Please use this identifier to cite or link to this item: https://ah.lib.nccu.edu.tw/handle/140.119/147738
題名: 額葉紋狀體與額葉海馬體迴路功能性破壞對區辨性增強低頻反應操作式制約行為的影響
Effects of fronto-striatal and fronto-hippocampal functional disconnection on operant behavior trained by differential reinforcement of low-rate response schedule
作者: 吳舒婷
Wu, Shu-Ting
貢獻者: 楊立行
Yang, Lee-Xieng
吳舒婷
Wu, Shu-Ting
關鍵詞: 操作式制約行為
功能性連結破壞
鵝膏蕈酸
額葉紋狀體
額葉海馬體
日期: 2023
上傳時間: 3-Oct-2023
摘要: 在大腦掌管的高階認知功能中,前額葉、紋狀體,和海馬迴等多個腦區共 同針對衝動控制和時間感知這兩個功能扮演著重要角色。而在操作式制約行為 中,區辨性低反應頻率增強模式作業 (Differential Reinforcement of Low-rate Response task; DRL)被認為需要涉及上述兩個認知歷程。然而,過去對於此些腦 區的研究主要是使用消融、興奮性毒素破壞、或藥理方式所進行單一或雙側破 壞腦區的方式,很少有研究運用功能性連結破壞的方法探索衝動行為的神經機 制。本研究透過功能性連結破壞方法探討前額葉中兩個子腦區的連結、前額葉- 紋狀體、前額葉-伏隔核,和前額葉-海馬迴的神經連結機制對 DRL 衝動行為的 影響。實驗 1 針對外側眼眶前額葉(lateral orbitofrontal cortex; lOFC)與內側前 額葉(medial prefrontal cortex; mPFC)之間的功能聯繫進行破壞。實驗 2 則針 對外側眼眶前額葉與基底核或海馬迴進行功能性破壞。實驗 2-1 針對 lOFC 與背 側紋狀體(dorsal striatum; DS),實驗 2-2 為 lOFC 與伏隔核(Nucleus accumbens; NAc),以及實驗 2-3 為 lOFC 和海馬迴(Hippocampus; HIP)等三連結進行功能性破壞。實驗 3 則針對 mPFC 與 NAc 之間的連接進行了功能性破壞。然而,因連結破壞的實驗方式可能在學習階段的不同時間發生,因此本研 究測量了學習的不同階段,包含 DRL 10 秒與 DRL 15 秒的習得,DRL 15 秒消 除,與 DRL 15 秒再習得。研究結果顯示,在針對 lOFC-DS 連接迴路操弄的實 驗中,功能性破壞組在再習得階段的表現優於實驗控制組,其他階段則無此影 響。而在針對 lOFC-NAc 連接迴路操弄的實驗中,功能性破壞組則在習得 DRL 10 秒與 DRL 15 秒的表現較控制組差。然而在針對 lOFC-mPFC、lOFC-HIP 和 mPFC-NAc 這三個迴路操弄的研究中沒有組間的差異。綜合以上結果,實驗支 持皮質-紋狀體間的神經網絡參與衝動行為,並有助於實驗者對不同學習階段的 DRL 作業在行為抑制相關的時間感知中進行更深入的了解。
In the brain, the prefrontal, striatal, and hippocampal areas together are important for high-level cognition functions, including impulsive control and timing. Operant behavior trained by differential reinforcement of low-rate response (DRL) schedule of reinforcement requires these two processes. Previous studies investigated the functions of these brain areas using aspiration, excitotoxic lesion, or pharmacological treatment mainly through a manner of bilateral interventions, few studies applied the functional disconnection approach to explore the neural substrates of impulsive action. This study evaluated the roles of fronto-striatal and fronto-hippocampal circuits on DRL behavior via the approach of functional disconnection. Experiment 1 manipulated the functional disconnection between the lateral orbitofrontal cortex (lOFC) and medial prefrontal cortex (mPFC). Experiment 2 intervened the lOFC connecting to the dorsal striatum (DS; Experiment 2-1), to the nucleus accumbens (NAc; Experiment 2-2), and to the hippocampus (HIP; Experiment 2-3). And, Experiment 3 manipulated the functional disconnection between the mPFC and NAc. In consideration of the potential impacts of disconnection lesions that could affect distinct processes in different learning stages. Behavioral assessments were conducted in the acquisition of DRL 10s and DRL 15s which were followed by the extinction and spontaneous recovery. The results showed that rats with disconnection lesions of lOFC-DS performed better in the recovery stage than those with control lesions, but had no impact on the other stages. Moreover, rats with disconnection lesions of lOFC- NAc disrupted the acquisition of DRL 10s and DRL 15s. No significant influence was produced by the functional disconnection of lOFC-mPFC, lOFC-HIP, or mPFC-NAc. Together, the current data are in general agreement with the notion of the cortico- striatal circuit involved in impulsive action and provide insights of timing associated with behavioral inhibition in the acquisition of DRL behavior at different learning stages.
