Please use this identifier to cite or link to this item: https://ah.lib.nccu.edu.tw/handle/140.119/133431
題名: 發炎環境下下視丘POMC神經元的細胞分子變化之研究
Molecular alterations of hypothalamic POMC neurons in the inflammatory environment
作者: 廖翊㚬
Liao, Yi-Chun
貢獻者: 陳紹寬
Chen, Shao-Kwaun
廖翊㚬
Liao, Yi-Chun
關鍵詞: 慢性發炎
弓形核
POMC神經元
粒線體
代謝調控
細胞因子
趨化因子
Chronic inflammation
Arcuate nucleus
mHypo-POMC/GFP1
Mitochondrial
Metabolic regulation
Cytokines
Chemokines
日期: 2020
上傳時間: 4-Jan-2021
摘要: 周邊或中樞系統的發炎已經被認為是許多神經系統疾病的重要成因。發炎對神經系統的影響可透免疫細胞分泌的細胞素影響神經細胞的功能。近年雖然有許多細胞素對神經細胞的研究,但神經細胞在發炎環境中產生的改變仍不完全清楚。大腦下視丘弓形核(arcuate nucleus, ARC)區域中會分泌POMC/CART神經元抑制食慾並提高能量消耗,是代謝調控中樞的重要成員。當下視丘長期發炎時,動物會出現食量增加以及代謝調控異常的現象,但其神經機制仍未完全清楚。本研究旨在探討發炎環境中POMC神經元中對代謝調控訊號的反應及粒線體的改變。這些改變在生理上會影響食物攝入調節、能量消耗、葡萄糖代謝與脂肪組織的分解或褐變(browning)。本研究主要分為四個部分,第一部分我們探討在mHypo-POMC/GFP1神經元中瘦素和胰島素信號傳導途徑,實驗顯示POMC神經元通過PI3K/AKT/mTOR路徑可整合來自瘦素和胰島素訊號,在刺激短時間內會激活AKT-mTOR路徑並利用mTOR來抑制AMPK路徑蛋白,也會提高POMC轉錄來維持代謝平衡,而長期則使負調節基因Socs3及Atg7表達上升,使細胞產生自噬作用來維持身體穩態。第二部分則探討在發炎因子的環境下是否會影響mHypo-POMC/GFP1神經元調控代謝的機制,實驗發現在長期發炎的環境下,POMC基因表現被抑制。另外,瘦素和胰島素刺激引起POMC神經元的PI3K-AKT路徑活化與AMPK的抑制,會在含有細胞因子及趨化因子環境下受到干擾,因此在低度發炎的環境下會干擾瘦素與胰島素調節POMC神經元的傳遞訊號。第三部分是探討在發炎環境下POMC神經元的粒線體有何改變,在含有細胞因子及趨化因子的發炎環境下,POMC神經元中的粒線體並未破壞,電子傳遞鍊基因表現及質子滲漏的結果並沒有差異,但細胞中ROS上升、呼吸速率下降、粒線體整體功能下降及解偶聯下降,粒線體的動力學變慢,裂變與融合下降,整體造成粒線體變大,粒線體變化會使POMC神經元的代謝調控能力受破壞。第四部分以高脂食物飼養小鼠做為肥胖及代謝疾病的模式,觀察肥胖下視丘中是否有發炎傾向,以及探討下視丘中的神經元粒線體調控,實驗餵食老鼠一個月的高脂肪飲食,使老鼠產生肥胖並引發全身性發炎,但血脂並未受影響,而在下視丘中也發現促發炎因子上升,這種體內環境會刺激POMC神經元的作用,並促進粒線體動力,包括生成、分裂與融合,試圖維持代謝的調控與平衡,但尚不了解更長時間的餵食對此代謝調控系統有何影響。總而言之我們的實驗結果顯示在發炎的環境下,對POMC神經元中的代謝調控與粒線體有所影響,至於對代謝調控的影響仍有待進一步研究。
Accumulating evidences have revealed modulatory roles of immune activities on normal physiology of central nervous system. Also, inflammation in the periphery is associated with neurological diseases through the functions of cytokines. The studies of cytokine actions on neurons were mainly focused on single specific cytokines, such as TNF-α, IL-6, etc, the influence of inflammatory environment, which contained mixtures of numerous cytokines, chemokines, and pro-inflammatory molecules secreted by innate immune cells, are not fully understood. POMC/CART neurons in the arcuate nucleus of the hypothalamus play crucial roles of regulating appetite, energy expenditure, and central control of metabolism. Chronic inflammation in the hypothalamus induced food intake dysregulation and abnormal metabolism. This study aimed to investigate of neural alterations induced by the inflammatory milieu. We conducted cellular studies by culturing hypothalamic POMC neurons with conditioned medium from LPS stimulated bone marrow derived macrophages, whereas high fat diet-fed mice were chosen for examining physiological impacts. We first examine the leptin and insulin signaling in mHypo-POMC/GFP cells. Short-term stimulation of leptin or insulin activates the PI3K-AKT-mTOR pathway downregulating AMPK and increases the expression of POMC gene, while long-term incubation upregulates the expression of negative-regulatory gene SOCS3 and autophagy gene ATG7 to maintain body homeostasis. The leptin and insulin signaling in POMC neurons were altered under inflammatory conditions. POMC gene expression is inhibited after long-term incubation with pro-inflammation cytokines. Also, and the activation of AKT and mTOR is relatively weakened after leptin and insulin stimulation. Furthermore, the metabolism-related cellular responses, such as mitochondrial functions and dynamics in POMC neurons, against proinflammatory stimuli, will be elucidated. Although intracellular ROS/RNS levels were elevated, the results of expressions of the electron transport chain genes and proton leakage suggested that mitochondria in POMC neurons remained undamaged. In addition, respiratory rate and overall mitochondrial function