Please use this identifier to cite or link to this item:

Title: 以決策樹資料探勘法分析連線遊戲玩家持續使用動機:個人內在因素與外在參考團體因素對於「課金」行為的影響
Applying a decision tree data mining method to analyze online games players‘ behavior by considering the impact of individual internal perceptions and external reference groups on paying behavior
Authors: 曾德芩
Tseng, Te-Chin
Contributors: 許志堅
Tseng, Te-Chin
Keywords: 資料探勘
Data Mining
Video Gaming Addiction
Date: 2022
Issue Date: 2022-03-01 18:27:36 (UTC+8)
Abstract: 連線遊戲(online game)是典型的網際網路相關產業,全球遊戲產業規模已破千億美元,成為最大的娛樂產業之一,其創造的產值顯示了它的重要性。在2020年,全世界面對COVID-19的肆虐下,不論在生命安全、醫療體系、政治、社會與經濟等面向都受到巨大的衝擊。這場本世紀前所未見的急速病毒傳播,演變至今成為全球最大地隔離行動。隨著COVID-19疫情發展,世界各國政府和企業紛紛要求人們保持社交距離,大家待在家的時間也隨之變長,「宅經濟」的興起,間接帶動遊戲產業的發展,簡單地說,人們在隔離期間花更多的時間在電子遊戲上。根據Newzoo 在《2021年全球遊戲市場報告》中更提到,2021年全球遊戲市場將獲得1758億美元收入。移動遊戲市場的收入將增長4.4%至907億美元,占全球遊戲市場總收入的一半以上。
Online game is a typical Internet-related industry. The scale of the global game industry has exceeded 100 billion US dollars and has become one of the largest entertainment industries. In recent years. Faced with the ravages of COVID-19 around the world, life safety, medical systems, politics, society and economy have all been severely affected. The unprecedented rapid spread of the plague has turned into the largest quarantine operation in the world. Social distancing and lockdown measures implemented in response to the COVID-19 pandemic have driven people to stay home more. The rise of the "stay-at-home economy" has indirectly spurred the growth of the video game industry. In other words, people are spending more time on games during quarantine. Newzoo’s 2021 Global Games Market Report mentioned that of the US$175.8 billion in revenue received worldwide by the games market in 2021, the mobile game market grew 4.4% to $90.7 billion, accounting for more than half the total revenue.
A significant portion comes from in-app purchases, where virtual goods in games are bought using real-world money. There are several factors encouraging this “pay-to-win” behavior that compels gamers to persist in playing online games, or erodes their self-control, causing them to make repeated in-app purchases. This study explores these motivating factors by analyzing the underlying influences of through data mining, and aims to further understand the gamers’ preferences and decision-making processes. Analysis from both internal and external perspectives can enable online game companies to design games to suit different gamer categories. In so doing, this aims to let gamers feel their preferences are respected, improving their satisfaction rate as paying customers, and ultimately contributing to further growth of mobile game products.
Reference: 1. 《2016 台灣數位遊戲產業年鑑》經濟部工業局
2. 鄭天澤、楊亨利、陳麗霞、胡正文、林淑靜,2017,2017年臺灣無線網路使用調查報告書,財團法人臺灣網路資訊中心,2017年11月,頁14-17。
3. 陳秀娟(2008)。國小中高年級學童情緒智力對同儕關係之影響。靜宜大學青少年兒童福利研究所,台中。
4. 《2020 年 Q1 全球行動遊戲報告》APP Annine
5. 《2021年全球遊戲市場報告》Newzoo
6. 《2020韓國遊戲白皮書》韓國文化信息機構
7. 《2016大韓民國遊戲白皮書》南韓文化體育觀光部和南韓內容振興院
8. 《2017美國遊戲行業年中報告》美國娛樂軟體協會
9. 《2020 年中國遊戲產業報告》中國遊戲產業研究院
10. Alha, Koskinen, Paavilainen, Hamari , & Kinnunen. (2014). Free-to-Play Games: Professionals’ Perspectives.
11. Hamari, J., & Lehdonvirta, V. (2010). Game Design as Marketing: How Game Mechanics Create Demand for Virtual Goods. International Journal of Business Science & Applied Management, Vol. 5, No. 1, pp. 14-29.
