政大學術集成


請使用永久網址來引用或連結此文件: https://ah.nccu.edu.tw/handle/140.119/137211


題名: Comparison of Fully Connected Net with Particle Swarm Optimization Neural Network and PSO in the Diagnosis of Heart
作者: 姜國輝
Chiang, Johannes K.
貢獻者: 資管系
關鍵詞: Artificial Neural Networks (ANN);Particle Swarm Optimization;PSO-ANN;Fully Connected;Heart Disease
日期: 2021-08
上傳時間: 2021-09-22 10:20:13 (UTC+8)
摘要: This paper proposes an Enhanced Hybrid Particle Swarm Optimization (PSO) with Artificial Neural Network (ANN), which is applied in the diagnosis of heart disease of the common features in University of California, Irvine (UCI) dataset. This UCI data includes 303 test results and consist of 13 features with two classes. One class is with health people and the other class of people are with heart disease. PSO-ANN combined Particle Swarm Optimization (PSO) and Artificial Neural Network (ANN), using ANN's escaping mechanism to enhance the deficiency of PSO slow convergence and easy to fall into the local optimal solution. The overall search ability is increased and the tracking time is reduced. This paper uses fully connected net with PSO-ANN with Python environment compares with PSO in R, the result demonstrates that the proposed model is better than PSO around 12%.
關聯: ICIM2021, 中華民國資訊管理學會
資料類型: conference
顯示於類別:[資訊管理學系] 會議論文

文件中的檔案:

檔案 描述 大小格式瀏覽次數
4.pdf216KbAdobe PDF32檢視/開啟


在學術集成中所有的資料項目都受到原著作權保護.


社群 sharing