revealed a trend of decrease in the inflammatory environment. Inflammatory milieu induced significant decrease of mitochondrial uncoupling and slowed down mitochondrial dynamics by downregulating the expression of both fission and fusion genes. The balance of mitochondrial fission and fusion was also changed resulting in the enlargement of overall mitochondrial size. In summary, the mitochondrial alterations induced by inflammatory environment suggested mitochondrial functions and metabolic regulation abilities are disrupted in hypothalamic POMC neurons. Finally, we examined the metabolic regulations, inflammation status, arcuate functions and mitochondrial status in the high-fat diet-fed mice. Our data revealed that after feeding high-fat diet fed to C57BL/6 mice for four weeks, the testing developed obesity and systemic inflammation, but not metabolic dysregulation such as elevated blood triglycerides. The expression of metabolic regulating genes of arcuate POMC neurons indicated that the energy balance machinery in the arcuate nucleus remained functioning after 4-weeks of high fed diet feeding. Mitochondrial dynamics was promoted in the hypothalamus, suggesting the mitochondrial regulation in the calorie excessive conditions was not disrupted. These regulations could be altered in longer feeding of high fat diet for the development of further metabolic dysregulation, such as misbalance of glucose or lipid metabolic homeostasis. In conclusion, our results displayed the effects of inflammation milieu on metabolic regulation and mitochondrial functions in hypothalamic POMC neurons, but the physiological significance of these alterations needs further investigation.
參考文獻: Aguirre V, Uchida T, Yenush L, Davis R, White MF (2000) The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem 275:9047-9054.\nAnderson EJ, Cakir I, Carrington SJ, Cone RD, Ghamari-Langroudi M, Gillyard T, Gimenez LE, Litt MJ (2016) 60 YEARS OF POMC: Regulation of feeding and energy homeostasis by alpha-MSH. J Mol Endocrinol 56:T157-174.\nAponte Y, Atasoy D, Sternson SM (2011) AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat Neurosci 14:351-355.\nAppleyard SM, Hayward M, Young JI, Butler AA, Cone RD, Rubinstein M, Low MJ (2003) A role for the endogenous opioid beta-endorphin in energy homeostasis. Endocrinology 144:1753-1760.\nBaizabal-Carvallo JF, Alonso-Juarez M (2017) Cerebellar disease associated with anti- glutamic acid decarboxylase antibodies: review. J Neural Transm (Vienna) 124:1171- 1182.\nBanks WA (2001) Anorectic effects of circulating cytokines: role of the vascular blood- brain barrier. Nutrition 17:434-437.\nBarton GM (2008) A calculated response: control of inflammation by the innate immune system. J Clin Invest 118:413-420.\nBenani A, Hryhorczuk C, Gouaze A, Fioramonti X, Brenachot X, Guissard C, Krezymon A, Duparc T, Colom A, Nedelec E, Rigault C, Lemoine A, Gascuel J, Gerardy-Schahn R, Valet P, Knauf C, Lorsignol A, Penicaud L (2012) Food intake adaptation to dietary fat involves PSA-dependent rewiring of the arcuate melanocortin system in mice. J Neurosci 32:11970-11979.\nBerg AH, Scherer PE (2005) Adipose tissue, inflammation, and cardiovascular disease. Circ Res 96:939-949.\nBergen HT, Mizuno T, Taylor J, Mobbs CV (1999) Resistance to diet-induced obesity is associated with increased proopiomelanocortin mRNA and decreased neuropeptide Y mRNA in the hypothalamus. Brain Research 851:198-203.\nBiebermann H, Castaneda TR, van Landeghem F, von Deimling A, Escher F, Brabant G, Hebebrand J, Hinney A, Tschop MH, Gruters A, Krude H (2006) A role for beta- melanocyte-stimulating hormone in human body-weight regulation. Cell Metab 3:141-146.