Please use this identifier to cite or link to this item: https://ah.nccu.edu.tw/handle/140.119/137048


Title: 台灣雲林縣地層下陷研究:以航空攝影測量與基於光達產製的數值地形模型偵測高程變化
Land Subsidence in Yunlin County, Taiwan: Change Detection using Aerial Photogrammetry and LiDAR-based Digital Terrain Model data
Authors: 王歆瑋
Wang, Hsin-Wei
Contributors: 范噶色
Stephan van Gasselt
王歆瑋
Wang, Hsin-Wei
Keywords: 地層下陷
變化監測
航空攝影測量
數值地形模型
表面匹配
Land Subsidence
Change Detection
Aerial Photogrammetry
Digital Surface Model
Surface Matching
Date: 2021
Issue Date: 2021-09-02 17:37:13 (UTC+8)
Abstract: 夏季多雨而冬季乾燥是台灣的氣候特徵。冬季降雨不足導致農田地區的人們主要從地下抽取地下水來滿足農業需求。降雨不足和地下水開採量大幅增加導致地下水位下降,並最終致使地面持續下陷。這已經成為一個嚴峻的挑戰,尤其是位於台灣西部海岸的雲林縣是台灣的主要農業中心。雖然下陷情況在過往一直默默的持續發生而不醒目,但近年來這個問題已經開始影響到高鐵線路而引起了大眾的關注。
隨著科學技術的進步,現在可以使用多種不同的遙感探測技術來觀測大尺度地表變形,通過獲取地物的三維坐標來建立高精度的地形模型。政府目前使用四種不同的測量技術進行監測。通過攝影測量技術缺乏對現有航拍影像的使用,其他方法可能會在某些區域提供更高的解析度。儘管該數據源具有廣泛的區域和時間覆蓋範圍和可用性,但目前尚未使用。出於這個原因,本研究使用航空攝影測量方法作為核心,以探索其可用性。
本研究旨在確定雲林縣顯著地層下陷的位置,並且量化之。這個目標可以藉由使用航空攝影測量技術從航空影像產製多時序數值地形模型 (DSM),並使用表面匹配技術進行表面的共同匹配來實現。藉由上述步驟可得差異模型以評估局部地勢差異並量化地層下陷影響。多時序資料可用來比較不同年份的 DSM 以觀察研究區域的變化。
The climate in Taiwan is characterized by heavy rainfall during the months of summer and less rainfall in winter. The lack of rainfall in winter months requires people in farmland areas to pump groundwater from the subsurface in order to meet their needs in agriculture mainly. The lack of rainfall, and a considerable increase of groundwater pumping causes lowering of the groundwater table with the ultimate consequence of continuous land subsidence, which has become a serious challenge in particular in Yunlin county, located at the west coast of Taiwan and constituting one of the main agricultural centers of Taiwan. While the process of subsidence has been silent, the problem recently drew public attention as it started to affect the high-speed rail line.
With the advancement of science and technology, it is now possible to use a variety of different remote sensing detection technologies to observe large-scale surface deformations, and to create high-precision terrain models through the three-dimensional coordinates of the acquired ground objects. The government currently uses four different measurement techniques for monitoring. There is a lack of usage of existing aerial images through photogrammetric techniques and while other methods might provide higher resolution in certain areas, this data source has not been employed thus far despite wide area and temporal coverage and availability. For that reason, aerial photogrammetric methods are put at the center of this research in order to explore its usability to complement recent temporal observations.
This study targets to identify locations of significant subsidence in Yunlin county, and to potentially quantify subsidence. This is achieved by using aerial photogrammetry techniques to produce multi-temporal Digital Surface Models (DSM) from aerial images, using advanced surface matching for co-registration. Difference models are then calculated in order to evaluate local relief differences and to quantify subsidence effects. Multi-temporal data allows to compare the DSM over different years to observe the changes in the study area.
Reference: Abidin, H., Andreas, H., Gumilar, I., & Brinkman, J., 2015, "Study on the risk and impacts of land subsidence in Jakarta", Proceedings of the International Association of Hydrological Sciences, 372: 115.
Abidin, H. Z., Andreas, H., Djaja, R., Darmawan, D., & Gamal, M., 2008, "Land subsidence characteristics of Jakarta between 1997 and 2005, as estimated using GPS surveys", Gps Solutions, 12: 23-32.
