Please use this identifier to cite or link to this item: https://ah.nccu.edu.tw/handle/140.119/136571


Title: 探討中國半導體供應鏈上中下游股價之波動外溢效果
Exploring the volatility spillover effects among the stock price of the Upper, Middle and Lower Stream of Semiconductor Industry in China
Authors: 杜婉瓊
Du, Wan-Qiong
Contributors: 林靖
李慧琳

Lin, Jin
Lee, Huey-Lin

杜婉瓊
Du, Wan-Qiong
Keywords: GARCH-MIDAS模型
中美科技戰
外溢效果
中國半導體產業
股價波動
GARCH-MIDAS model
US-China scientific and technological war
spillover effect
Chinese semiconductor industry
stock price fluctuation
Date: 2021
Issue Date: 2021-08-04 16:01:22 (UTC+8)
Abstract: 自中美科技戰爆發以來,美國制裁了包括華為和中芯國際在內的多家中國半導體公司以阻止其在該產業的發展,對中國半導體產業產生巨大影響。中國政府也採取多項政策以扶持半導體產業的國產化。因應經濟事件的發生和一系列政策的出台,中國半導體產業股票發生巨大波動。本研究以該研究背景出發,欲從產業的角度探討中國半導體產業鏈(上游對中游、中游對下游)股價波動關係。本研究運用GARCH-MIDAS模型實證分析2016年11月1日至2021年3月25日中國半導體產業鏈之外溢效果。全樣本期間涵蓋中美科技戰與COVID-19兩個事件。本研究蒐集八家IC設計公司、兩家晶圓代工公司以及三家封裝測試廠共十三家半導體上市公司股票收盤價數據,並根據公司年度報表的「業務概要」裡公司目前能實現的工藝技術依據半導體製程構建中國半導體供應鏈。根據GARCH-MIDAS模型實證結果顯示,在中美科技戰期間,大部分IC設計公司的已實現波動會對中游晶圓代工公司產生長期正向的波動外溢效果;中游晶圓代工廠的低頻報酬率波動會對下游封裝測試廠商產生負向的波動外溢效果。上述證實了半導體垂直供應鏈之間存在股價波動外溢效果,因此當投資人在做投資組合時,應考慮到半導體產業投資標的之間的長期波動關係,以便進行相應套利和避險的舉措。
Since the outbreak of the US-China scientific and technological war, the United States has imposed sanctions on several Chinese semiconductor companies, including Huawei and SMIC, preventing their development in the industry. It has had a huge impact on the Chinese semiconductor industry. Due to the occurrence of US-China scientific and technological war and a series of Chinese government’s policies, the stock price of China's semiconductor industry fluctuated greatly. The purpose of this paper is to explore the fluctuation among various segments of China's semiconductor industry chain (upstream to midstream and midstream to downstream) from the perspective of industry. This study collected the data from November 1, 2016 to March 25, 2021 and applied GARCH-MIDAS model to analyze the spillover effects of semiconductor industry chain. In this study, we collect the closing price of 13 listed Semiconductor Companies from eight IC design companies, two wafer foundry companies and three Assembly and testing companies, and build a Chinese semiconductor supply chain based on the current technology that the companies can be achieved in the annual report of the company. Based on the GARCH-MIDAS model, the empirical results show that most of the IC design companies’ fluctuations will have significantly positive volatility spillover effects on wafer foundry companies in the long term during the US-China scientific and technological war. Low-frequency fluctuations in the Assembly and testing companies will have significantly negative fluctuation spillover effects on Assembly and testing companies in the long term. The results confirm the spillover effect of stock price fluctuations within vertical semiconductor supply chains. Therefore, when making a portfolio, investors should consider the long-term fluctuation relationship among different links of semiconductor industry for the purpose of making appropriate arbitrage and hedge measures.
Reference: Asgharian, H., Hou, A. J., & Javed, F. (2013). The importance of the macroeconomic variables in forecasting stock return variance: A GARCH‐MIDAS approach.
Journal of Forecasting,32(7), 600-612.
Ayers, J. B. (2001). Supply chain strategies. In Making Supply Chain Management
Work(pp. 125-136). Auerbach Publications.
Black, F. (1976). Studies of stock market volatility changes. Proceedings of the American statistical association business and economic statistics section.
Bollerslev T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of econometrics,31(3), 307-327.
Bown, C. P. (2020). How the United States marched the semiconductor industry into its trade war with China. East Asian Economic Review, 24(4), 349-388.
Chen, T. L., Cheng, C. H., & Teoh, H. J. (2007). Fuzzy time-series based on Fibonacci sequence for stock price forecasting. Physica A: Statistical Mechanics and its Applications, 380, 377-390.
Chou, T. L., Chang, J. Y., & Li, T. C. (2014). Government support, FDI clustering and semiconductor sustainability in china: Case studies of Shanghai, Suzhou and Wuxi in the Yangtze delta. Sustainability, 6(9), 5655-5681.
Conrad, C., Custovic, A., & Ghysels, E. (2018). Long-and short-term cryptocurrency volatility components: A GARCH-MIDAS analysis. Journal of Risk and Financial Management, 11(2), 23.
Conrad, C., & Kleen, O. (2020). Two are better than one: Volatility forecasting using multiplicative component GARCH‐MIDAS models.Journal of Applied Econometrics, 35(1), 19-45.