\nBjorbaek C, Uotani S, da Silva B, Flier JS (1997) Divergent signaling capacities of the long and short isoforms of the leptin receptor. J Biol Chem 272:32686-32695.\n\nBournat JC, Brown CW (2010) Mitochondrial dysfunction in obesity. Curr Opin Endocrinol Diabetes Obes 17:446-452.\nBrady LS, Smith MA, Gold PW, Herkenham M (1990) Altered expression of hypothalamic neuropeptide mRNAs in food-restricted and food-deprived rats. Neuroendocrinology 52:441-447.\nBuller KM (2001) Role of circumventricular organs in pro-inflammatory cytokine-induced activation of the hypothalamic-pituitary-adrenal axis. Clin Exp Pharmacol Physiol 28:581-589.\nBurfeind KG, Michaelis KA, Marks DL (2016) The central role of hypothalamic inflammation in the acute illness response and cachexia. Semin Cell Dev Biol 54:42- 52.\nButler AA, Kesterson RA, Khong K, Cullen MJ, Pelleymounter MA, Dekoning J, Baetscher M, Cone RD (2000) A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse. Endocrinology 141:3518-3521.\nCalle EE, Rodriguez C, Walker-Thurmond K, Thun MJ (2003) Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 348:1625-1638.\nCapsoni F, Ongari AM, Reali E, Catania A (2009) Melanocortin peptides inhibit urate crystal-induced activation of phagocytic cells. Arthritis Res Ther 11:R151.\nChallis BG, Pritchard LE, Creemers JW, Delplanque J, Keogh JM, Luan J, Wareham NJ, Yeo GS, Bhattacharyya S, Froguel P, White A, Farooqi IS, O`Rahilly S (2002) A missense mutation disrupting a dibasic prohormone processing site in pro- opiomelanocortin (POMC) increases susceptibility to early-onset obesity through a novel molecular mechanism. Hum Mol Genet 11:1997-2004.\nChen SJ, Chao YL, Chen CY, Chang CM, Wu EC, Wu CS, Yeh HH, Chen CH, Tsai HJ (2012) Prevalence of autoimmune diseases in in-patients with schizophrenia: nationwide population-based study. Br J Psychiatry 200:374-380.\nChun SK, Jo YH (2010) Loss of leptin receptors on hypothalamic POMC neurons alters synaptic inhibition. J Neurophysiol 104:2321-2328.\nChung S, Son GH, Kim K (2011) Circadian rhythm of adrenal glucocorticoid: its regulation and clinical implications. Biochim Biophys Acta 1812:581-591.\nClaret M, Smith MA, Batterham RL, Selman C, Choudhury AI, Fryer LG, Clements M, Al- Qassab H, Heffron H, Xu AW, Speakman JR, Barsh GS, Viollet B, Vaulont S, Ashford ML, Carling D, Withers DJ (2007) AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. J Clin Invest 117:2325-2336.\n\nColl AP (2007) Effects of pro-opiomelanocortin (POMC) on food intake and body weight: mechanisms and therapeutic potential? Clin Sci (Lond) 113:171-182.\nCone RD (2005) Anatomy and regulation of the central melanocortin system. Nat Neurosci 8:571-578.\nCone RD (2006) Studies on the physiological functions of the melanocortin system. Endocr Rev 27:736-749.\nCorander MP, Fenech M, Coll AP (2009) Science of self-preservation: how melanocortin action in the brain modulates body weight, blood pressure, and ischemic damage. Circulation 120:2260-2268.\nCowley MA, Smart JL, Rubinstein M, Cerdan MG, Diano S, Horvath TL, Cone RD, Low MJ (2001) Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411:480-484.\nDe Souza CT, Araujo EP, Bordin S, Ashimine R, Zollner RL, Boschero AC, Saad MJ, Velloso LA (2005) Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology 146:4192-4199.\nDela Cruz CS, Kang MJ (2018) Mitochondrial dysfunction and damage associated molecular patterns (DAMPs) in chronic inflammatory diseases. Mitochondrion 41:37-44.\nDemine S, Renard P, Arnould T (2019) Mitochondrial Uncoupling: A Key Controller of Biological Processes in Physiology and Diseases. Cells 8.\nDiano S, Liu ZW, Jeong JK, Dietrich MO, Ruan HB, Kim E, Suyama S, Kelly K, Gyengesi E, Arbiser JL, Belsham DD, Sarruf DA, Schwartz MW, Bennett AM, Shanabrough M, Mobbs CV, Yang X, Gao XB, Horvath TL (2011) Peroxisome proliferation- associated control of reactive oxygen species sets melanocortin tone and feeding in diet-induced obesity. Nat Med 17:1121-1127.