政大學術集成


Please use this identifier to cite or link to this item: https://ah.nccu.edu.tw/handle/140.119/137046


Title: 應用手持式光達儀於市地地籍現況測量
Applying Handheld LiDAR Scanner to Urban Detail Survey in Cadastral Survey
Authors: 侯凱文
Hou, Kai-Wen
Contributors: 邱式鴻
Chio, Shih-Hong
侯凱文
Hou, Kai-Wen
Keywords: 地籍測量
現況測量
手持式光達儀
率定
Cadastral Survey
Detail Survey
Handheld LiDAR
Calibration
Date: 2021
Issue Date: 2021-09-02 17:36:48 (UTC+8)
Abstract: 現況測量於地籍測量作業主要利用測量之現況成果與圖解數化地籍圖經過套疊分析,解決地籍圖之圖地不符問題。現行地籍相關之現況測量多以全測站儀、衛星定位儀施測,但此方法耗費大量人力、時間成本,且無法測得大範圍現況資料;而光達儀器能夠在短時間獲取大量之三維點雲資料,具有高精度、高效率、可視覺化等優點,藉此辨識地物特徵並進而於內業執行現況測量,然而地面光達儀器於市地狹窄、蜿蜒巷弄之現況測量遭遇許多環境限制。本研究使用之手持式光達儀,為一種移動式測繪系統,其採用SLAM演算法進行定位,不需依賴GNSS資料,故可應用於都市地區中狹窄蜿蜒之巷弄環境。本研究首先藉由基於平面特徵之率定方式計算手持式光達儀之乘常數與加常數兩個測距系統誤差參數,以提升手持式光達點雲精度;接著使用手持式光達儀於選定之試驗區進行現況資料蒐集,經點雲過濾與測距系統誤差參數改正後,利用VBS-RTK測得之地面控制點將現況點雲以剛體六參數轉換至TWD97地籍坐標系,並以人工數化方式產製現況成果圖。成果顯示手持式光達點雲數化之現況位置約97%與地測現況點誤差小於15公分,已足夠使用於圖解數化區之現況測量;經率定計算之測距系統誤差改正後,在不考慮改正前後誤差差值小於5毫米的資料下,約73%數化現況位置與地測現況點誤差相較改正前降低,顯示經測距系統誤差改正可進一步降低大部分手持式光達點雲之誤差;最後針對人工數化之現況線段與RANSAC自動化擬合之現況線段進行比較分析,成果表明利用RANSAC可以由現況點雲中去除牆面附著物並擬合牆面位置,RANSAC擬合線段與人工數化線段垂直誤差約介於1至2公分,顯示兩種產製方式皆能獲得可靠現況位置,得以用於圖解數化區之現況線段產製。
The results of detail survey for cadastral survey are used for the overlap analysis with the digitized graphic cadastral maps to solve the problem of inconsistence between cadastral maps and current land situation. The methods of detail survey are mostly employed the total stations and satellite positioning instruments, but these methods are labor-intensive and time-consuming. Meanwhile, these instruments cannot collect a wide range of land detail data. This study applied the handheld LiDAR scanner, which uses SLAM algorithm for positioning without GNSS data, to collect 3D point cloud with an efficient way for detail survey in urban environments with narrow and winding streets. A plane-based calibration method for the handheld LiDAR scanner was proposed to calibrate the systematic error parameters to improve the accuracy of the handheld LiDAR point cloud. Moreover, urban detail data in the test area was collected by the handheld LiDAR scanner. After point cloud filtering and ranging systematic error correction, the handheld LiDAR point cloud were transformed to the TWD97 cadastral coordinate system using ground control points. The land detail map was artificially digitized from the handheld LiDAR point cloud. The results show that about 97% of the digitized detail positions have errors with less than 15 cm compared to the check positions surveyed by a total station. From the results, it demonstrated the feasibility of using handheld LiDAR scanner to perform urban detail survey in digitized graphic areas. Without considering the error differences less than 5 mm between before and after ranging error correction, about 73% of the digitized detail points whose error is reduced after the ranging error correction, which presents the ranging error parameters can further reduce the errors of most handheld LiDAR point cloud. Finally, the artificially digitized detail lines were compared with detail lines extracted by RANSAC, the results show that the difference is about 1-2 cm, indicating that both production methods can obtain a reliable position of the boundary line and can be used for the production of the detail lines in digitized graphic areas.