Al-Halbouni, D., Holohan, E. P., Saberi, L., Alrshdan, H., Sawarieh, A., Closson, D., . . . Dahm, T., 2017, "Sinkholes, subsidence and subrosion on the eastern shore of the Dead Sea as revealed by a close-range photogrammetric survey", Geomorphology, 285: 305-324.
Álvarez, J. A. P., Herrera, V. M., del Pozo, J. Á. M., & de Tena, M. T., 2013, "Multi-temporal archaeological analyses of alluvial landscapes using the photogrammetric restitution of historical flights: a case study of Medellin (Badajoz, Spain)", Journal of archaeological science, 40: 349-364.
Andreas, H., Abidin, H. Z., Gumilar, I., Sidiq, T. P., & Yuwono, B. (2017). Adaptation and mitigation of land subsidence in Semarang.
Antonarakis, A. S., Richards, K. S., & Brasington, J., 2008, "Object-based land cover classification using airborne LiDAR", Remote sensing of environment, 112: 2988-2998.
Baltsavias, E., & Gruen, A., 2003, "Resolution convergence: a comparison of aerial photos, LIDAR and IKONOS for monitoring cities", Remotely Sensed Cities, Taylor & Francis, London, 47-82.
Besl, P. J., & McKay, N. D., 1992, "Method for registration of 3-D shapes", Sensor fusion IV: control paradigms and data structures,
Brun, F., Buri, P., Miles, E. S., Wagnon, P., Steiner, J., Berthier, E., . . . Pellicciotti, F., 2016, "Quantifying volume loss from ice cliffs on debris-covered glaciers using high-resolution terrestrial and aerial photogrammetry", Journal of Glaciology, 62: 684-695.
Chan, Y. K., & Koo, V. C., 2008, "An introduction to synthetic aperture radar (SAR)", Progress In Electromagnetics Research, 2: 27-60.
Chen, M., Tomás, R., Li, Z., Motagh, M., Li, T., Hu, L., . . . Gong, X., 2016, "Imaging land subsidence induced by groundwater extraction in Beijing (China) using satellite radar interferometry", Remote Sensing, 8: 468.
Chu, H.-J., Ali, M. Z., & Burbey, T. J., 2021, "Spatio-temporal data fusion for fine-resolution subsidence estimation", Environmental Modelling & Software, 137: 104975.
Dastgir, N. (2007). Processing SAR data using RangeDoppler and Chirp Scaling Algorithms. In.
Ding, W., Wang, J., Han, S., Almagbile, A., Garratt, M. A., Lambert, A., & Wang, J. J., 2009, "Adding optical flow into the GPS/INS integration for UAV navigation", Proc. of International Global Navigation Satellite Systems Society Symposium,
Du, S., Zhang, Y., Qin, R., Yang, Z., Zou, Z., Tang, Y., & Fan, C., 2016, "Building change detection using old aerial images and new LiDAR data", Remote Sensing, 8: 1030.
Erban, L. E., Gorelick, S. M., & Zebker, H. A., 2014, "Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta, Vietnam", Environmental Research Letters, 9: 084010.
Eyers, R., & Mills, J., 2004, "Subsidence detection using integrated multi temporal airborne imagery", International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 34:
Faunt, C. C., & Sneed, M., 2015, "Water availability and subsidence in California's Central Valley", San Francisco Estuary and Watershed Science, 13:
Ferretti, A., Prati, C., & Rocca, F., 2000, "Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry", IEEE Transactions on geoscience and remote sensing, 38: 2202-2212.
Gabriel, A. K., Goldstein, R. M., & Zebker, H. A., 1989, "Mapping small elevation changes over large areas: Differential radar interferometry", Journal of Geophysical Research, 94:
Galloway, D. L., & Burbey, T. J., 2011, "Review: Regional land subsidence accompanying groundwater extraction", Hydrogeology Journal, 19: 1459-1486.
Galloway, D. L., Erkens, G., Kuniansky, E. L., & Rowland, J. C., 2016, "Preface: Land subsidence processes", Hydrogeology Journal, 24: 547-550.
Galloway, D. L., Jones, D. R., & Ingebritsen, S. E., 1999, Land subsidence in the United States, US Geological Survey.
