Please use this identifier to cite or link to this item: https://ah.nccu.edu.tw/handle/140.119/137042


Title: 應用大數據分析商用不動產市場、股票市場情緒與收益之交叉關聯
Big Data Analytics: How the Commercial Real Estate and Stock Market’s Sentiment Affects the Commercial Real Estate Investment
Authors: 黃瀞誼
Huang, Ching-Yi
Contributors: 林左裕
黃瀞誼
Huang, Ching-Yi
Keywords: 網路聲量情緒
社群媒體
新聞媒體
商用不動產市場
向量自我迴歸
Online Sentiment
Social media
News Media
Commercial Real Estate Market
Vector Auto Regression (VAR)
Date: 2021
Issue Date: 2021-09-02 17:34:03 (UTC+8)
Abstract: 本研究以網路討論熱度作為市場需求的參考,主要探討商用不動產市場、股票市場之網路聲量情緒對各市場收益之影響,以向量自我迴歸模型(VAR)分析市場情緒與價格之動態關聯。另考慮到商用不動產市場與股票市場情緒變數蒐集之原始聲量來源眾多,蒐集網站如Facebook、Instagram、PTT、Mobile 01、Dcard、ETtoday、Linetoday…等,惟各網站之屬性不同,像是Facebook、Instagram、PTT、Mobile 01與Dcard多半是自發性討論或針對特定議題進行回覆與留言,為較開放且隨機之言論;ETtoday與Linetoday則是電子新聞報導,其中可能夾雜廣告、宣傳或教育之性質,故本研究將網路聲量進行分類,將來源細分為多半是自發性發言之「網路社群」與具有宣傳、廣告性質之「新聞媒體」等二來源集,分別建構情緒指標,嘗試以兩種不同性質的聲量屬性角度探討商用不動產市場與股票市場情緒與價格之關聯性。
實證結果發現,前兩個月至前四個月的商用不動產市場「網路社群」聲量情緒將正向影響當期的商用不動產市場收益;而前兩個月與前三個月的商用不動產市場「新聞媒體」聲量情緒負向影響當期的商用不動產市場收益,顯示網路社群與新聞媒體之討論內容與熱度確實對於商用不動產市場具解釋效果。此外,本研究亦發現前兩個月的股票產市場「新聞媒體」聲量情緒將正向影響當期的商用不動產市場收益,換句話說,股票市場之聲量情緒可以用於預測未來商用不動產市場之發展趨勢,證實股票市場與商用不動產市場間存在情緒外溢效應。透過網路社群或新聞媒體之討論情緒不僅可補足過去單靠總體經濟變數所無法解釋之市場意向,亦提供商用不動產市場一新穎的預測指標。本研究之實證結果可提供政府、投資者或不動產相關從業人員在觀察市場、進行投資決策或政策制定之參考依據。
This research uses the popularity of internet discussions as a reference for market demand, and explores the impact of online sentiment on the price of the commercial real estate market and the stock market, as well as analyzes the dynamic relationship between the sentiment of the market and the revenue of the market with the Vector Auto Regression model. In addition, this research divides the online sentiment into two source sets: " social media" that involve spontaneous discussions and "news media" that potentially involve propaganda and advertising.
The empirical results show that the sentiment of the " social media " in the commercial real estate market during last two months to last four months positively affects the current commercial real estate market revenue; while the sentiment of the "news media" in the real estate market during last two months and last three months negatively affects the current commercial real estate market revenue, which also indicates that the content and the popularity of discussions between the internet and the news media do have an explanatory effect on the commercial real estate market. Moreover, this study shows that online sentiment of the "news media" in the stock market during last two months positively affects the current commercial real estate market earnings. In other words, the development trend of the market confirms that there is a spillover effect between the stock market and the commercial real estate market.
Reference: 一、中文參考文獻
王信達,2010,「從兩岸總體經濟環境探討臺北市上海市辦公市場租金影
響之實證分析」,淡江大學中國大陸研究所碩士論文。
林左裕,2019,「應用網路搜尋行為預測房地產市場」,應用經濟論叢,
第105期。
林左裕、程于芳,2014,「影響不動產市場之從眾行為與總體經濟因素之
研究」,應用經濟論叢,第95期。
張曉慈,2010,「影響不動產報酬波動性之總體經濟因素分析」,國立政
治大學地政研究所碩士論文。
楊奕農,2009,「時間序列分析 經濟與財務上之應用」。頁 99-123、
205-235、331-392、395-446,台北,雙葉書廊有限公司。
鄧筱蓉,2017,房市泡沫與總體經濟關係,JOURNAL OF HOUSING:26(2).
薄有為、鍾懿萍,2011,「辦公大樓租金影響因素之研究-以上海市甲級辦
公大樓為例」,『物業管理學會論文集』, 13-22.

