Please use this identifier to cite or link to this item:

Title: Complexity of Shift Spaces on Semigroups
Authors: 班榮超
Ban, Jung-Chao
Chang, Chih-Hung
Huang, Yu-Hsiung
Contributors: 應數系
Date: 2020-04
Issue Date: 2021-01-25 14:24:35 (UTC+8)
Abstract: Let G=⟨S|RA⟩G=⟨S|RA⟩ be a semigroup with generating set S and equivalences RARA among S determined by a matrix A. This paper investigates the complexity of G-shift spaces by yielding the Petersen–Salama entropies [defined in Petersen and Salama (Theoret Comput Sci 743:64–71, 2018)]. After revealing the existence of Petersen–Salama entropy of G-shift of finite type (G-SFT), the calculation of Petersen–Salama entropy of G-SFT is equivalent to solving a system of nonlinear recurrence equations. The complete characterization of Petersen–Salama entropies of G-SFTs on two symbols is addressed, which extends (Ban and Chang in On the topological entropy of subshifts of finite type on free semigroups, 2018. arXiv:1702.04394) in which G is a free semigroup.
Relation: Journal of Algebraic Combinatorics
Data Type: article
Appears in Collections:[應用數學系] 期刊論文

Files in This Item:

File Description SizeFormat
121.pdf383KbAdobe PDF99View/Open

All items in 學術集成 are protected by copyright, with all rights reserved.

社群 sharing