Gambolati, G., Teatini, P., & Ferronato, M., 2006, "Anthropogenic land subsidence", Encyclopedia of Hydrological Sciences,
Gindraux, S., Boesch, R., & Farinotti, D., 2017, "Accuracy assessment of digital surface models from unmanned aerial vehicles’ imagery on glaciers", Remote Sensing, 9: 186.
Gruen, A., & Akca, D., 2005, "Least squares 3D surface and curve matching", ISPRS Journal of photogrammetry and remote sensing, 59: 151-174.
Hayakawa, Y. S., & Obanawa, H., 2020, "Volumetric change detection in bedrock coastal cliffs using terrestrial laser scanning and uas-based SFM", Sensors, 20: 3403.
Higgins, M. B., 1999, "Heighting with GPS: possibilities and limitations", the Proceedings of: Geodesy and Surveying in the Future: The Importance of Heights, Jubilee Seminar.
Hoekstra, A. Y., Chapagain, A. K., Aldaya, M. M., & Mekonnen, M. M., 2009, Water footprint manual, Water footprint network Enschede, the Netherlands.
Hu, L., Dai, K., Xing, C., Li, Z., Tomás, R., Clark, B., . . . Qiu, Q., 2019, "Land subsidence in Beijing and its relationship with geological faults revealed by Sentinel-1 InSAR observations", International Journal of Applied Earth Observation and Geoinformation, 82: 101886.
Ignjatović Stupar, D., Rošer, J., & Vulić, M., 2020a, "Investigation of unmanned aerial vehicles-based photogrammetry for large mine subsidence monitoring", Minerals, 10: 196.
Ignjatović Stupar, D., Rošer, J., & Vulić, M., 2020b, "Investigation of Unmanned Aerial Vehicles-Based Photogrammetry for Large Mine Subsidence Monitoring", Minerals, 10:
Ingebritsen, S. E., & Galloway, D. L., 2014, "Coastal subsidence and relative sea level rise", Environmental Research Letters, 9: 091002.
Karlsrud, K., Vangelsten, B., & Frauenfelder, R., 2017, "Subsidence and Shoreline Retreat in the Ca Mau Province–Vietnam Causes, Consequences and Mitigation Options", Geotechnical Engineering Journal of the SEAGS & AGSSEA, 48:
Kayi, A., Erdoğan, M., & Eker, O., 2015, "OPTECH HA-500 ve RIEGL LMS-Q1560 ile gerçekleştirilen LİDAR test sonuçları", Harita dergisi, 153: 42-46.
Liu, C.-W., Chen, S.-K., Jou, S.-W., & Kuo, S.-F., 2001, "Estimation of the infiltration rate of a paddy field in Yun-Lin, Taiwan", Agricultural Systems, 68: 41-54.
Marfai, M. A., & King, L., 2007, "Monitoring land subsidence in Semarang, Indonesia", Environmental geology, 53: 651-659.
Mekonnen, M. M., & Gerbens-Leenes, W., 2020, "The water footprint of global food production", Water, 12: 2696.
Mikrut, S., 2016, "Classical Photogrammetry and Uav – Selected Ascpects", ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B1: 947-952.
Mousavi, S. M., Shamsai, A., Naggar, M. H. E., & Khamehchian, M., 2001, "A GPS-based monitoring program of land subsidence due to groundwater withdrawal in Iran", Canadian Journal of Civil Engineering, 28: 452-464.
Nikolakopoulos, K. G., Soura, K., Koukouvelas, I. K., & Argyropoulos, N. G., 2017, "UAV vs classical aerial photogrammetry for archaeological studies", Journal of Archaeological Science: Reports, 14: 758-773.
Pepe, A., & Calò, F., 2017, "A review of interferometric synthetic aperture RADAR (InSAR) multi-track approaches for the retrieval of Earth’s surface displacements", Applied Sciences, 7: 1264.
Phien-wej, N., Giao, P. H., & Nutalaya, P., 2006, "Land subsidence in Bangkok, Thailand", Engineering geology, 82: 187-201.
Piesse, M., 2019, "The Mekong Delta: land subsidence threatens Vietnam’s “food basket”", Strategic Analysis Paper.
Psimoulis, P., Ghilardi, M., Fouache, E., & Stiros, S., 2007, "Subsidence and evolution of the Thessaloniki plain, Greece, based on historical leveling and GPS data", Engineering geology, 90: 55-70.
Purkis, S. J., & Brock, J. C. (2013). Lidar overview. In Coral Reef Remote Sensing (pp. 115-143): Springer.