參考文獻: Aron, A. R., & Poldrack, R. A. (2005). The cognitive neuroscience of response inhibition: relevance for genetic research in attention-deficit/hyperactivity disorder. Biological Psychiatry, 57(11), 1285–1292.\nBaker, P. M., & Ragozzino, M. E. (2014). Contralateral disconnection of the rat prelimbic cortex and dorsomedial striatum impairs cue-guided behavioral switching. Learning and Memory, 21(8), 368–379.\nBalleine B. W. (2005). Neural bases of food-seeking: affect, arousal and reward in corticostriatolimbic circuits. Physiology and Behavior, 86(5), 717-730.\nBalleine, B. W., & O’Doherty, J. P. (2010). Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology, 35(1). 48-69.\nBari A., Dalley J. W., & Robbins T. W. (2008). The application of the 5-choice serial reaction time task for the assessment of visual attentional processes and impulse control in rats. Nature Protocols, 3(5), 759-767.\nBari A., & Robbins T. W. (2013). Inhibition and impulsivity: behavioral and neural basis of response control. Progress in Neurobiology, 108, 44-79.\nBechara, A., Damasio, H., Tranel, D., & Anderson, S. W. (1998). Dissociation Of working memory from decision making within the human prefrontal cortex. The Journal of Neuroscience, 18(1), 428–437.\nBesson, M., Belin, D., McNamara, R., Theobald, D. E., Castel, A., Beckett, V. L., Crittenden, B. M., Newman, A. H., Everitt, B. J., Robbins, T. W., & Dalley, J. W. (2010). Dissociable control of impulsivity in rats by dopamine d2/3 receptors in the core and shell subregions of the nucleus accumbens. Neuropsychopharmacology, 35(2), 560–569.\nBraggio, J. T., & Ellen, P. (1976). Cued DRL training: effects on the permanence of lesion-induced overresponding. Journal of Comparative and Physiological Psychology, 90(7), 694–703.\nBroos, N., Schmaal, L., Wiskerke, J., Kostelijk, L., Lam, T., Stoop, N., Weierink, L., Ham, J., de Geus, E. J., Schoffelmeer, A. N., van den Brink, W., Veltman, D. J., de Vries, T. J., Pattij, T., & Goudriaan, A. E. (2012). The relationship between impulsive choice and impulsive action: a cross-species translational study. PloS One, 7(5), e36781.\nCarli, M., Robbins, T. W., Evenden, J. L., & Everitt, B. J. (1983). Effects of lesions to ascending noradrenergic neurones on performance of a 5-choice serial reaction task in rats; implications for theories of dorsal noradrenergic bundle function based on selective attention and arousal. Behavioural Brain Research, 9(3), 361– 380.\nCheng R. K., & Liao R. M. (2007). Dopamine receptor antagonist reverse amphetamine-induced behavioral alteration on a differential reinforcement for low-rate (DRL) operant task in the rat. The Chinese Journal of Physiology, 50(2), 77–88.\nCheng, R. K., & Liao, R. M. (2017). Regional differences in dopamine receptor blockade affect timing impulsivity that is altered by d-amphetamine on differential reinforcement of low-rate responding (DRL) behavior in\nrats. Behavioural Brain Research, 331, 177–187.\nCheng, R. K., MacDonald, C. J., & Meck, W. H. (2006). Differential effects of cocaine and ketamine on time estimation: implications for neurobiological models of interval timing. Pharmacology, Biochemistry, and Behavior, 85(1), 114–122.