\nDiller ML, Kudchadkar RR, Delman KA, Lawson DH, Ford ML (2016) Balancing Inflammation: The Link between Th17 and Regulatory T Cells. Mediators Inflamm 2016:6309219.\ndo Carmo JM, da Silva AA, Wang Z, Fang T, Aberdein N, Perez de Lara CE, Hall JE (2017) Role of the brain melanocortins in blood pressure regulation. Biochim Biophys Acta Mol Basis Dis 1863:2508-2514.\nDodd GT, Michael NJ, Lee-Young RS, Mangiafico SP, Pryor JT, Munder AC, Simonds SE, Bruning JC, Zhang ZY, Cowley MA, Andrikopoulos S, Horvath TL, Spanswick D, Tiganis T (2018) Insulin regulates POMC neuronal plasticity to control glucose metabolism. Elife 7.\nDodd GT, Decherf S, Loh K, Simonds SE, Wiede F, Balland E, Merry TL, Munzberg H, Zhang ZY, Kahn BB, Neel BG, Bence KK, Andrews ZB, Cowley MA, Tiganis T(2015) Leptin and insulin act on POMC neurons to promote the browning of white\nfat. Cell 160:88-104.\nEerola K, Virtanen S, Vahatalo L, Ailanen L, Cai M, Hruby V, Savontaus M, Savontaus E(2018) Hypothalamic gamma-melanocyte stimulating hormone gene delivery reduces\nfat mass in male mice. J Endocrinol 239:19-31.\nEhlting C, Lai WS, Schaper F, Brenndorfer ED, Matthes RJ, Heinrich PC, Ludwig S,Blackshear PJ, Gaestel M, Haussinger D, Bode JG (2007) Regulation of suppressor of cytokine signaling 3 (SOCS3) mRNA stability by TNF-alpha involves activation of the MKK6/p38MAPK/MK2 cascade. J Immunol 178:2813-2826.\nEhses JA, Perren A, Eppler E, Ribaux P, Pospisilik JA, Maor-Cahn R, Gueripel X, Ellingsgaard H, Schneider MK, Biollaz G, Fontana A, Reinecke M, Homo-Delarche F, Donath MY (2007) Increased number of islet-associated macrophages in type 2 diabetes. Diabetes 56:2356-2370.\nFan W, Boston BA, Kesterson RA, Hruby VJ, Cone RD (1997) Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 385:165-168.\nFarooqi IS, Keogh JM, Yeo GS, Lank EJ, Cheetham T, O`Rahilly S (2003) Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med 348:1085-1095.\nFranceschi C, Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 69 Suppl 1:S4-9.\nGlick D, Barth S, Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221:3-12.\nGoverman J (2009) Autoimmune T cell responses in the central nervous system. Nat Rev Immunol 9:393-407.\nGuan HZ, Dong J, Jiang ZY, Chen X (2017) alpha-MSH Influences the Excitability of Feeding-Related Neurons in the Hypothalamus and Dorsal Vagal Complex of Rats. Biomed Res Int 2017:2034691.\nGur TL, Bailey MT (2016) Effects of Stress on Commensal Microbes and Immune System Activity. Adv Exp Med Biol 874:289-300.\nHaskell-Luevano C, Cone RD, Monck EK, Wan YP (2001) Structure activity studies of the melanocortin-4 receptor by in vitro mutagenesis: identification of agouti-related protein (AGRP), melanocortin agonist and synthetic peptide antagonist interaction determinants. Biochemistry 40:6164-6179.\nHavrankova J, Roth J, Brownstein M (1978) Insulin receptors are widely distributed in the central nervous system of the rat. Nature 272:827-829.\n\nHeo JW, No MH, Park DH, Kang JH, Seo DY, Han J, Neufer PD, Kwak HB (2017) Effects of exercise on obesity-induced mitochondrial dysfunction in skeletal muscle. Korean J Physiol Pharmacol 21:567-577.\nHoch M, Hirzel E, Lindinger P, Eberle AN, Linscheid P, Martin I, Peters T, Peterli R (2008) Weak functional coupling of the melanocortin-1 receptor expressed in human adipocytes. J Recept Signal Transduct Res 28:485-504.\nHorvath TL (2006) Synaptic plasticity in energy balance regulation. Obesity (Silver Spring) 14 Suppl 5:228S-233S.\nHorvath TL, Sarman B, Garcia-Caceres C, Enriori PJ, Sotonyi P, Shanabrough M, Borok E, Argente J, Chowen JA, Perez-Tilve D, Pfluger PT, Bronneke HS, Levin BE, Diano S, Cowley MA, Tschop MH (2010) Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity. Proc Natl Acad Sci U S A 107:14875-14880.\nHotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM (1995) Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 95:2409-2415.\nHuang XF, Han M, South T, Storlien L (2003) Altered levels of POMC, AgRP and MC4-R mRNA expression in the hypothalamus and other parts of the limbic system of mice prone or resistant to chronic high-energy diet-induced obesity. Brain Res 992:9-19.\nHuo L, Grill HJ, Bjorbaek C (2006) Divergent regulation of proopiomelanocortin neurons by leptin in the nucleus of the solitary tract and in the arcuate hypothalamic nucleus. Diabetes 55:567-573.\nHuynh MK, Kinyua AW, Yang DJ, Kim KW (2016) Hypothalamic AMPK as a Regulator of Energy Homeostasis. Neural Plast 2016:2754078.\nJung CH, Ro SH, Cao J, Otto NM, Kim DH (2010) mTOR regulation of autophagy. FEBS Lett 584:1287-1295.\nKatahira M, Iwasaki Y, Aoki Y, Oiso Y, Saito H (1998) Cytokine regulation of the rat proopiomelanocortin gene expression in AtT-20 cells. Endocrinology 139:2414-2422. Kaushik S, Arias E, Kwon H, Lopez NM, Athonvarangkul D, Sahu S, Schwartz GJ, Pessin JE, Singh R (2012) Loss of autophagy in hypothalamic POMC neurons impairs\nlipolysis. EMBO Rep 13:258-265.\nKievit P, Howard JK, Badman MK, Balthasar N, Coppari R, Mori H, Lee CE, Elmquist JK,Yoshimura A, Flier JS (2006) Enhanced leptin sensitivity and improved glucose homeostasis in mice lacking suppressor of cytokine signaling-3 in POMC- expressing cells. Cell Metab 4:123-132.\n\nKim JD, Leyva S, Diano S (2014) Hormonal regulation of the hypothalamic melanocortin system. Front Physiol 5:480.\nKim MS, Small CJ, Stanley SA, Morgan DG, Seal LJ, Kong WM, Edwards CM, Abusnana S, Sunter D, Ghatei MA, Bloom SR (2000) The central melanocortin system affects the hypothalamo-pituitary thyroid axis and may mediate the effect of leptin. J Clin Invest 105:1005-1011.\nKonner AC, Janoschek R, Plum L, Jordan SD, Rother E, Ma X, Xu C, Enriori P, Hampel B, Barsh GS, Kahn CR, Cowley MA, Ashcroft FM, Bruning JC (2007) Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metab 5:438-449.\nKrashes MJ, Koda S, Ye C, Rogan SC, Adams AC, Cusher DS, Maratos-Flier E, Roth BL, Lowell BB (2011) Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J Clin Invest 121:1424-1428.\nLee YS et al. (2006) A POMC variant implicates beta-melanocyte-stimulating hormone in the control of human energy balance. Cell Metab 3:135-140.\nLi J, Tang Y, Cai D (2012) IKKbeta/NF-kappaB disrupts adult hypothalamic neural stem cells to mediate a neurodegenerative mechanism of dietary obesity and pre-diabetes. Nat Cell Biol 14:999-1012.\nLidell ME, Betz MJ, Leinhard OD, Heglind M, Elander L, Slawik M, Mussack T, Nilsson D, Romu T, Nuutila P (2013) Evidence for two types of brown adipose tissue in humans. Nature medicine 19:631-634.\nLiesa M, Shirihai OS (2013) Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab 17:491-506.\nLin HV, Plum L, Ono H, Gutierrez-Juarez R, Shanabrough M, Borok E, Horvath TL, Rossetti L, Accili D (2010) Divergent regulation of energy expenditure and hepatic glucose production by insulin receptor in agouti-related protein and POMC neurons. Diabetes 59:337-346.\nLopez M (2018) Hypothalamic AMPK and energy balance. Eur J Clin Invest 48:e12996. Luquet S, Perez FA, Hnasko TS, Palmiter RD (2005) NPY/AgRP neurons are essential for\nfeeding in adult mice but can be ablated in neonates. Science 310:683-685.\nMa W, Fuentes G, Shi X, Verma C, Radda GK, Han W (2015) FoxO1 negatively regulates\nleptin-induced POMC transcription through its direct interaction with STAT3.\nBiochem J 466:291-298.