二、英文參考文獻
Affuso, E., and Lahtinen, K. D., 2019, “Social media
sentiment and market behavior”, Empirical Economics, 57(1):105-127.
Agyemang, A., Chowdhury, I., and Balli, F., 2021,“Quantifying Return Spillovers in Global Real Estate
Markets”, Journal of Housing Economics, 101781.
Akinsomi, O., Mkhabela, N., and Taderera, M., 2018, “The
role of macro-economic indicators in explaining direct commercial real estate returns: evidence from South Africa”, Journal of Property Research, 35(1):28-52.
Baker, M., and Wurgler, J., 2006, “Investor sentiment and the cross‐section of stock returns”, The journal of Finance, 61(4):1645-1680.
Baker, M., Wurgler, J., and Yuan, Y., 2012, “Global, local, and contagious investor sentiment”, Journal of financial economics, 104(2):272-287.
Beauchamp, N.,2017, “Predicting and interpolating state‐level polls using Twitter textual data”, American Journal of Political Science, 61(2):490-503.
Bhuriya, D., Kaushal, G., Sharma, A., and Singh, U., 2017, “Stock market predication using a linear regression”, In 2017 international conference of electronics, communication and aerospace technology (ICECA), (Vol. 2, pp. 510-513). IEEE.
Bhuiyan, E. M., and Chowdhury, M., 2020, “Macroeconomic variables and stock market indices: Asymmetric dynamics in the US and Canada”, The Quarterly Review of Economics and Finance, 77:62-74.
Carosia, A. E. O., Coelho, G. P., and Silva, A. E. A., 2020, “Analyzing the Brazilian financial market through Portuguese sentiment analysis in social media”, Applied Artificial Intelligence, 34(1):1-19.
Checkley, M. S., Higón, D. A., and Alles, H., 2017, “The hasty wisdom of the mob: How market sentiment predicts stock market behavior”, Expert Systems with applications, 77:256-263.
Chen, M. C., and K. Patel , 2002 , "The Empirical Analysis of Determination of Housing Prices in the Taipei Area", Taiwan Economic Review, 30(4):563-594.
De Long, J. B., Shleifer, A., Summers, L. H., and Waldmann, R. J.,1990,” Noise trader risk in financial markets”, Journal of political Economy, 98(4): 703-738.
Devos, E., Ong, S. E., Spieler, A. C., and Tsang, D., 2013,” REIT institutional ownership dynamics and the financial crisis”, The journal of real estate finance and economics, 47(2): 266-288.
Dietzel, M. A., 2016, “Sentiment-based predictions of housing market turning points with Google trends”, International Journal of Housing Markets and Analysis.
Freybote, J., and Seagraves, P.A., 2017, “Heterogeneous investor sentiment and institutional real estate investments”, Real Estate Economics, 45(1):154-176.
Freybote, J., and Seagraves, P., 2018, “The impact of investor sentiment on commercial real estate market liquidity”, Journal of Real Estate Research, 40(4):597-628.
Filis, G.,2010, ”Macro economy, stock market and oil prices: do meaningful relationships exist among their cyclical fluctuations? ” Energy Economics, 32(4): 877-886.
Gallimore, P., and Gray, A., 2002, “The role of investor sentiment in property investment decisions”, Journal of Property Research, 19(2):111-120.
Giordano, G., and Primerano, I., 2018, “The use of network analysis to handle semantic differential data”, Quality & Quantity, 52(3):1173-1192.
González-Sánchez, M., and Morales de Vega, M. E., 2021, “Influence of Bloomberg’s Investor Sentiment Index: Evidence from European Union Financial Sector. Mathematics”,9(4):297.
Hatfield, E., Cacioppo, J. T., and Rapson, R. L., 1993, “Emotional contagion”, Current directions in psychological science, 2(3):96-100.
Hausler, J., Ruscheinsky, J., and Lang, M., 2018, “News-based sentiment analysis in real estate: a machine learning approach”, Journal of Property Research, 35(4):344-371.
Heiden, S., Klein, C., and Zwergel, B., 2013, “Beyond fundamentals: investor sentiment and exchange rate forecasting”, European Financial Management, 19(3):558-578.
Heinig, S., and Nanda, A., 2018, “Measuring sentiment in real estate–a comparison study”, Journal of Property Investment Finance.
Heston, S. L., and Sinha, N. R., 2017, “News vs. sentiment: Predicting stock returns from news stories”, Financial Analysts Journal, 73(3):67-83.