Qin, R., Tian, J., & Reinartz, P., 2016, "3D change detection–approaches and applications", ISPRS Journal of photogrammetry and remote sensing, 122: 41-56.
Rahmasary, A. N., 2017, Management comparison of water-related challenges in Asian cities: the study case of water governance capacity in Bandung, Unpublished doctoral dissertation.
Remondino, F., Barazzetti, L., Nex, F., Scaioni, M., & Sarazzi, D., 2011, "UAV photogrammetry for mapping and 3d modeling–current status and future perspectives", International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 38: C22.
Rokhmana, C. A., & Sastra, A. R., 2020, "Filtering DSM extraction from Worldview-3 images to DTM using open source software", IOP Conference Series: Earth and Environmental Science.
Saadatseresht, M., Hashempour, A. H., & Hasanlou, M., 2015, "Uav Photogrammetry: A Practical Solution for Challenging Mapping Projects", ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-1-W5: 619-623.
Sato, H. P., Abe, K., & Ootaki, O., 2003, "GPS-measured land subsidence in Ojiya city, Niigata prefecture, Japan", Engineering geology, 67: 379-390.
Shi, X., Jiang, S., Xu, H., Jiang, F., He, Z., & Wu, J., 2016, "The effects of artificial recharge of groundwater on controlling land subsidence and its influence on groundwater quality and aquifer energy storage in Shanghai, China", Environmental Earth Sciences, 75:
Stal, C., Tack, F., De Maeyer, P., De Wulf, A., & Goossens, R., 2013, "Airborne photogrammetry and lidar for DSM extraction and 3D change detection over an urban area–a comparative study", International Journal of Remote Sensing, 34: 1087-1110.
Stevenson, J. A., Sun, X., & Mitchell, N. C., 2010, "Despeckling SRTM and other topographic data with a denoising algorithm", Geomorphology, 114: 238-252.
Sun, H., Zhang, Q., Zhao, C., Yang, C., Sun, Q., & Chen, W., 2017, "Monitoring land subsidence in the southern part of the lower Liaohe plain, China with a multi-track PS-InSAR technique", Remote sensing of environment, 188: 73-84.
Telbisz, T., Látos, T., Deák, M., Székely, B., Koma, Z., & Standovár, T., 2016, "The advantage of lidar digital terrain models in doline morphometry compared to topographic map based datasets–Aggtelek karst (Hungary) as an example", Acta Carsologica, 45:
Vosselman, G., 2000, "Slope based filtering of laser altimetry data", International Archives of Photogrammetry and Remote Sensing, 33: 935-942.
Wolf, P. R., & Dewitt, B. A., 2000, Elements of photogrammetry: with applications in GIS, McGraw-Hill New York.
Xu, L., Zhang, S., He, Z., & Guo, Y., 2009, "The comparative study of three methods of remote sensing image change detection", 2009 17th International Conference on geoinformatics.
Ye, S., Xue, Y., Wu, J., Yan, X., & Yu, J., 2015, "Progression and mitigation of land subsidence in China", Hydrogeology Journal, 24: 685-693.
Yin, J., Yu, D., & Wilby, R., 2016, "Modelling the impact of land subsidence on urban pluvial flooding: A case study of downtown Shanghai, China", Science of the Total Environment, 544: 744-753.
Zhang, Wu, & Yang, 2019, "Forests Growth Monitoring Based on Tree Canopy 3D Reconstruction Using UAV Aerial Photogrammetry", Forests, 10:
Zhao, Q., Ma, X., & Yao, Y., 2020, "Preliminary result of capturing the signature of heavy rainfall events using the 2-d-/4-d water vapour information derived from GNSS measurement in Hong Kong", Advances in Space Research, 66: 1537-1550.
Zinßer, T., Schmidt, J., & Niemann, H., 2005, "Point set registration with integrated scale estimation", International conference on pattern recognition and image processing.
Description: 碩士
國立政治大學
地政學系
108257032
Source URI: http://thesis.lib.nccu.edu.tw/record/#G0108257032
Data Type: thesis
Appears in Collections:[地政學系] 學位論文

Files in This Item:

File SizeFormat
703201.pdf3197KbAdobe PDF0View/Open


All items in 學術集成 are protected by copyright, with all rights reserved.


社群 sharing