\nMachado A, Herrera AJ, de Pablos RM, Espinosa-Oliva AM, Sarmiento M, Ayala A,Venero JL, Santiago M, Villaran RF, Delgado-Cortes MJ, Arguelles S, Cano J (2014) Chronic stress as a risk factor for Alzheimer`s disease. Rev Neurosci 25:785-804.\n\nMarrie RA, Fisk JD, Tremlett H, Wolfson C, Warren S, Tennakoon A, Leung S, Patten SB, Epidemiology CTit, Impact of Comorbidity on Multiple S (2015) Differences in the burden of psychiatric comorbidity in MS vs the general population. Neurology 85:1972-1979.\nMartin-Rodriguez E, Guillen-Grima F, Marti A, Brugos-Larumbe A (2015) Comorbidity associated with obesity in a large population: The APNA study. Obes Res Clin Pract 9:435-447.\nMedzhitov R (2008) Origin and physiological roles of inflammation. Nature 454:428-435. Michael NJ, Simonds SE, van den Top M, Cowley MA, Spanswick D (2017) Mitochondrial\nuncoupling in the melanocortin system differentially regulates NPY and POMC\nneurons to promote weight-loss. Mol Metab 6:1103-1112.\nMiller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B (2011) Meta-analysis of cytokine\nalterations in schizophrenia: clinical status and antipsychotic effects. Biol\nPsychiatry 70:663-671.\nMinokoshi Y, Alquier T, Furukawa N, Kim YB, Lee A, Xue B, Mu J, Foufelle F, Ferre P,\nBirnbaum MJ, Stuck BJ, Kahn BB (2004) AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428:569- 574.\nMoraes JC, Coope A, Morari J, Cintra DE, Roman EA, Pauli JR, Romanatto T, Carvalheira JB, Oliveira AL, Saad MJ, Velloso LA (2009) High-fat diet induces apoptosis of hypothalamic neurons. PLoS One 4:e5045.\nMorris RL, Hollenbeck PJ (1993) The regulation of bidirectional mitochondrial transport is coordinated with axonal outgrowth. J Cell Sci 104 ( Pt 3):917-927.\nMountjoy KG, Mortrud MT, Low MJ, Simerly RB, Cone RD (1994) Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain. Mol Endocrinol 8:1298-1308.\nNazarians-Armavil A, Chalmers JA, Lee CB, Ye W, Belsham DD (2014) Cellular insulin resistance disrupts hypothalamic mHypoA-POMC/GFP neuronal signaling pathways. J Endocrinol 220:13-24.\nObici S, Zhang BB, Karkanias G, Rossetti L (2002) Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med 8:1376-1382.\nOh DY, Olefsky JM (2012) Omega 3 fatty acids and GPR120. Cell Metab 15:564-565.\nOh TS, Cho H, Cho JH, Yu SW, Kim EK (2016) Hypothalamic AMPK-induced autophagy\nincreases food intake by regulating NPY and POMC expression. Autophagy\n12:2009-2025.\nOuchi N, Parker JL, Lugus JJ, Walsh K (2011) Adipokines in inflammation and metabolic disease. Nat Rev Immunol 11:85-97.\n\nPadilla SL, Carmody JS, Zeltser LM (2010) Pomc-expressing progenitors give rise to antagonistic neuronal populations in hypothalamic feeding circuits. Nat Med 16:403- 405.\nPadilla SL, Reef D, Zeltser LM (2012) Defining POMC neurons using transgenic reagents: impact of transient Pomc expression in diverse immature neuronal populations. Endocrinology 153:1219-1231.\nPark HK, Ahima RS (2014) Leptin signaling. F1000Prime Rep 6:73.\nParton LE, Ye CP, Coppari R, Enriori PJ, Choi B, Zhang CY, Xu C, Vianna CR, Balthasar\nN, Lee CE, Elmquist JK, Cowley MA, Lowell BB (2007) Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature 449:228- 232.\nPereira-Lancha LO, Coelho DF, de Campos-Ferraz PL, Lancha AH, Jr. (2010) Body fat regulation: is it a result of a simple energy balance or a high fat intake? J Am Coll Nutr 29:343-351.\nPfluger PT et al. (2015) Calcineurin Links Mitochondrial Elongation with Energy Metabolism. Cell Metab 22:838-850.\nPilling AD, Horiuchi D, Lively CM, Saxton WM (2006) Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Mol Biol Cell 17:2057-2068.\nPinto S, Roseberry AG, Liu H, Diano S, Shanabrough M, Cai X, Friedman JM, Horvath TL (2004) Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science 304:110- 115.