\nCheng, R. K., MacDonald, C. J., Williams, C. L., & Meck, W. H. (2008). Prenatal choline supplementation alters the timing, emotion, and memory performance (TEMP) of adult male and female rats as indexed by differential reinforcement of low-rate schedule behavior. Learning and Memory, 15(3), 153–162.\nChiang, F. K., Cheng, R. K., & Liao, R. M. (2015). Differential effects of dopamine receptor subtype-specific agonists with respect to operant behavior maintained on a differential reinforcement of low-rate responding (DRL) schedule. Pharmacology, Biochemistry, and Behavior, 130, 67–76.\nCho, Y. H., & Jeantet, Y. (2010). Differential involvement of prefrontal cortex, striatum, and hippocampus in DRL performance in mice. Neurobiology of Learning and Memory, 93(1), 85–91.\nChristakou A., Robbins T. W., & Everitt B. J. (2001). Functional disconnection of a prefrontal cortical-dorsal striatal system disrupts choice reaction time performance: implications for attentional function. Behavioral Neuroscience, 115(4), 812-825.\nChristakou A., Robbins T. W., & Everitt B. J. (2004). Prefrontal cortical-ventral striatal interactions involved in affective modulation of attentional performance: implications for corticostriatal circuit function. The Journal of Neuroscience, 24(4), 773-780.\nChudasama Y., Doobay V. M., & Liu Y. (2012). Hippocampal-prefrontal cortical circuit mediates inhibitory response control in the rat. The Journal of Neuroscience, 32(32), 10915-10924.\nChudasama, Y., Passetti, F., Rhodes, S. E., Lopian, D., Desai, A., & Robbins, T. W. (2003). Dissociable aspects of performance on the 5-choice serial reaction time task following lesions of the dorsal anterior cingulate, infralimbic and orbitofrontal cortex in the rat: differential effects on selectivity, impulsivity and compulsivity. Behavioural Brain Research, 146(1-2), 105–119.\nDalley, J. W., Cardinal, R. N., & Robbins, T. W. (2004). Prefrontal executive and cognitive functions in rodents: neural and neurochemical\nsubstrates. Neuroscience and Biobehavioral Reviews, 28(7), 771–784.\nDalley, J. W., Everitt, B. J., & Robbins, T. W. (2011). Impulsivity, compulsivity, and top-down cognitive control. Neuron, 69(4), 680–694.\nDalley, J. W., Mar, A. C., Economidou, D., & Robbins, T. W. (2008).\nNeurobehavioral mechanisms of impulsivity: fronto-striatal systems and functional neurochemistry. Pharmacology, Biochemistry, and Behavior, 90(2), 250–260.\nDalley, J. W., & Robbins, T. W. (2017). Fractionating impulsivity: Neuropsychiatric implications. Nature Reviews Neuroscience, 18(3), 158-171.\nD`Amour-Horvat, V., & Leyton, M. (2014). Impulsive actions and choices in laboratory animals and humans: effects of high vs. low dopamine states produced by systemic treatments given to neurologically intact subjects. Frontiers in Behavioral Neuroscience, 8, 432.\nDietrich, A., & Allen, J. D. (1998). Functional dissociation of the prefrontal cortex and the hippocampus in timing behavior. Behavioral Neuroscience, 112(5), 1043–1047.\nDunnett, S. B., & Iversen, S. D. (1982). Neurotoxic lesions of ventrolateral but not anteromedial neostriatum in rats impair differential reinforcement of low rates (DRL) performance. Behavioural Brain Research, 6(3), 213–226.\nDunnett, S. B., Meldrum, A., & Muir, J. L. (2005). Frontal-striatal disconnection disrupts cognitive performance of the frontal-type in the rat. Neuroscience, 135(4), 1055–1065.