Reference: 內政部,2014,「數值法地籍圖重測作業手冊」。
內政部,2011,「圖解法地籍圖數值化成果辦理土地複丈作業手冊」。
內政部,2020,「非都市計畫地區圖解數化地籍圖整合建置作業工作手冊」。
內政部,2012,「圖解數化地籍圖整合建置及都市計畫地形圖套疊作業工作手冊」。
內政部,2019,「108年度發展光達移動測繪系統(LMS)作業採購案工作總報告」。
內政部,2010,「國土測繪中心採用虛擬基準站即時動態定位技術辦理加密控制測及圖根量作業手冊」。
江政矩,2019,「無人機航空攝影測量輔助土地複丈可行性之研究」,國立政治大學碩士論文:台北。
吳宗寶、高書屏、甯方璽,2003,「圖解數化土地複丈電腦套圖之研究」,『中華民國地籍測量學會會刊』,22:1-22。
李添福,2006,「以最小二乘配置法進行小區域地籍資料坐標轉換精度之研究-以宜蘭縣壯圍鄉吉祥段為例」,國立宜蘭大學碩士論文:宜蘭。
李鈺禪,2020,「應用光譜水體指數結合數學形態學於光學影像進行河道變遷偵測之研究」,國立政治大學碩士論文:台北。
李榕修,2015,「基於SLAM自動導航及色彩點雲演算法之大尺度場景重建方法」,國立臺灣大學碩士論文:台北。
林烜生、曾義星、彭淼祥、劉子安、蔡季欣、鄒慶敏,2020,「地面雷射掃描儀系統校正:結合室外標準基線場與室內校正場」,『國土測繪與空間資訊』,8:79-100。
林煒涎,2007,「3D雷射掃描儀應用於戶地測量之研究」,國立成功大學碩士論文:台南。
洪慧齡,1999,「土地測量成果坐標整合之研究」,國立成功大學碩士論文:台南。
高書屏、吳亞翰、陳昭男,2009,「利用面積約制坐標轉換模式以改善土地複丈效率之研究」,『中華民國地籍測量學會會刊』,28:15-31。
張明政、高書屏,2004,「雷射掃描技術輔助三維戶地測量可行性之研究-以建物為例」,『中華民國地籍測量學會會刊』,23:80-98。
張毅雄,2010,「地籍建物資訊模型建立之研究」,國立臺北大學碩士論文:台北。
陳永泉、蔡博慶、王彬權、曾義星,2014,「可攜式全景影像測繪系統之設計及光束法平差」,『國土測繪與空間資訊』,2:43-63。
曾義星、林見福、蔡漢龍、陳鶴欽、曾耀賢,2008,「地面光達系統誤差分析及校正」,『中華民國地籍測量學會會刊』,27:39-50。
馮怡婕,2009,「多尺度三維地籍建物資料流通架構建立之研究」,國立臺北大學碩士論文:台北。
黃文華,2006,「圖解區數化地籍圖分區接合之研究」,國立中興大學碩士論文:台中。
黃宗仁、趙鍵哲,2002,「以統計模式進行地形資料的融合及變遷偵測」,『航測及遙測學刊』,7:17-40。
黃華尉,2001,「TWD97與TWD67二度TM坐標轉換之研究」,國立成功大學碩士論文:台南。
葉宇平,2019,「以車載光達點雲協助圖解數化區辦理土地鑑界之研究」,國立政治大學碩士論文:台北。
鄭至哲,2012,「e-GPS系統應用於土地複丈之作業模式探討-以臺南市玉井區為例」,國立成功大學碩士論文:台南。
鄭彩堂、董荔偉、劉正倫、鄒慶敏,2005,「圖解數化成果分幅及整合圖約制條件坐標轉換研究」,『中華民國地籍測量學會會刊』,24:18-45。
賴志凱,2004,「地面雷射掃瞄儀的精度分析與檢定」,國立成功大學碩士論文:台南。
徐德富,2020,「應用手持光達於快速室內製圖之效益分析」,國防大學碩士論文:桃園。
Arun, K., Huang, T., & Blostein, S. 1987. Least square fitting of two 3-d point sets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9 (5): 698-700. In: September.
Bae, K.-H., & Lichti, D., 2007, "On-site self-calibration using planar features for terrestrial laser scanners", International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36:
Barry, P., & Coakley, R., 2013, "Accuracy of UAV photogrammetry compared with network RTK GPS", Int. Arch. Photogramm. Remote Sens, 2: 2731.