\nProfaci CP, Munji RN, Pulido RS, Daneman R (2020) The blood-brain barrier in health and disease: Important unanswered questions. J Exp Med 217.\nRansohoff RM, Kivisakk P, Kidd G (2003) Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol 3:569-581.\nRashighi M, Harris JE (2015) Interfering with the IFN-gamma/CXCL10 pathway to develop new targeted treatments for vitiligo. Ann Transl Med 3:343.\nRodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192:547-556. Rohani MG, Parks WC (2015) Matrix remodeling by MMPs during wound repair. Matrix\nBiol 44-46:113-121.\nRomanatto T, Cesquini M, Amaral ME, Roman EA, Moraes JC, Torsoni MA, Cruz-Neto\nAP, Velloso LA (2007) TNF-alpha acts in the hypothalamus inhibiting food intake and increasing the respiratory quotient--effects on leptin and insulin signaling pathways. Peptides 28:1050-1058.\nRoselli-Rehfuss L, Mountjoy KG, Robbins LS, Mortrud MT, Low MJ, Tatro JB, Entwistle ML, Simerly RB, Cone RD (1993) Identification of a receptor for gamma melanotropin and other proopiomelanocortin peptides in the hypothalamus and\nlimbic system. Proc Natl Acad Sci U S A 90:8856-8860.\nRosin DL, Okusa MD (2011) Dangers within: DAMP responses to damage and cell death in kidney disease. J Am Soc Nephrol 22:416-425.\nSantoro A, Campolo M, Liu C, Sesaki H, Meli R, Liu ZW, Kim JD, Diano S (2017) DRP1 Suppresses Leptin and Glucose Sensing of POMC Neurons. Cell Metab 25:647-660.\nSchneeberger M, Gomis R, Claret M (2014) Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance. J Endocrinol 220:T25-46.\nSchneeberger M, Dietrich MO, Sebastian D, Imbernon M, Castano C, Garcia A, Esteban Y,\nGonzalez-Franquesa A, Rodriguez IC, Bortolozzi A, Garcia-Roves PM, Gomis R, Nogueiras R, Horvath TL, Zorzano A, Claret M (2013) Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance. Cell 155:172-187.\nSchwartz GJ (2000) The role of gastrointestinal vagal afferents in the control of food intake: current prospects. Nutrition 16:866-873.\nShaw RJ (2009) LKB1 and AMP-activated protein kinase control of mTOR signalling and growth. Acta Physiol (Oxf) 196:65-80.\nSingh M, Mukhopadhyay K (2014) Alpha-melanocyte stimulating hormone: an emerging anti-inflammatory antimicrobial peptide. Biomed Res Int 2014:874610.\nSmith AI, Funder JW (1988) Proopiomelanocortin processing in the pituitary, central nervous system, and peripheral tissues. Endocr Rev 9:159-179.\nStuart JA, Brindle KM, Harper JA, Brand MD (1999) Mitochondrial proton leak and the uncoupling proteins. J Bioenerg Biomembr 31:517-525.\nTarasov VV, Svistunov AA, Chubarev VN, Sologova SS, Mukhortova P, Levushkin D, Somasundaram SG, Kirkland CE, Bachurin SO, Aliev G (2019) Alterations of Astrocytes in the Context of Schizophrenic Dementia. Front Pharmacol 10:1612.\nTay SH, Mak A (2017) Diagnosing and attributing neuropsychiatric events to systemic lupus erythematosus: time to untie the Gordian knot? Rheumatology (Oxford) 56:i14-i23.\nThaler JP, Yi CX, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO, Zhao X, Sarruf DA, Izgur V, Maravilla KR, Nguyen HT, Fischer JD, Matsen ME, Wisse BE, Morton GJ, Horvath TL, Baskin DG, Tschop MH, Schwartz MW (2012) Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest 122:153-162.\nTiganis T (2013) PTP1B and TCPTP--nonredundant phosphatases in insulin signaling and glucose homeostasis. FEBS J 280:445-458.\nTimper K, Paeger L, Sanchez-Lasheras C, Varela L, Jais A, Nolte H, Vogt MC, Hausen AC, Heilinger C, Evers N, Pospisilik JA, Penninger JM, Taylor EB, Horvath TL,\nKloppenburg P, Bruning JC (2018) Mild Impairment of Mitochondrial OXPHOS Promotes Fatty Acid Utilization in POMC Neurons and Improves Glucose Homeostasis in Obesity. Cell Rep 25:383-397 e310.