\nEagle, D. M., & Baunez, C. (2010). Is there an inhibitory-response-control system in the rat? Evidence from anatomical and pharmacological studies of behavioral inhibition. Neuroscience and Biobehavioral Reviews, 34(1), 50-72.\nEagle, D. M., Baunez, C., Hutcheson, D. M., Lehmann, O., Shah, A. P., & Robbins, T. W. (2008). Stop-signal reaction-time task performance: role of prefrontal cortex and subthalamic nucleus. Cerebral Cortex, 18(1), 178-188.\nElcoro, M., Aparicio, C. F., Kelly, S. P., & Thompson, T. (2016). Behavioral inhibition in rats after 6-hydroxydopamine lesions of the medial prefrontal cortex. Psychology and Neuroscience, 9(1), 125.\nEllen, P., & Aitken, W. C., Jr (1970). Absence of overresponding on a DRL schedule by hippocampally-lesioned rats. Physiology and Behavior, 5(4), 489–495.\nEvenden, J. L. (1999). Varieties of impulsivity. Psychopharmacology, 146(4), 348– 361.\nFeil, J., Sheppard, D., Fitzgerald, P. B., Yücel, M., Lubman, D. I., & Bradshaw, J. L. (2010). Addiction, compulsive drug seeking, and the role of frontostriatal mechanisms in regulating inhibitory control. Neuroscience and Biobehavioral\nReviews, 35, 248-275.\nFeja, M., & Koch, M. (2015). Frontostriatal systems comprising connections between ventral medial prefrontal cortex and nucleus accumbens subregions differentially regulate motor impulse control in rats. Psychopharmacology, 232(7), 1291– 1302.\nFinger, S., Altemus, K. L., Green, L., Wolf, C., Miller, J., & Almli, C. R. (1987). Effects of medial frontal cortex lesions on DRL performance in rats. Physiology and Behavior, 41(4), 387-389.\nFletcher, P. J., Chambers, J. W., Rizos, Z., & Chintoh, A. F. (2009). Effects of 5-HT depletion in the frontal cortex or nucleus accumbens on response inhibition measured in the 5-choice serial reaction time test and on a DRL\nschedule. Behavioural Brain Research, 201(1), 88–98.\nFuster, J. M. (1997). The Prefrontal Cortex: Anatomy, Physiology, and Neuropsychology of the Frontal Lobe. New York: Raven Press.\nFuster, J. M. (2015). The Prefrontal Cortex. Academic Press.\nGoldman-Rakic, P. S. (1987). Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. Handbook of Physiology, 5:373-417. Groenewegen, H. J., Wright, C. I., & Uylings, H. B. (1997). The anatomical relationships of the prefrontal cortex with limbic structures and the basal ganglia. Journal of Psychopharmacology, 11(2), 99–106. Haber S. N. (2016). Corticostriatal circuitry. Dialogues in Clinical\nNeuroscience, 18(1), 7–21.\nHardung, S., Epple, R., Jäckel, Z., Eriksson, D., Uran, C., Senn, V., Gibor, L., Yizhar,\nO., & Diester, I. (2017). A functional gradient in the rodent prefrontal cortex\nsupports behavioral inhibition. Current Biology, 27(4), 549-555.\nHart, G., Bradfield, L. A., & Balleine, B. W. (2018). Prefrontal Corticostriatal\nDisconnection Blocks the Acquisition of Goal-Directed Action. The Journal of Neuroscience, 38(5), 1311–1322.\nHervig, M. E., Fiddian, L., Piilgaard, L., Božič, T., Blanco-Pozo, M., Knudsen, C., Olesen, S. F., Alsiö, J., & Robbins, T. W. (2020). Dissociable and Paradoxical Roles of Rat Medial and Lateral Orbitofrontal Cortex in Visual Serial Reversal Learning. Cerebral Cortex, 30(3), 1016–1029.\nHoover, W. B., & Vertes, R. P. (2011). Projections of the medial orbital and ventral orbital cortex in the rat. The Journal of Comparative Neurology, 519(18), 3766- 3801.