Please use this identifier to cite or link to this item:

Title: 基於性格特質的社群討論回應生成
Personality-based Response Generation for Social Discussion
Authors: 陳定宇
Chen, Ting-Yu
Contributors: 黃佳慧

Huang, Chia-Hui
Huang, Hen-Hsen

Chen, Ting-Yu
Keywords: 對話生成
Dialog generation
Discriminative learning
Date: 2021
Issue Date: 2021-09-02 15:37:33 (UTC+8)
Abstract: 在對話生成的研究中,雖然有部份研究針對個人化的文字生成有所探討,但主要專注於個人化的語言風格、或是職業性別等個人化的背景資訊。本研究嘗試了另一個向度的個人化文字生成,產生具有特定人格特質的文字,模擬不同性格的人,在社群媒體上的發文。本研究利用現有的資料集,再爬取社群媒體平台上的討論串,建立訓練資料集。為了強化文字生成模型對不同人格特質的建模,本研究發展了創新的鑑別學習法,引入新的損失函數,讓模型不僅能生成通順、合理的文字,並且呈現較為明顯的個人特質。實驗結果經自動與人工驗證,顯示本研究所提出之方法的效度。
Previous works that attempt to emulate the human properties in dialog generation mostly focus on the incorporation of personal information or language style in the generated text. In this work, we aim to introduce a different kind of human properties in dialog generation, the personalities, to generate the response in social discussion according to a certain type of personality. We create a corpus that was crawled from a social platform with the label of personalities for the users. A novel discriminative learning approach is proposed to enhance the neural generation model toward the extrovert or the introvert personality. Both automatic and human evaluation are conducted for showing the effectiveness of our approach.
Reference: AbuShawar, B., & Atwell, E. (2015). ALICE chatbot: Trials and outputs. Computación y Sistemas, 19(4), 625-632

Adiwardana, D., & Luong, T. (2020). Towards a Conversational Agent that Can Chat About… Anything. Google AI Blog.

Bogatu, A., Rotarescu, D., Rebedea, T., & Ruseti, S. (2015). Conversational Agent that Models a Historical Personality. In RoCHI (pp. 81-86).

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078..

Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794).

Furnham, A. (1996). The big five versus the big four: the relationship between the Myers-Briggs Type Indicator (MBTI) and NEO-PI five factor model of personality. Personality and individual differences, 21(2), 303-307.

Gjurković, M., & Šnajder, J. (2018, June). Reddit: A gold mine for personality prediction. In Proceedings of the Second Workshop on Computational Modeling of People’s Opinions, Personality, and Emotions in Social Media (pp. 87-97).

Gaikwad, S. (2019). Chatbots with Personality Using Deep Learning

Gao, X., Zhang, Y., Galley, M., Brockett, C., & Dolan, B. (2020). Dialogue response ranking training with large-scale human feedback data. arXiv preprint arXiv:2009.06978.

Keskar, N. S., McCann, B., Varshney, L. R., Xiong, C., & Socher, R. (2019). Ctrl: A conditional transformer language model for controllable generation. arXiv preprint arXiv:1909.05858.

Louridas, A., Halstead, A., & Beddoes-Jones, F. (2002). An evaluation of the thinking preferences of engineers to assist in their personal and professional development. Greece 4th International Conference on Education, Athens

Luyckx, K., & Daelemans, W. (2008, August). Authorship attribution and verification with many authors and limited data. In Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008) (pp. 513-520).

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI blog, 1(8), 9.

Wright, D. (2014). Stylistics versus Statistics: A corpus linguistic approach to combining techniques in forensic authorship analysis using Enron emails (Doctoral dissertation, University of Leeds)

Weizenbaum, J. (1966). ELIZA—a computer program for the study of natural language communication between man and machine. Communications of the ACM, 9(1), 36-45

Wallace, R. S. (2009). The anatomy of ALICE. In Parsing the turing test (pp.181-210). Springer, Dordrecht.


Zhou, L., Gao, J., Li, D., & Shum, H. Y. (2020). The design and implementation of xiaoice, an empathetic social chatbot. Computational Linguistics, 46(1), 53-93.

Zhang, Y., Sun, S., Galley, M., Chen, Y. C., Brockett, C., Gao, X., ... & Dolan, B.(2019). Dialogpt: Large-scale generative pre-training for conversational response generation. arXiv preprint arXiv:1911.00536.
Description: 碩士
Source URI:
Data Type: thesis
Appears in Collections:[統計學系] 學位論文

Files in This Item:

File Description SizeFormat
400401.pdf5652KbAdobe PDF0View/Open

All items in 學術集成 are protected by copyright, with all rights reserved.

社群 sharing