Bauwens, S., Bartholomeus, H., Calders, K., & Lejeune, P., 2016, "Forest inventory with terrestrial LiDAR: A comparison of static and hand-held mobile laser scanning", Forests, 7: 127.
Besl, P. J., & McKay, N. D., 1992, "Method for registration of 3-D shapes", Sensor fusion IV: control paradigms and data structures,
Bosse, M., & Zlot, R., 2009, "Continuous 3D scan-matching with a spinning 2D laser", 2009 IEEE International Conference on Robotics and Automation,
Bosse, M., Zlot, R., & Flick, P., 2012, "Zebedee: Design of a spring-mounted 3-d range sensor with application to mobile mapping", IEEE Transactions on Robotics, 28: 1104-1119.
Chan, T., & Lichti, D., 2013, Feature-based Self-Calibration of Velodyne HDL-32E LiDAR for Terrestrial Mobile Mapping Applications,
Chan, T., & Lichti, D., 2015, "Automatic In Situ Calibration of a Spinning Beam LiDAR System in Static and Kinematic Modes", Remote Sensing, 7: 10480-10500.
Chan, T., Lichti, D., Roesler, G., Cosandier, D., & Durgham, K., 2020, RANGE SCALE-FACTOR CALIBRATION OF THE VELODYNE VLP-16 LIDAR SYSTEM FOR POSITION TRACKING APPLICATIONS,
Chen, S., Liu, H., Feng, Z., Shen, C., & Chen, P., 2019, "Applicability of personal laser scanning in forestry inventory", PLOS ONE, 14: e0211392.
Chiabrando, F., Sammartano, G., & Spanò, A., 2017, "A TEST CASE IN EMERGENCY CONTEXT: 2016 ITALIAN EARTHQUAKE", International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42:
Chow, J., Lichti, D., Glennie, C., & Hartzell, P., 2013, "Improvements to and Comparison of Static Terrestrial LiDAR Self-Calibration Methods", Sensors (Basel, Switzerland), 13: 7224-7249.
Chow, J. C., Lichti, D. D., & Teskey, W. F., 2010, "Self-calibration of the Trimble (Mensi) GS 200 terrestrial laser scanner", Proceedings of the International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 38: 161-166.
Dewez, T., Plat, E., Degas, M., Richard, T., Pannet, P., Thuon, Y., Meire, B., Watelet, J.-M., Cauvin, L., & Lucas, J., 2016, "Handheld Mobile Laser Scanners Zeb-1 and Zeb-Revo to map an underground quarry and its above-ground surroundings",
Eisenbeiß, H., 2009, "UAV photogrammetry",
Ge, X., 2016, Terrestrial laser scanning technology from calibration to registration with respect to deformation monitoring, Unpublished doctoral dissertation, Technische Universität München,
Glennie, C., 2012, "Calibration and Kinematic Analysis of the Velodyne HDL-64E S2 Lidar Sensor", Photogrammetric Engineering & Remote Sensing, 78: 339-347.
Glennie, C., Kusari, A., & Facchin, A., 2016, "CALIBRATION AND STABILITY ANALYSIS OF THE VLP-16 LASER SCANNER", ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-3/W4: 55-60.
Glennie, C., & Lichti, D., 2010, "Static Calibration and Analysis of the Velodyne HDL-64E S2 for High Accuracy Mobile Scanning", Remote Sensing, 2:
González-Aguilera, D., Rodríguez-Gonzálvez, P., Armesto, J., & Arias, P., 2011, "Trimble GX200 and Riegl LMS-Z390i sensor self-calibration", Optics express, 19: 2676-2693.
Habib, A., Bang, K. I., Kersting, A. P., & Chow, J., 2010, "Alternative methodologies for LiDAR system calibration", Remote Sensing, 2: 874-907.
Hunčaga, M., Chudá, J., Tomaštík, J., Slámová, M., Koreň, M., & Chudý, F., 2020, "The Comparison of Stem Curve Accuracy Determined from Point Clouds Acquired by Different Terrestrial Remote Sensing Methods", Remote Sensing, 12: 2739.
Hyyppä, E., Kukko, A., Kaijaluoto, R., White, J. C., Wulder, M. A., Pyörälä, J., Liang, X., Yu, X., Wang, Y., & Kaartinen, H., 2020, "Accurate derivation of stem curve and volume using backpack mobile laser scanning", ISPRS Journal of Photogrammetry and Remote Sensing, 161: 246-262.
James, M. R., & Quinton, J. N., 2014, "Ultra‐rapid topographic surveying for complex environments: the hand‐held mobile laser scanner (HMLS)", Earth surface processes and landforms, 39: 138-142.
