Please use this identifier to cite or link to this item: https://ah.lib.nccu.edu.tw/handle/140.119/137551
題名: Effectiveness in the block by honokiol. A dimerized allylphenol from Magnonia officinalis, of Hyperpolarization-activated cation current and delayed-rectifier K current
作者: 詹銘煥
Chan, Ming-Huan
Chen, Hwei-Hsien
Lo, Yi-Ching
Wu, Sheng-Nan
貢獻者: 神科所
關鍵詞: current kinetics ; honokiol ; hyperpolarization-activated cation current ; olfactory neuron ; pituitary cell
日期: Jun-2020
上傳時間: 27-Oct-2021
摘要: Background: Honokiol (HNK), a dimer of allylphenol obtained from the bark of Magnolia officinalis was demonstrated to exert an array of biological actions in different excitable cell types. However, whether or how this compound can lead to any perturbations on surface-membrane ionic currents remains largely unknown. Methods: We used the patch clamp method and found that addition of HNK effectively depressed the density of macroscopic hyperpolarization-activated cation currents (Ih) in pituitary GH3 cells in a concentration-, time- and voltage-dependent manner. By the use of a two-step voltage protocol, the presence of HNK (10 μM) shifted the steady-state activation curve of Ih density along the voltage axis to a more negative potential by approximately 11 mV, together with no noteworthy modification in the gating charge of the current. Results: The voltage-dependent hysteresis of Ih density elicited by long-lasting triangular ramp pulse was attenuated by the presence of HNK. The HNK addition also diminished the magnitude of deactivating Ih density elicited by ramp-up depolarization with varying durations. The effective half-maximal concentration (IC50) value needed to inhibit the density of Ih or delayed rectifier K+ current identified in GH3 cells was estimated to be 2.1 or 6.8 μM, respectively. In cell-attached current recordings, HNK decreased the frequency of spontaneous action currents. In Rolf B1.T olfactory sensory neurons, HNK was also observed to decrease Ih density in a concentration-dependent manner. Conclusions: The present study highlights the evidence revealing that HNK has the propensity to perturb these ionic currents and that the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel is proposed to be a potential target for the in vivo actions of HNK and its structurally similar compounds.
關聯: Int J Mol Sci, No.21, pp.4260
資料類型: article
DOI: https://doi.org/10.3390/ijms21124260
Appears in Collections:期刊論文

Files in This Item:
File Description SizeFormat
10.pdf7.53 MBAdobe PDF2View/Open
Show full item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.