\nHsu, T. M., Noble, E. E., Liu, C. M., Cortella, A. M., Konanur, V. R., Suarez, A. N., Reiner, D. J., Hahn, J. D., Hayes, M. R., & Kanoski, S. E. (2018). A hippocampus to prefrontal cortex neural pathway inhibits food motivation through glucagon-like peptide-1 signaling. Molecular Psychiatry, 23(7), 1555– 1565.\nJentsch, J. D., Ashenhurst, J. R., Cervantes, M. C., Groman, S. M., James, A. S., & Pennington, Z. T. (2014). Dissecting impulsivity and its relationships to drug addictions. Annals of the New York Academy of Sciences, 1327, 1–26.\nJentsch, J. D., & Taylor, J. R. (1999). Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward- related stimuli. Psychopharmacology, 146(4), 373–390.\nKesner, R. P., & Churchwell, J. C. (2011). An analysis of rat prefrontal cortex in mediating executive function. Neurobiology of Learning and Memory, 96(3), 417–431.\nKim, S., & Lee, D. (2011). Prefrontal cortex and impulsive decision making. Biological Psychiatry, 69(12), 1140–1146.\nKirby, E. D., Jensen, K., Goosens, K. A., & Kaufer, D. (2012). Stereotaxic surgery for excitotoxic lesion of specific brain areas in the adult rat. Journal of Visualized Experiments: JoVE, (65), e4079.\nKolb, B. (1984). Functions of the frontal cortex of the rat: a comparative review. Brain Research, 320(1), 65–98.\nKolb, B. (1990). Prefrontal cortex. In B. Kolb & R. C. Tees (Eds.), The Cerebral Cortex of the Rat (pp. 437–458). Cambridge, M. A., US: The MIT Press. Kolb, B., Nonneman, A. J., & Singh, R. K. (1974). Double dissociation of spatial impairments and perseveration following selective prefrontal lesions in rats. Journal of Comparative and Physiological Psychology, 87(4), 772.\nKotz, S. A., Brown, R. M., & Schwartze, M. (2016). Cortico-striatal circuits and the timing of action and perception. Current Opinion in Behavioral Sciences, 8, 42-45.\nKramer, T. J., & Rilling, M. (1970). Differential reinforcement of low rates: A\nselective critique. Psychological Bulletin, 74(4), 225–254.\nKubos, K. L., Brady, J. V., Moran, T. H., Smith, C. H., & Robinson, R. G. (1985). Asymmetrical effect of unilateral cortical lesions and amphetamine on DRL-20: A time-loss analysis. Pharmacology Biochemistry and Behavior, 22(6), 1001- 1006.\nLiao, R. M. (2009). Effects of amphetamine and cocaine on behavior maintained by differential reinforcement of low-rate-response (DRL) schedule. The Chinese Journal of Physiology, 52(4), 250-263.\nLiao, R. M., & Cheng, R. K. (2005). Acute effects of d-amphetamine on the differential reinforcement of low-rate (DRL) schedule behavior in the rat: comparison with selective dopamine receptor antagonists. The Chinese Journal of Physiology, 48(1), 41–50.\nLiao, R. M., & Lin, H. L. (2008). Differential effects of lesions in the subareas of medial prefrontal cortex on the development of behavioral sensitization to amphetamine: the role of environmental context. The Chinese Journal of Physiology, 51(6), 394–401.\nLiao, R. M., & Pattij, T. (2022). Neural basis of operant behaviors maintained on the differential-reinforcement -of-low-rate (DRL) schedule in rodents. Brain Research Bulletin, 185, 1-17.\nLodge D. J. (2011). The medial prefrontal and orbitofrontal cortices differentially regulate dopamine system function. Neuropsychopharmacology, 36(6), 1227– 1236.