Hoskins, N., Higgins, D., and Cardew, R., 2004, “Macroeconomic variables and real estate returns: an international comparison”, The Appraisal Journal, 72(2):163.
Hudson, Y., and Green, C. J., 2015, “Is investor sentiment contagious? International sentiment and UK equity returns”, Journal of Behavioral and Experimental Finance, 5:46-59.
Hurvich, C. M., Tsai, and C. L., 1989, "Regression and time series model selection in small samples", Biometrika, 76(2):297-307.
Kalyani, J., Bharathi, P., and Jyothi, P., 2016, “Stock trend prediction using news sentiment analysis”, arXiv preprint arXiv:1607.01958.
Ke, Q., and Sieracki, K, 2019, “Exploring sentiment-driven trading behaviour of different types of investors in the London office market”, Journal of Property Research, 36(2):186-205.
Lin, C. Y., Rahman, H., and Yung, K., 2009, “Investor sentiment and REIT returns”, The journal of real estate finance and economics, 39(4):450.
Ling, D. C., Naranjo, A., and Scheick, B., 2014, “Investor sentiment, limits to arbitrage and private market returns”, Real Estate Economics, 42(3):531-577.
Mehta, P., and Pandya, S., 2020, "A review on sentiment analysis methodologies, practices and applications", International Journal of Scientific and Technology Research, 9(2):601-609.Mehta, P., Pandya, S., Kotecha, K., 2021, “Harvesting social media sentiment analysis to enhance stock market prediction using deep learning”, PeerJ Computer Science, 7: e476.
Olanrele, O. O., Fateye, O. B., Adegunle, T. O., Ajayi, C. A., Said, R., and Baaki, K., 2020, “Causal effects of macroeconomic predictors on real estate investment trust’s (REIT’s) performance in Nigeria”, Pacific Rim Property Research Journal, 26(2):149-171.
Pagan, A. R., and Wickens, M. R.,1989, “A survey of some recent econometric methods”, The Economic Journal, 99(398): 962-1025.
Porshnev, A., Redkin, I., and Shevchenko, A., 2013, “Machine learning in prediction of stock market indicators based on historical data and data from twitter sentiment analysis”, In 2013 IEEE 13th International Conference on Data Mining Workshops (pp. 440-444). IEEE.
Ramanathan, V., and Meyyappan, T., 2019, “Prediction of Individual’s Character in Social Media Using Contextual Semantic Sentiment Analysis”, Mobile Networks and Applications, 24(6):1763-1777.
Ruscheinsky, J. R., Lang, M., and Schäfers, W., 2018, “Real estate media sentiment through textual analysis”, Journal of Property Investment & Finance.
Shleifer, A., and Summers, L. H.,1990,” The noise trader approach to finance”, Journal of Economic perspectives, 4(2): 19-33.
Stein, J. C.,1996,” Rational capital budgeting in an irrational world”, National bureau of economic research, No. w5496.
Song, Y., Ji, Q., Du, Y. J., and Geng, J. B., 2019, “The dynamic dependence of fossil energy, investor sentiment and renewable energy stock markets”, Energy Economics, 84: 104564.
Su, X., and Li, Y., 2020, “Dynamic sentiment spillovers among crude oil, gold, and Bitcoin markets: Evidence from time and frequency domain analyses”, Plos one, 15(12): e0242515.
Tabassum, S., Pereira, F. S., Fernandes, S., and Gama, J., 2018, “Social network analysis: An overview”, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(5):e1256.
Vargas, M. R., De Lima, B. S., and Evsukoff, A. G., 2017, “Deep learning for stock market prediction from financial news articles”, In 2017 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA) (pp. 60-65). IEEE.
Vashishtha, S., and Susan, S.,2019, “Fuzzy rule based unsupervised sentiment analysis from social media posts”, Expert Systems with Applications, 138, 112834.
Walker, C. B., 2014, “Housing booms and media coverage”, Applied Economics, 46(32):3954-3967.
Yao, C. Z., and Li, H. Y., 2020, “Time-varying lead–lag structure between investor sentiment and stock market”, The North American Journal of Economics and Finance, 52: 101148
Description: 碩士
國立政治大學
地政學系
108257024
Source URI: http://thesis.lib.nccu.edu.tw/record/#G0108257024
Data Type: thesis
Appears in Collections:[地政學系] 學位論文

Files in This Item:

File SizeFormat
702401.pdf2181KbAdobe PDF0View/Open


All items in 學術集成 are protected by copyright, with all rights reserved.


社群 sharing