Please use this identifier to cite or link to this item:

Title: 一個卡特蘭等式的組合證明
A Combinatorial Proof of Catalan Identity
Authors: 蔡佳平
Tsai, Cia-Pin
Contributors: 李陽明
Chen, Young-Ming
Tsai, Cia-Pin
Keywords: 卡特蘭數
Catalan identity
Leading all the way
Standard Ferrers diagrams
Hook formula
Date: 2020
Issue Date: 2020-08-03 17:57:51 (UTC+8)
Abstract: 本文所探討的是卡特蘭等式以及開票一路領先的問題,並將其結果推廣到高維度的卡特蘭數。假設有甲、乙兩位候選人,其得票數分別為m及n票,且m≧n,我們若將開票過程建立在直角座標上,起點由(0,0)開始,將甲得一票記作向量(1,0),乙得一票記作向量(0,1),則由甲候選人一路領先的開票方法數,即為直線y = x以下的路徑總數。
C_(m,n)=((mn¦(n,n,n,..,n)))/(∏_(k=1)^(m-1)▒((n+k)¦k) )
In this thesis, we study the Catalan identity and generalize the results to obtain the higher dimensional Catalan identity. Suppose that there are two candidates A and B for an election. A receives m votes and B receives n votes with m≧n. If we consider the ballot as a lattice path on coordinate system, starting from (0,0), where every vote for A is expressed as a vector (1,0) and votes for B are expressed as vectors (0,1). Then the number of ways that A leads all the way equals to the number of paths under the diagonal y=x.
  In this paper, we establish a bijection function that corresponds the good paths to the Young tableaux, and calculate the number of Young tableaux by hook formula. Finally, we generalize this method to calculate the higher dimensional Catalan identity:
C_(m,n)=((mn¦(n,n,n,..,n)))/(∏_(k=1)^(m-1)▒((n+k)¦k) )
Reference: [1] Griffiths, M., & Lord, N. (2011). The hook-length formula and generalised Catalan numbers. The Mathematical Gazette, 95(532), 23-30.
[2] Krattenthaler, C. (1995). Bijective proofs of the hook formulas for the number of standard Young tableaux, ordinary and shifted. The Electronic Journal of Combinatorics, 2(1), R13.
[3] 楊蘭芬,一個有關開票的問題,政治大學應用數學系數學教學碩士在職專班碩士論文(2009),台北市。
[4] 韓淑惠,開票一路領先的對射證明,政治大學應用數學系數學教學碩士在職專班碩士論文(2011),台北市。
Description: 碩士
Source URI:
Data Type: thesis
Appears in Collections:[應用數學系] 學位論文

Files in This Item:

File Description SizeFormat
100701.pdf1352KbAdobe PDF52View/Open

All items in 學術集成 are protected by copyright, with all rights reserved.

社群 sharing