Please use this identifier to cite or link to this item: https://ah.nccu.edu.tw/handle/140.119/129558


Title: Hausdorff Dimension of Multi-Layer Neural Networks
Authors: 班榮超
Ban, Jung-Chao
Chang, Chih-Hung
Contributors: 應數系
Keywords: Multi-Layer Neural Networks;Hausdorff Dimension;Sofic Shift;Output Space
Date: 2013-11
Issue Date: 2020-04-28 13:55:07 (UTC+8)
Abstract: This elucidation investigates the Hausdorff dimension of the output space of multi-layer neural networks. When the factor map from the covering space of the output space to the output space has a synchronizing word, the Hausdorff dimension of the output space relates to its topological entropy. This clarifies the geometrical structure of the output space in more details.
Relation: Advances in Pure Mathematics, 2013, 3, 9-14
Data Type: article
DOI 連結: https://doi.org/10.4236/apm.2013.39A1002 
Appears in Collections:[應用數學系] 期刊論文

Files in This Item:

File SizeFormat
193.pdf203KbAdobe PDF38View/Open


All items in 學術集成 are protected by copyright, with all rights reserved.


社群 sharing