\nTuran S, Hughes C, Atay Z, Guran T, Haliloglu B, Clark AJ, Bereket A, Metherell LA (2012) An atypical case of familial glucocorticoid deficiency without pigmentation caused by coexistent homozygous mutations in MC2R (T152K) and MC1R (R160W). J Clin Endocrinol Metab 97:E771-774.\nVaamonde-Garcia C, Riveiro-Naveira RR, Valcarcel-Ares MN, Hermida-Carballo L, Blanco FJ, Lopez-Armada MJ (2012) Mitochondrial dysfunction increases inflammatory responsiveness to cytokines in normal human chondrocytes. Arthritis Rheum 64:2927-2936.\nVallee RB, Bloom GS (1991) Mechanisms of fast and slow axonal transport. Annu Rev Neurosci 14:59-92.\nvan der Kooy D, Koda LY, McGinty JF, Gerfen CR, Bloom FE (1984) The organization of projections from the cortex, amygdala, and hypothalamus to the nucleus of the solitary tract in rat. J Comp Neurol 224:1-24.\nVarela L, Horvath TL (2012) Leptin and insulin pathways in POMC and AgRP neurons that modulate energy balance and glucose homeostasis. EMBO Rep 13:1079-1086.\nVogt MC, Bruning JC (2013) CNS insulin signaling in the control of energy homeostasis and glucose metabolism - from embryo to old age. Trends Endocrinol Metab 24:76- 84.\nVozarova B, Weyer C, Hanson K, Tataranni PA, Bogardus C, Pratley RE (2001) Circulating interleukin-6 in relation to adiposity, insulin action, and insulin secretion. Obes Res 9:414-417.\nWang D, He X, Zhao Z, Feng Q, Lin R, Sun Y, Ding T, Xu F, Luo M, Zhan C (2015) Whole-brain mapping of the direct inputs and axonal projections of POMC and AgRP neurons. Front Neuroanat 9:40.\nWang T, Si Y, Shirihai OS, Si H, Schultz V, Corkey RF, Hu L, Deeney JT, Guo W, Corkey BE (2010) Respiration in adipocytes is inhibited by reactive oxygen species. Obesity (Silver Spring) 18:1493-1502.\nWang Z, do Carmo JM, da Silva AA, Bailey KC, Aberdein N, Moak SP, Hall JE (2019) Role of SOCS3 in POMC neurons in metabolic and cardiovascular regulation. Am J Physiol Regul Integr Comp Physiol 316:R338-R351.\nWhittle AJ, Lopez M, Vidal-Puig A (2011) Using brown adipose tissue to treat obesity - the central issue. Trends Mol Med 17:405-411.\nWikstrom JD, Mahdaviani K, Liesa M, Sereda SB, Si Y, Las G, Twig G, Petrovic N, Zingaretti C, Graham A, Cinti S, Corkey BE, Cannon B, Nedergaard J, Shirihai OS(2014) Hormone-induced mitochondrial fission is utilized by brown adipocytes as an\namplification pathway for energy expenditure. EMBO J 33:418-436.\nXu AW, Ste-Marie L, Kaelin CB, Barsh GS (2007) Inactivation of signal transducer and activator of transcription 3 in proopiomelanocortin (Pomc) neurons causes decreased pomc expression, mild obesity, and defects in compensatory refeeding. Endocrinology 148:72-80.\nXu AW, Kaelin CB, Morton GJ, Ogimoto K, Stanhope K, Graham J, Baskin DG, Havel P, Schwartz MW, Barsh GS (2005) Effects of hypothalamic neurodegeneration on energy balance. PLoS Biol 3:e415.\nZhan C, Zhou J, Feng Q, Zhang JE, Lin S, Bao J, Wu P, Luo M (2013) Acute and long-term suppression of feeding behavior by POMC neurons in the brainstem and hypothalamus, respectively. J Neurosci 33:3624-3632.\nZhang QS, Heng Y, Yuan YH, Chen NH (2017) Pathological alpha-synuclein exacerbates the progression of Parkinson`s disease through microglial activation. Toxicol Lett 265:30-37.\nZhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D (2008) Hypothalamic IKKbeta/NF- kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell 135:61-73.\nZheng H, Wu D, Wu X, Zhang X, Zhou Q, Luo Y, Yang X, Chock CJ, Liu M, Yang XO (2018) Leptin Promotes Allergic Airway Inflammation through Targeting the Unfolded Protein Response Pathway. Sci Rep 8:8905.
描述: 碩士
國立政治大學
神經科學研究所
107754002
資料來源: http://thesis.lib.nccu.edu.tw/record/#G0107754002
資料類型: thesis
Appears in Collections:學位論文

Files in This Item:
File Description SizeFormat
400201.pdf2.22 MBAdobe PDF2View/Open
Show full item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.