Jan, Š., 2020, "Analýza využití GEOSLAM v praxi",
Jana, Š., 2020, "Testování přístroje GeoSLAM ZEB-REVO RT",
Kaartinen, H., Hyyppä, J., Vastaranta, M., Kukko, A., Jaakkola, A., Yu, X., Pyörälä, J., Liang, X., Liu, J., & Wang, Y., 2015, "Accuracy of kinematic positioning using global satellite navigation systems under forest canopies", Forests, 6: 3218-3236.
Kidd, J. R., 2017, "Performance evaluation of the Velodyne VLP-16 system for surface feature surveying",
Lehtola, V. V., Kaartinen, H., Nüchter, A., Kaijaluoto, R., Kukko, A., Litkey, P., Honkavaara, E., Rosnell, T., Vaaja, M. T., & Virtanen, J.-P., 2017, "Comparison of the selected state-of-the-art 3D indoor scanning and point cloud generation methods", Remote Sensing, 9: 796.
Li, Z., Tan, J., & Liu, H., 2019, "Rigorous boresight self-calibration of mobile and UAV LiDAR scanning systems by strip adjustment", Remote Sensing, 11: 442.
Liang, X., Hyyppä, J., Kukko, A., Kaartinen, H., Jaakkola, A., & Yu, X., 2014, "The use of a mobile laser scanning system for mapping large forest plots", IEEE Geoscience and Remote Sensing Letters, 11: 1504-1508.
Liang, X., Kukko, A., Kaartinen, H., Hyyppä, J., Yu, X., Jaakkola, A., & Wang, Y., 2014, "Possibilities of a personal laser scanning system for forest mapping and ecosystem services", Sensors, 14: 1228-1248.
Lichti, D., Brustle, S., & Franke, J., 2007, "Self-calibration and analysis of the Surphaser 25HS 3D scanner", Proceedings of the Strategic Integration of Surveying Services, FIG Working Week, Hong Kong, China, 1317:
Lichti, D., Stewart, M., Tsakiri, M., & Snow, A., 2000, "Calibration and testing of a terrestrial laser scanner", International archives of Photogrammetry and Remote sensing, 33: 485-492.
Lichti, D. D., 2007, "Error modelling, calibration and analysis of an AM–CW terrestrial laser scanner system", ISPRS Journal of Photogrammetry and Remote Sensing, 61: 307-324.
Maboudi, M., Bánhidi, D., & Gerke, M., 2017, "Evaluation of indoor mobile mapping systems", Proceedings of the GFaI Workshop 3D North East,
Makkonen, T., Heikkilä, R., Kaaranka, A., & Naatsaari, M., 2015, "The Applicability of the Rapid Handheld Laser Scanner to Underground Tunnel Suveying",
Manyoky, M., Theiler, P., Steudler, D., & Eisenbeiss, H., 2012, "Unmanned aerial vehicle in cadastral applications", The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 38: 57-62.
Minos-Stensrud, M., Haakstad, O. H., Sakseid, O., Westby, B., & Alcocer, A., 2018, "Towards Automated 3D reconstruction in SME factories and Digital Twin Model generation", 2018 18th International Conference on Control, Automation and Systems (ICCAS),
Mudicka, S., Matolak, M., & Kapica, R. P. 2019. APPLICATION OF HANDHELD SCANNER IN DOCUMENTATION OF HISTORICAL BUILDINGS. In (Vol. 19, pp. 39-46). Sofia: Surveying Geology & Mining Ecology Management (SGEM).
Muhammad, N., & Lacroix, S., 2010, "Calibration of a rotating multi-beam lidar", 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 18-22 Oct. 2010.
Nocerino, E., Menna, F., Remondino, F., Toschi, I., & Rodríguez-Gonzálvez, P., 2017, "Investigation of indoor and outdoor performance of two portable mobile mapping systems", Videometrics, Range Imaging, and Applications XIV,
Nouira, H., Deschaud, J.-E., & Goulette, F., 2016, "POINT CLOUD REFINEMENT WITH A TARGET-FREE INTRINSIC CALIBRATION OF A MOBILE MULTI-BEAM LIDAR SYSTEM", ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B3: 359-366.
