Please use this identifier to cite or link to this item: https://ah.nccu.edu.tw/handle/140.119/36732


Title: Optimal Asset Allocation with Minimum Guarantees
附最低保證下之最適資產配置
Authors: 陳姵吟
Chen,Pei-Yin
Contributors: 張士傑
Chang, Shi-Cheil
陳姵吟
Chen,Pei-Yin
Keywords: minimum guarantee
stochastic variation
interest rate risk
market neutral valuation
mutual fund
Date: 2003
Issue Date: 2009-09-18 19:24:01 (UTC+8)
Abstract: 本研究中,考慮連續時間下,附最低保證之長期最適投資策略;在利率模型中,為較能符合現實狀況,我們採用CIR模型;另外,在此策略中,我們將投資人之風險偏好加入模型中研究,最適化投資人到期時財富之效用函數,並用Cox & Huang之市場中立評價方法來解決數學模型問題。此篇研究顯示,最適之投資策略可以等價於某些共同基金之投資組合,這些共同基金能利用金融市場上之主要資產(market primary assets)來複製。
In this study, we consider a portfolio selection problem for long-term investors. Dynamic investment
strategy with the continuous-time framework incorporating the minimum guarantees are
constructed. Maximizing expected utility of the terminal wealth is employed by investors to trade
off profits in good future state against losses incurred in worse states. Follow the previous works
of Deelstra et al. (2003), we concentrate on the simplest case of a one-factor Cox-Ingersoll-Ross
(CIR) model in formulating the stochastic variation from the interest rate risks. Under the market
completeness assumption, the fund growth is modelled under the market neutral valuation and
the optimal rules are mapped into the static variational problem of Cox and Huang (1989). In
this study, we show that the optimal portfolio is equivalent to a certain mutual fund that can be
replicated by the market primary assets
Reference: Bajeux-Besnainou, 2003. Dynamic asset allocation for stocks, bonds, and cash. Journal of Business 76, 263-287.
Barberis, N., 2000. Investing for the long run when returns are predictable. Journal of Finance 55 (1), 225-264.
Basak, S., 1995. A general equilibrium model of portfolio insurance, Review of Financial Study 8, 1059-1090.
Breeden, D., 1979. An intertemporal asset pricing model with stochastic consumption and investment opportunities. Journal of Financial Economics 7 (3), 265--296.
Chan, K. C., Karolyi, G. A. and Longstaff, F. S., Sanders, A.B.,1992. The volatility of short-term interest rates: an empirical comparison of alternative models of the term structure of interest rates. Journal of Finance 47, 1209-1227.
Cox, J. and Huang, C. F., 1989. Optimal consumption and portfolio policies when asset prices follow a diffusion process, Journal of Economic Theory 49, 33-83.
Cox, J. and Huang, C. F., 1991. A variational problem arising in financial economics. Journal of Mathematical Economics 20, 465-487.
Cox, J. C., Ingersoll, J. E. and Ross, S. A., 1985. A theory of the term structure of interest rates. Econometrica 53, 385-408.
Deelstra, G., Grasselli, M. and Koehl, P. F., 2000. Optimal investment strategies in a CIR framework. Journal of Applied Probability 37, 936-946.
Deelstra, G., Grasselli, M. and Koehl, P. F., 2003. Optimal investment strategies in the presence of a minimum guarantee. Insurance:Mathematics and Economics 33, 189-207.
Dempster, M. A. H., Evstigneev, I. V. and Schenk-Hoppe, K.R., 2003. Exponential growth of fixed-mix strategies in stationary asset markets, Finance and Stochastics, 7, 263-276.
Devolder, P., Princep, M. B. and Fabian, I. D., 2003. Stochastic optimal control of annuity contracts, Insurance: Mathematics and Economics 33, 227-238.
Duffie, J. D. and Huang, C. F., 1985. Implementing Arrow-Debreu equilibria by continuous trading of few long-lived securities, Econometrica, 53 1337-1356.
Grossman, S., and Z. Zhou, 1996. Equilibrium analysis of portfolio insurance, Journal of Finance 51, 1379-1403.
Karatzas, I., 1989. Optimization problems in the theory of continuous trading. Journal of Control and Optimization 27, 1221-1259.
Karatzas, I., and Shreve, S., 1991. Brownian Motion and Stochastic Calculus, Second ed. Springer-Verlag, Berlin.
Karatzas, I., Lehoczky, J. P. and Shreve, S., 1987. Optimal portfolio and consumption decision for a 'small investor' on a finite horizon. SIAM. Journal on Control and Optimization 25, 1557-1586.
Long, J. B., 1990. The numeraire portfolio. Journal of Financial Economics 26, 29--69.
Markowitz, H., 1959, Portfolio Selection: Efficient Diversification of Investment, John Wiley, New York.
Merton, R. C., 1971. Optimum consumption and portfolio rules in a continuous-time case. Journal of Economy Theory 3, 373-413.
Merton, R. C., 1969. Lifetime portfolio selection under uncertainty: The continuous-time case. Review of Economics and Statistics 51, 247--257.
Merton, R. C., 1973. An intertemporal capital asset pricing model. Econometrica 41 (5), 867--887.
Merton, R. C., 1992. Continuous Time Finance. Blackwell, Oxford.
Pliska, S., 1986. A stochastic calculus model of continuous trading: optimal portfolios. Mathematics of Operations Research 11, 371--382.
Description: 碩士
國立政治大學
風險管理與保險研究所
91358019
92
Source URI: http://thesis.lib.nccu.edu.tw/record/#G0091358019
Data Type: thesis
Appears in Collections:[風險管理與保險學系] 學位論文

Files in This Item:

There are no files associated with this item.



All items in 學術集成 are protected by copyright, with all rights reserved.


社群 sharing