戰燃燒至今,台灣加權股價指數仍未回到中長期的波動趨勢,且短期的衝擊有越來越強烈的現象。
Reference: [1] 徐士勛 (2019),以動態因子模型解構巨量資料的中長期波動,學術文稿。
[2] Ando, T., and Bai, J. (2014). Asset pricing with a general multifactor structure. Journal of Financial Econometrics, 13(3), 556-604.
[3] Amstad, M., Potter, S., and Rich, R. W. (2017). The New York Fed staff underlying inflation Gauge (UIG). Economic Policy Review, (23-2), 1-32.
[4] Altissimo, F., Bassanetti, A., Cristadoro, R., Forni, M., Lippi, M., Reichlin, L., and Veronese, G. (2001). A real time coincident indicator of the euro area business cycle. Centre for Economic Policy Research.
[5] Cristadoro, R., Forni, M., Reichlin, L., and Veronese, G. (2005). A core inflation indicator for the euro area. Journal of Money, Credit and Banking, 539-560.
[6] Forni, M., Hallin, M., Lippi, M., and Reichlin, L. (2000). The generalized dynamic-factor model: Identification and estimation. Review of Economics and Statistics, 82(4), 540-554.
[7] Forni, M., Hallin, M., Lippi, M., and Reichlin, L. (2005). The generalized dynamic factor model: one-sided estimation and forecasting. Journal of the American Statistical Association, 100(471), 830-840.
[8] Jolliffe I.T. (2002). Principal Component Analysis, Series: Springer Series in Statistics, 2nd ed., Springer, NY. XXIX, 487 p. 28 illus. ISBN 978-0-387-95442-4.
[9] Miranda, A. A., Le Borgne, Y. A., and Bontempi, G. (2008). New routes from minimal approximation error to principal components. Neural Processing Letters, 27(3), 197-207.
[10] Pearson, K. (1901).On lines and planes of closest fit to systems of points in space. Philosophical Magazine. 2 (6), 559–572.
Description: 碩士
國立政治大學
經濟學系
106258022
Source URI: http://thesis.lib.nccu.edu.tw/record/#G0106258022
Data Type: thesis
Appears in Collections:[經濟學系] 學位論文

Files in This Item:

File SizeFormat
802201.pdf9689KbAdobe PDF0View/Open


All items in 學術集成 are protected by copyright, with all rights reserved.


社群 sharing