Nuchter, A., Surmann, H., Lingemann, K., Hertzberg, J., & Thrun, S., 2004, "6D SLAM with an application in autonomous mine mapping", IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA'04. 2004,
Park, J.-K., & Lee, K.-W., 2020, "Comparison of Characteristics of Drone LiDAR for Construction of Geospatial Information in Large-scale Development Project Area", Journal of the Korea Academia-Industrial cooperation Society, 21: 768-773.
Park, J., & Lee, K.-W., 2018, "Analysis of the Status of Mine and Methods of Mine Geospatial Information Construction Technology for Systematic Mine Management", The Korea Academia-Industrial cooperation Society, 19: 355-361.
Perc, M. N., & Topolšek, D., 2020, "Using the scanners and drone for comparison of point cloud accuracy at traffic accident analysis", Accident Analysis & Prevention, 135: 105391.
Reshetyuk, Y., 2006, "Calibration of terrestrial laser scanners Callidus 1.1, Leica HDS 3000 and Leica HDS 2500", Survey Review, 38: 703-713.
Rieger, P., Studnicka, N., Pfennigbauer, M., & Zach, G., 2010, "Boresight alignment method for mobile laser scanning systems", Journal of Applied Geodesy, 4: 13-21.
Russhakim, N., Mohd Ariff, M. F., Darwin, N., Majid, Z., M Idris, K., Abbas, M., Zainuddin, K., & Yusoff, A., 2018, "THE SUITABILITY OF TERRESTRIAL LASER SCANNING FOR STRATA BUILDING", ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4/W9: 67-76.
Ryding, J., Williams, E., Smith, M. J., & Eichhorn, M. P., 2015, "Assessing handheld mobile laser scanners for forest surveys", Remote Sensing, 7: 1095-1111.
Sammartano, G., & Spanò, A., 2018, "Point clouds by SLAM-based mobile mapping systems: Accuracy and geometric content validation in multisensor survey and stand-alone acquisition", Applied Geomatics, 10: 317-339.
Schulz, T., 2008, Calibration of a terrestrial laser scanner for engineering geodesy, ETH Zurich.
Skaloud, J., & Lichti, D., 2006, "Rigorous approach to bore-sight self-calibration in airborne laser scanning", ISPRS Journal of Photogrammetry and Remote Sensing, 61: 47-59.
Smith, R. C., & Cheeseman, P., 1986, "On the representation and estimation of spatial uncertainty", The international journal of Robotics Research, 5: 56-68.
Sršan, A., 2019, Mogućnosti primjene GeoSLAM tehnologije za izmjeru zatvorenih prostora, Unpublished doctoral dissertation, Polytechnic of Međimurje in Čakovec. Sustainable development.,
Toth, C., 2002, "Calibrating airborne LiDAR systems",
Um, D. Y., & Daehak-ro, C.-s., "Application of Handheld Scanner to Investigate Diameter at Breast Height and Tree Height",
Wajs, J., Kasza, D., Zagożdżon, P. P., & Zagożdżon, K. D., 2018, "3D modeling of underground objects with the use of SLAM technology on the example of historical mine in Ciechanowice (Ołowiane Range, The Sudetes)", E3S Web of Conferences,
Yaman, A., & Kurt, M., "Tarihi ve kültürel mirasların belgelenmesi ve üç boyutlu modellenmesi için Geoslam yersel lazer tarayıcının kullanım olanaklarının araştırılması: Aksaray İli Ulucami Örneği", Türkiye Lidar Dergisi, 1: 5-9.
ZHANG, D.-y., WU, W.-q., & Wu, M.-p., 2009, "Calibration technology of airborne lidar", Optics and Precision Engineering, 17: 2806-2813.
Žižiūnas, T., & Amilevičius, D., 2020, "3D and AI technologies for the development of automated monitoring of urban cultural heritage", Digital humanities in the Nordic Countries 2020: Proceedings of the digital humanities in the Nordic Countries: 5th conference (DHN 2020), Riga, Latvia, October 21-23, 2020.
Geoslam (2020). Hand-held LiDAR from Geoslam on the World Wide Web: https://geoslam.com/
土地開發總隊 (2021). 台北市政府地政局土地開發總隊官方網站:https://www.lda.gov.taipei/Default.aspx
Description: 碩士
國立政治大學
地政學系
108257030
Source URI: http://thesis.lib.nccu.edu.tw/record/#G0108257030
Data Type: thesis
Appears in Collections:[Department of Land Economics ] Theses

Files in This Item:

File Description SizeFormat
703001.pdf8471KbAdobe PDF0View/Open


All items in 學術集成 are protected by copyright, with all rights reserved.


社群 sharing