\nLogan, G. D., Cowan, W. B., & Davis, K. A. (1984). On the ability to inhibit simple and choice reaction time responses: a model and a method. Journal of\nExperimental Psychology. Human Perception and Performance, 10(2), 276–291. Logue, S. F., & Gould, T. J. (2014). The neural and genetic basis of executive function: attention, cognitive flexibility, and response inhibition. Pharmacology, Biochemistry, and Behavior, 123, 45–54.\nMadden, G. J. & Bickel, W. K. (Eds.). (2010). Impulsivity: the Behavioral and Neurological Science of Discounting. American Psychological Association. Washington, DC.\nMar, A. C., Walker, A. L., Theobald, D. E., Eagle, D. M., & Robbins, T. W. (2011). Dissociable effects of lesions to orbitofrontal cortex subregions on impulsive choice in the rat. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 31(17), 6398–6404.\nMatell, M. S., & Meck, W. H. (2004). Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes. Cognitive Brain Research, 21, 139-170.\nMessanvi, F., Perkins, A., du Hoffmann, J., & Chudasama, Y. (2020). Fronto- temporal galanin modulates impulse control. Psychopharmacology, 237(2), 291– 303.\nMorein-Zamir, S., & Robbins, T. W. (2015). Fronto-striatal circuits in response- inhibition: Relevance to addiction. Brain Research, 1628(Pt A), 117–129.\nMuir, J. L., Everitt, B. J., & Robbins, T. W. (1996). The cerebral cortex of the rat and visual attentional function: dissociable effects of mediofrontal, cingulate, anterior dorsolateral, and parietal cortex lesions on a five-choice serial reaction time task.\nCerebral Cortex, 6, 470-481.\nNalwa, V., & Rao, P. S. (1985). DRL responding under uncertain reinforcement in rats after medial frontal cortical lesions. Behavioural Brain Research, 17(1), 73-76.\nNeill, D. B. (1976). Frontal-striatal control of behavioral inhibition in the rat. Brain Research, 105(1), 89-103.\nNonneman, A. J., Voigt, J., & Kolb, B. E. (1974). Comparisons of behavioral effects of hippocampal and prefrontal cortex lesions in the rat. Journal of Comparative and Physiological Psychology, 87(2), 249.\nNuman, R., Seifert, A. R., & Lubar, J. F. (1975). Effects of medio-cortical frontal lesions on DRL performance in the rat. Physiological Psychology, 3(4), 390-394.\nO`Donnell, J. M., Marek, G. J., & Seiden, L. S. (2005). Antidepressant effects assessed using behavior maintained under a differential-reinforcement-of-low- rate (DRL) operant schedule. Neuroscience and Biobehavioral Reviews, 29(4-5), 785–798.\nPassingham, R. E., & Steven, P. W. (2012). The Neurobiology of the Prefrontal Cortex: Anatomy, Evolution, and the Origin of Insight. Oxford University Press.\nPattij, T., & Vanderschuren, L. J. (2008). The neuropharmacology of impulsive behaviour. Trends in Pharmacological Sciences, 29(4), 192–199.\nPaxinos, G., & Watson, C. (2007). The Rat Brain in Stereotaxic Coordinates. UK: Academic Press.\nPezze, M. A., Dalley, J. W., & Robbins, T. W. (2009). Remediation of attentional dysfunction in rats with lesions of the medial prefrontal cortex by intra-accumbens administration of the dopamine D(2/3) receptor antagonist sulpiride. Psychopharmacology, 202(1-3), 307–313.\nPothuizen, H. H., Jongen-Rêlo, A. L., Feldon, J., & Yee, B. K. (2005). Double dissociation of the effects of selective nucleus accumbens core and shell lesions on impulsive-choice behaviour and salience learning in rats. The European Journal of Neuroscience, 22(10), 2605–2616.