Delnavaz, B., & Fallah Shams, M. (2019). Studying Volatility Risk Transmission in Automatable Supply Chain Companies in the Tehran Stock Exchange. International Journal of Finance & Managerial Accounting, 3(12), 29-37.
Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica: Journal of the econometric society, 987-1007.
Engle, R. F., Ghysels, E., & Sohn, B. (2013). Stock market volatility and macroeconomic fundamentals. Review of Economics and Statistics, 95(3), 776-797.
Engle, R. F., & Ng, V. K. (1993). Measuring and testing the impact of news on volatility. The journal of finance, 48(5), 1749-1778.
Feng, S., Li, H., Qi, Y., Jia, J., Zhou, G., Guan, Q., & Liu, X. (2019). Detecting the interactions among firms in distinct links of the industry chain by motif. Journal of Statistical Mechanics: Theory and Experiment, 2019(12), 123403.
Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. The journal of finance,48(5), 1779-1801.
Grimes, S., & Du, D. (2020). China's emerging role in the global semiconductor value chain. Telecommunications Policy, 101959.
Hendricks, K. B., Jacobs, B. W., & Singhal, V. R. (2020). Stock market reaction to supply chain disruptions from the 2011 Great East Japan Earthquake. Manufacturing & Service Operations Management, 22(4), 683-699.
Huang, C. Y., & Lin, P. K. (2014). Application of integrated data mining techniques in stock market forecasting. Cogent Economics & Finance, 2(1), 929505.
Kim, H. M., & O’Connor, K. (2018). Foreign direct investment flows and urban dynamics in a developing country: a case study of Korean activities in Suzhou, China. International Planning Studies.
Nieh, C. C., Shao-Bin, L., & Chuang, H. M. (2005). A study on the interrelationships among the stock indexes of the upper, middle and lower stream of semiconductor industry in Taiwan. Tai Da Guan Li Lun Cong, 15(2), 25.
Pan, W., Zhao, H., & Miu, L. (2019). An empirical study on supply chain risk contagion effect based on VAR-GARCH (1, 1)–BEKK model. Wireless Personal Communications, 109(2), 761-775.
Pan, Z., Wang, Y., Wu, C., & Yin, L. (2017). Oil price volatility and macroeconomic fundamentals: A regime switching GARCH-MIDAS model. Journal of Empirical Finance,43, 130-142.
VerWey, J. (2019). Chinese semiconductor industrial policy: Past and present.J. Int'l Com. & Econ., 1.
VerWey, J. (2019). Chinese semiconductor industrial policy: prospects for future success. J. Int'l Com. & Econ., 1.
Wang, C. H., & Chen, J. Y. (2019). Demand forecasting and financial estimation considering the interactive dynamics of semiconductor supply-chain companies. Computers & Industrial Engineering, 138, 106104.
Wang, C. T., & Chiu, C. S. (2014). Competitive strategies for Taiwan's semiconductor industry in a new world economy. Technology in Society, 36, 60-73.
Wei, Y., Yu, Q., Liu, J., & Cao, Y. (2018). Hot money and China’s stock market volatility: Further evidence using the GARCH–MIDAS model. Physica A: Statistical Mechanics and Its Applications, 492, 923-930.
Wu, S. Q., Tsao, C. C., Chang, P. C., Fan, C. Y., Chen, M. H., & Zhang, X. (2017, July). A study of patent analysis for stock price prediction. In 2017 4th International Conference on Information Science and Control Engineering (ICISCE) 115-119. IEEE.
Xu, Q., Bo, Z., Jiang, C., & Liu, Y. (2019). Does Google search index really help predicting stock market volatility? Evidence from a modified mixed data sampling model on volatility. Knowledge-Based Systems, 166, 170-185.
Yang, C., & Hung, S. W. (2003). Taiwan's dilemma across the Strait: lifting the ban on semiconductor investment in China. Asian Survey,43(4), 681-696.
Yinug, F. (2009). Challenges to foreign investment in high-tech semiconductor production in China. J. Int'l Com. & Econ.,2, 97.
Zhang, Y. J., & Wang, J. L. (2019). Do high-frequency stock market data help forecast crude oil prices? Evidence from the MIDAS models. Energy Economics,78, 192-201.
Zhou, X., Chen, H., Chai, J., Wang, S., & Lev, B. (2020). Performance evaluation and prediction of the integrated circuit industry in China: A hybrid method. Socio-Economic Planning Sciences, 69, 100712.
劉祥熹, & 劉浩宇. (2012). 台灣 TFT-LCD 產業上中下游股價之長期記憶, 關聯性與波動外溢效果之研究: FIEC-HYGARCH 模型之應用.應用經濟論叢, (92), 119-162.
Description: 碩士
國立政治大學
經濟學系
108258048
Source URI: http://thesis.lib.nccu.edu.tw/record/#G0108258048
Data Type: thesis
Appears in Collections:[經濟學系] 學位論文

Files in This Item:

File Description SizeFormat
804801.pdf3192KbAdobe PDF0View/Open


All items in 學術集成 are protected by copyright, with all rights reserved.


社群 sharing