12. William, H. M., Kathleen , V. D., & Akshay , R. R. (2012). Reducing Self-Control Depletion Effects through Enhanced Sensitivity to Implementation: Evidence from FMRI and Behavioral Studies. Journal of Consumer Psychology, 22(4).
13. Kotler, P., & Armstrong, G. (1997). Marketing: an Introduction. Upper Saddle River..
14. Kotler, P., Ang, S. H. Leong, S. M. and Tan, C. T. (1999). Marketing management : An asian perspective (2nd ed.). Prentice Hall.
15. Engel, J. R., Blackwell, R. D., & Miniard, P. W. (2001). Consumer behavior. Orlando Florida: Harcourt Inc.
16. Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behavior. New York, NY: Plenum Press.
17. John C. Mowen and Stephen W. Brown (1981) ,"On Explaining and Predicting the Effectiveness of Celebrity Endorsers", in NA - Advances in Consumer Research Volume 08, eds. Kent B. Monroe, Ann Abor, MI : Association for Consumer Research, Pages: 437-441.
18. van Rooij, A., Schoenmakers, T., van de Eijnden, R. and van de Mheen, D., (2010). Compulsive Internet Use: The Role of Online Gaming and Other Internet Applications. Journal of Adolescent Health, 47(1), pp.51-57.
19. Schmitt, B. (1999). Experiential marketing. Journal of marketing management, 15(1-3), 53-67.
20. Webster,J.,Trevino,K.L.,&Ryan,L.(1993).The dimensionality and correlates of flow in human-computer interactions. Computers in Human,Behavior,9(4),411-426.
21. Csikszentmihalyi, M., 2000. Beyond boredom and anxiety. San Francisco: Jossey-Bass Publishers.
22. Goldberg I. (1995). IAD, in Cinti M. E.(a cura di) Internet Addiction Disorder un fenomeno sociale in espansione (pp.6-7).
23. Hovland, Carll., Irving K. Janis, and Harold H., Kelley (1953), Communication and Per- suasion, New Haven, CT: Yale University Press.
24. Kandell, & Jonathan , J. (2009). Internet Addiction on Campus: The Vulnerability of College Students. CyberPsychology & Behavior, 1(1), 11–17.
25. Kim, C., Mirusmonov, M., & Lee, I. J. C. i. H. B. (2010). An empiricalexamination of factors influencing the intention to use mobile payment.Computers in Human Behavior, 26(3), 310-322.
26. Leibenstein, H. (1950). Bandwagon, Snob, and Veblen Effects in the Theory of Consumers’ Demand. The Quarterly Journal of Economics, 64(2), 183–207.
27. Erica , H. V., Rik , P., & Marcel , Z. (2009). When Demand Accelerates Demand: Trailing the Bandwagon. Journal of Consumer Psychology, 19(3), 302–312.
28. Hawkins, I. D., & Mothersbaugh, L. D. (2013). Consumer Behavior: Building Marketing Strategy (12th ed.). New York: McGraw-Hill Irwin.
29. Friedman, H. H., & Friedman, L. (1979). Endorser effectiveness by product type. Journal of advertising research.
30. Ohanian, Roobina (1990), Construction and validation of a scale to measure celebrity endorsers' perceived expertise, trustworthiness, and attractiveness,Journal of Advertising, 19(3),pp 39-53.
31. Schiffman, L. G., Kanuk, L. L., & Wisenblit, J. (2007). Consumer behavior. Upper Saddle River, NJ.
32. Kardefelt-Winther, D. (2014a). A conceptual and methodological critique of internet addiction research: Towards a model of compensatory internet use. Computers in Human Behavior, 31, 351-354.
