Please use this identifier to cite or link to this item: https://ah.lib.nccu.edu.tw/handle/140.119/140659
DC FieldValueLanguage
dc.contributor.advisor班榮超zh_TW
dc.contributor.advisorBan, Jung-Chaoen_US
dc.contributor.author蔡承育zh_TW
dc.contributor.authorTsai, Cheng-Yuen_US
dc.creator蔡承育zh_TW
dc.creatorTsai, Cheng-Yuen_US
dc.date2022en_US
dc.date.accessioned2022-07-01T08:20:42Z-
dc.date.available2022-07-01T08:20:42Z-
dc.date.issued2022-07-01T08:20:42Z-
dc.identifierG0109751002en_US
dc.identifier.urihttp://nccur.lib.nccu.edu.tw/handle/140.119/140659-
dc.description碩士zh_TW
dc.description國立政治大學zh_TW
dc.description應用數學系zh_TW
dc.description109751002zh_TW
dc.description.abstract於2019 年,Petersen 和Salama [1, 2] 給出了在樹上拓樸熵的定義並證明其存在且等於最大下界,此外,證明在k-tree 上考慮黃金子平移,條型熵h_n^{(k)}會收斂到拓樸熵h^{(k)}。\n\n此工作擴展了Petersen 和Salama 的結果,藉由考慮有限字母集A在黃\n金分割樹T上利用條型法去計算其拓樸熵h(T_A)。首先,給出一個實數值矩\n陣M^∗ 用來描述在高度為n條型樹上的複雜度。其次,找到兩個實數值矩\n陣C, D 使得b_{n−2}D ≤ M^∗ ≤ b_{n−2}C, 其中b_{n−2}是指所有在黃金分割樹上的子平移高度為n − 2 的著色數。最後,證明在黃金分割樹上的子平移,條型熵h_n(T_A) 將收斂到拓樸熵h(T_A)。zh_TW
dc.description.abstractIn 2019, Petersen and Salama [1, 2] showed that the limit in their definition of tree-shift topological entropy is actually the infimum and also proved that the site specific strip approximation entropies h_n^{(k)} converges to the entropy h^{(k)} of the golden-mean shift of finite type on the k-tree.\n\nIn this article, we prove that the preceding work of Petersen and Salama can be extended to consider a golden-mean tree T with finite alphabet A and use the strip method to calculate its topological entropy h(T_A). First, a real matrix M which describe the complexity of strip method tree with hight n is introduced. Second, two real matrices C and D are constructed for which b_{n−2}D ≤ M^∗ ≤ b_{n−2}C, where b_{n−2} is the number of all different labeling of subtree of the golden-mean tree-shift with level n − 2. Finally, we shown that the n-strip entropy h_n(T_A) will converge to the topological entropy h(T_A) of golden-mean tree-shift T_A.en_US
dc.description.tableofcontents中文摘要 i\n\nAbstract ii\n\nContents iii\n\n1 Introduction 1\n\n2 Preliminaries and main result 5\n2.1 Notations and definitions . . . . . . . . . . . . . . 5\n2.2 Main results . . . . . . . . . . . . . . . . . . . . 7\n\n3 Conclusion 11\n\nReferences 14zh_TW
dc.format.extent720851 bytes-
dc.format.mimetypeapplication/pdf-
dc.source.urihttp://thesis.lib.nccu.edu.tw/record/#G0109751002en_US
dc.subject條型法zh_TW
dc.subject拓樸及條型熵zh_TW
dc.subject黃金分割子平移樹zh_TW
dc.subjectStrip methoden_US
dc.subjectTopological and strip entropyen_US
dc.subjectGolden-mean tree-shiften_US
dc.title關於黃金分割樹上的子平移之拓樸熵研究zh_TW
dc.titleTopological Entropy of Golden-Mean Tree-Shiften_US
dc.typethesisen_US
dc.relation.reference[1] Karl Petersen and Ibrahim Salama. Tree shift topological entropy. Theoretical Computer Science, 743:64–71, 2018.\n\n[2] Karl Petersen and Ibrahim Salama. Entropy on regular trees. Discrete & Continuous Dynamical Systems, 40(7):4453, 2020.\n\n[3] Nathalie Aubrun and Marie-Pierre Béal. Tree-shifts of finite type. Theoretical Computer Science, 459:16–25, 2012.\n\n[4] Nathalie Aubrun and Marie-Pierre Béal. Sofic tree-shifts. Theory of Computing Systems, 53(4):621–644, 2013.\n\n[5] Nishant Chandgotia and Brian Marcus. Mixing properties for hom-shifts and the distance between walks on associated graphs. Pacific Journal of Mathematics, 294(1):41–69, 2018.\n\n[6] Roy L Adler, Alan G Konheim, and M Harry McAndrew. Topological entropy. Transactions of the American Mathematical Society, 114(2):309–319, 1965.\n\n[7] Tomasz Downarowicz. Entropy in dynamical systems, volume 18. Cambridge University Press, 2011.\n\n[8] Douglas Lind, Brian Marcus, Lind Douglas, Marcus Brian, et al. An introduction to symbolic dynamics and coding. Cambridge university press, 1995.\n\n[9] Jung-Chao Ban and Chih-Hung Chang. Mixing properties of tree-shifts. Journal of Mathematical Physics, 58(11):112702, 2017.\n\n[10] Jung-Chao Ban and Chih-Hung Chang. Tree-shifts: Irreducibility, mixing, and the chaos of tree-shifts. Transactions of the American Mathematical Society, 369(12):8389–8407, 2017.\n\n[11] Jung-Chao Ban and Chih-Hung Chang. Tree-shifts: The entropy of tree-shifts of finite type. Nonlinearity, 30(7):2785, 2017.\n\n[12] Jung-Chao Ban, Chih-Hung Chang, Wen-Guei Hu, and Yu-Liang Wu. Topological entropy for shifts of finite type over Z and tree. arXiv preprint arXiv:2006.13415, 2020.\n\n[13] Jung-Chao Ban and Chih-Hung Chang. Characterization for entropy of shifts of finite type on cayley trees. Journal of Statistical Mechanics: Theory and Experiment, 2020(7): 073412, 2020.\n\n[14] Jung-Chao Ban, Chih-Hung Chang, and Yu-Hsiung Huang. Complexity of shift spaces on semigroups. Journal of Algebraic Combinatorics, 53(2):413–434, 2021.\n\n[15] Wei-Lin Lin. On the strip entropy of the golden-mean tree shift. Master’s thesis, National Chengchi University, 2021.\n\n[16] Itai Benjamini and Yuval Peres. Markov chains indexed by trees. The annals of probability, pages 219–243, 1994.\n\n[17] Hans-Otto Georgii. Gibbs measures and phase transitions. de Gruyter, 2011.zh_TW
dc.identifier.doi10.6814/NCCU202200470en_US
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
item.cerifentitytypePublications-
item.grantfulltextrestricted-
item.openairetypethesis-
Appears in Collections:學位論文
Files in This Item:
File Description SizeFormat
100201.pdf703.96 kBAdobe PDF2View/Open
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.