\nRawlins, J. N., Winocur, G., & Gray, J. A. (1983). The hippocampus, collateral behavior, and timing. Behavioral Neuroscience, 97(6), 857–872.\nRiddell, W. I., Malinchoc, M., Reimers, R. O., (1973). Shift and retention deficits in hippocampectomized and neodecorticate rats. Physiology and Behavior, 10(5), 869-878.\nRoesch, M. R., Bryden, D. W., Cerri, D. H., Haney, Z. R., & Schoenbaum, G. (2012). Willingness to wait and altered encoding of time-discounted reward in the orbitofrontal cortex with normal aging. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 32(16), 5525–5533.\nRogers, R. D., Baunez, C., Everitt B. J., & Robbins, T. W. (2001). Lesions of the medial and lateral striatum in the rat produce differential deficits in attentional performance. Behavioral Neuroscience, 115, 799-811.\nScott, T. L., & Vonder Haar, C. (2019). Frontal brain injury chronically impairs timing behavior in rats. Behavioural Brain Research, 356, 408–414.\nSkinner, B. F. (1938). The Behavior of Organisms: An Experimental Analysis. Oxford, England: Appleton-Century.\nSt. Onge, J. R., & Floresco S.B. (2010). Prefrontal cortical contribution to risk-based decision making. Cereb Cortex, 20, 1816-1828.\nTurner K.M., & Parkes S. L. (2020). Prefrontal regulation of behavioural control: evidence from learning theory and translational approaches in rodents. Neuroscience and Biobehavioral Reviews, 118, 27–41.\nUslaner, J. M., & Robinson, T. E. (2006). Subthalamic nucleus lesions increase impulsive action and decrease impulsive choice - mediation by enhanced incentive motivation?. The European Journal of Neuroscience, 24(8), 2345– 2354.\nUylings, H. B., Groenewegen, H. J., & Kolb, B. (2003). Do rats have a prefrontal cortex?. Behavioural Brain Research, 146(1-2), 3–17.\nVolkow, N. D., Gillespie, H., Mullani, N., Tancredi, L., Grant, C., Valentine, A., & Hollister, L. (1996). Brain glucose metabolism in chronic marijuana users at baseline and during marijuana intoxication. Psychiatry Research, 67(1), 29–38.\nVoorn, P., Vanderschuren, L. J., Groenewegen, H. J., Robbins, T. W., & Pennartz, C. M. (2004). Putting a spin on the dorsal-ventral divide of the striatum. Trends in Neurosciences, 27(8), 468–474.\nWenzel, J. M., Zlebnik, N. E., Patton, M. H., Smethells, J. R., Ayvazian, V. M., Dantrassy, H. M., Zhang, L. Y., Mathur, B. N., & Cheer, J. F. (2023). Selective chemogenetic inactivation of corticoaccumbal projections disrupts trait choice impulsivity. Neuropsychopharmacolog, 10.1038/s41386-023-01604-5. Advance online publication.\nWu, S. Y. (2023). Lesion effects of prefrontal cortex subareas on operant behavior trained by differential reinforcement of low-rate response schedule. Unpublished master’s thesis, National Cheng-Chi University.\nYang, J. H., Cheng, C. P., & Liao, R. M. (2018). Effects of d-amphetamine on risk choice in rats depend on the manner in which the expected reward value is varied. Pharmacology, Biochemistry, and Behavior, 171, 20–29.
描述: 碩士
國立政治大學
心理學系
110752011
資料來源: http://thesis.lib.nccu.edu.tw/record/#G0110752011
資料類型: thesis
Appears in Collections:學位論文

Files in This Item:
File Description SizeFormat
201101.pdf32.62 MBAdobe PDF2View/Open
Show full item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.