33. Holbrook, B. M., & Hirschman, E. (1982). The Experiential Aspects of Consumption: Consumer Fantasies, Feelings, and Fun. Journal of Consumer Research, 132–140.
34. Block JJ (2008) Issues for dsm-v: Internet addiction. American Journal of Psychiatry 165(3), 306-307.
35. Stock, A., & Balachander, S. (2005). The Making of a “Hot Product”: A Signaling Explanation of Marketers’ Scarcity Strategy. Management Science, 51(8), 1181–1192.
36. Liang, B. & He, Y. (2012). The effect of culture on consumer choice: The need for conformity vs. the need for uniqueness. International Journal of Consumer Studies, 36(3), 352-359
37. Berger, Jonah and Chip Heath (2007), “Where Consumers Diverge from Others: Identity Signaling and Product Domains,” Journal of Consumer Research, 34 (2), 121-134.
38. Freiden, Jon B. (1984). Advertising Spokesperson Effects:An Examination of Endorser Type and Gender on Two Audiences. Journal of Advertising Research, Vol.24, No.5, pp.33~41.
39. McGuire, W. J . (1985). Attitudes and attitude change. In Lindzey, G., Aronson, E. (Eds.), The handbook of social psychology (3rd ed., Vol. 2, pp. 233–346). New York, NY: Random House.
40. Meerkerk, G. J., van den Eijnden, R., Vermulst, A. A., & Garretsen, H. F. L. (2009). The compulsive internet use scale (CIUS): Some psychometric properties. CyberPsychology & Behavior, 12(1), 1-6. DOI: 10.1089/cpb.2008.0181
41. Tao, R., Huang, X., Wang, J., Zhang, H., Zhang, Y., & Li, M. (2010). Proposed diagnostic criteria for internet addiction. Addiction, 105, 556-564. DOI: 10.1111/j.1360-0443.2009.02828.x
42. Kuss, D. J., & Griffiths, M. D. (2012). Internet and gaming addiction: A systematic literature review of neuroimaging studies. Brain Sciences, 2(3), 347-374. DOI: 10.3390/brainsci2030347
43. Király, O., Sleczka, P., Pontes, H. M., Urban, R., Griffiths, M. D., & Demetrovics, Z. (2017). Validation of the Ten-Item Internet Gaming Disorder Test (IGDT-10) and evaluation of the nine DSM-5 Internet Gaming Disorder criteria. Addictive Behaviors, 64, 253-260.
44. Király, O., Griffiths, M. D., & Demetrovics, Z. (2015). Internet Gaming Disorder and the DSM-5: Conceptualization, debates, and controversies. Current Addiction Reports, 2, 254-262.
45. Király, O., Nagygyörgy, K., Griffiths, M. D., & Demetrovics, Z. (2014). Problematic online gaming. In K. P. Rosenberg & L. Curtiss Feder (Eds.), Behavioral addictions: Criteria, evidence, and treatment (p. 61–97). Cambridge, MA: Academic Press.
46. Rabaya, T., Saparya, S., Mahmud, I., Ramayah, T., & Rawshon, S. (2017). Why are they so addicted?: modeling online games addiction behavior among university students.
47. Schmitt, B.H. (2000), Experiential Marketing: How to Get Customers to Sense, Feel, Think, Act, and Relate to Your Company and Brands, Simon and Schuster, New York.
48. Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1),81-106.
49. Pecotich, A. and Ward, S., (2007), “Global branding, country of origin and expertise: An experimental evaluation”, International Marketing Review, Vol. 24 No. 3, pp.271-296.
Description: 碩士
Source URI:
Data Type: thesis
Appears in Collections:[傳播學院傳播碩士學位學程] 學位論文

Files in This Item:

File Description SizeFormat
400201.pdf1383KbAdobe PDF0View/Open

All items in 學術集成 are protected by copyright, with all rights reserved.

社群 sharing