Please use this identifier to cite or link to this item: https://ah.nccu.edu.tw/handle/140.119/37074


Title: 不同快慢節奏之音樂刺激對午間睡眠後之睡眠遲惰效果、情緒以及生理激發狀態的影響
The Effects of the Fast and Slow Tempo Music on Sleep Inertia, Mood and Arousal after a Short Daytime Nap
Authors: 周重佑
Chou, Chung Yu
Contributors: 楊建銘
Yang, Chien Ming
周重佑
Chou, Chung Yu
Keywords: 睡眠遲惰
主觀評量
認知行為表現
音樂
生理激發
Sleep inertia
subjective sleepiness
performance
music
arousal
Date: 2008
Issue Date: 2009-09-19 11:55:13 (UTC+8)
Abstract: 研究目的:睡眠遲惰(sleep inertia)指的是剛由睡眠中醒來的一種現象,在這段轉換期間內,個體的警覺力較低、心智較為遲緩,認知和行為表現都較差。過去針對睡眠遲惰的研究顯示,睡眠遲惰是從一個較低生理激發的狀態到較高生理激發的漸進式轉換過渡階段。若睡眠遲惰是與較低的生理激發狀態有關,則若能提高個體的激發狀態,應能減少睡眠遲惰的負面影響。從過去的文獻中可發現,快節奏的音樂可以提高個體的生理激發。因此,本研究針對音樂的節奏快慢做操弄,探討生理激發狀態在睡眠遲惰所扮演的角色,比較不同快慢節奏的音樂刺激對於睡眠遲惰效果的影響。

方法:12名年齡介於18到31歲之間的受試者參與此研究。受試者在20分鐘小睡被喚醒後,分次接受快節奏音樂、慢節奏音樂、以及無音樂控制情境等三種情境安排。睡醒後的實驗期間為1小時,受試者每10分鐘被要求進行加法作業及填寫卡羅連斯加睡意量表(Karolinska Sleepiness Scale)、視覺類比量表(visual analog scales)、以及情緒評估等主觀量表,總計六次。同時,他們的腦電波(electroencephalogram)、心率變異率(heart rate variability)、膚電反應(skin conductance responses)、指溫等生理反應亦被記錄。

結果:受試者在認知表現或主觀評量上的確顯現出睡眠遲惰的效果,其加法作業的完成題數隨著時間增加,而主觀睡意則隨著時間減少。快節奏音樂情境比慢節奏音樂情境有顯著較高的主觀激發程度,並有較清醒的評量。在生理測量部分,受試者在快節奏音樂情境中有顯著較高的非特定刺激引起之膚電反應(Non-specific skin conductance responses)和腦電波較多beta波的趨勢。然而,儘管受試者的主觀評量會受到音樂刺激的影響而有不同,其認知表現並沒有出現類似的效果。

結論:本研究發現藉由音樂提高激發狀態,可使主觀睡意評量降低,但認知表現並不受到影響。此分離的現象顯示睡眠遲惰的消散不能以單一的生理激發狀態來解釋,而必須考慮多種歷程機制同時運作的可能性。
Objective:Sleep inertia (SI) is a transitional state occurring immediately after awakening from sleep that are associated with sleepiness, decreased alertness and decrement in cognitive performance. It has been suggested that SI may be due to a decline in arousal level. Therefore, it was hypothesized that factors likely increasing arousal would reduce the effects of SI. Previous studies showed that fast-tempo music may enhance the level of arousal. The present study was conducted to clarify the role of arousal in SI by exposure to music with different tempos.

Methods:Twelve healthy young adults, aged 18 to 31 years, participated in the study. All subjects went through three conditions: a fast-tempo music, a slow-tempo music, and a control (no music) conditions. Music stimuli were applied to subjects awaked from a 20-mins nap, and the subjects were given an addition task and asked to rate their level of subjective sleepiness and arousal on the Karolinska Sleepiness Scale (KSS), visual analog scales (VAS) and emotional rating scales 6 times over an hour. During the test period, their physiological arousal state was recorded, including electroencephalogram (EEG), heart rate variability (HRV), skin conductance responses (SCR), finger temperature.

Results:The effects of SI on cognitive throughput and subjective ratings were evident. Their performance on the addition task increased and sleepiness decreased over time. Subjective sleepiness was significantly reduced and physiological arousal level measured by non-specific skin conductance responses (NS-SCRs) and EEG beta power were elevated when the participants were exposed to fast-tempo music. However, cognitive performance was not influenced by music exposure.

Conclusion:The present findings suggest that increased arousal level during SI by manipulating music stimuli may decrease subjective sleepiness but have no impact on cognitive performance. This dissociative effect suggests that the dissipation of sleep inertia may not be a function of a general arousal level. Rather, there may be multiple processes that are responsible for different aspects of SI.
Reference: 林一真(民89)。貝克焦慮量表(BAI:1993年版)中文版指導手冊。台北市:中國行為科學社。
陳心怡(民89)。貝克憂鬱量表第二版(BDI-II)中文版指導手冊。台北市:中國行為科學社。
Achermann, P., Werth, E., Dijk, D. J., & Borbely, A. A. (1995). Time course of sleep inertia after nighttime and daytime sleep episodes. Archives Italiennes De Biologie, 134, 109-119.
Akerstedt, T., & Gillberg, M. (1990). Subjective and objective sleepiness in the active individual. The International Journal of Neuroscience, 52, 29-37.
Amara, C. E., & Wolfe, L. A. (1998). Reliability of noninvasive methods to measure cardiac autonomic function. Canadian Journal of Applied Physiology, 23, 396-408.
Armentrout, J. J., Holland, D. A., O'Toole, K. J., & Ercoline, W. R. (2006). Fatigue and related human factors in the near crash of a large military aircraft. Aviation, Space, and Environmental Medicine, 77, 963-970.
Arnedt, J. T., Owens, J., Crouch, M., Stahl, J., & Carskadon, M. A. (2005). Neurobehavioral performance of residents after heavy night call vs after alcohol ingestion. The Journal of the American Medical Association, 294, 1025-1033.
Balch, W. R., & Lewis, B. S. (1999). Music-dependent memory: The roles of tempo changes and mood mediation. Journal of Experimental Psychology: Learning, Memory, & Cognition, 22, 1354-1363.
Balkin, T. J., Braun, A. R., Wesensten, N. J., Jeffries, K., Varga, M., Baldwin, P., et al. (2002). The process of awakening: a PET study of regional brain activity patterns mediating the re-establishment of alertness and consciousness. Brain, 125, 2308-2319.
Blood, A. J., Zatorre, R. J., Bermudez, P., & Evans, A. C. (1999). Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nature Neuroscience, 2, 382-387.
Bonnet, M. H., & Arand, D. L. (2000). The impact of music upon sleep tendency as measured by the multiple sleep latency test and maintenance of wakefulness test. Physiology & Behavior, 71, 485-492.
Borbely, A. A. (1982). A two process model of sleep regulation. Human Neurobiology, 1, 195-204.
Bradley, M. M., & Lang, P. J. (1994). Measuring emotion: the Self-Assessment Manikin and the Semantic Differential. Journal of Behavior Therapy and Experimental Psychiatry, 25, 49-59.
Broughton, R. (1968). Sleep disorder: disorders of arousal? Science, 159, 1070-1078.
Brown, S., Martinez, M. J., & Parsons, L. M. (2004). Passive music listening spontaneously engages limbic and paralimbic systems. Neuroreport, 15, 2033-2037.
Bruck, D., & Pisani, D. L. (1999). The effects of sleep inertia on decision-making performance. Journal of Sleep Research, 8, 95-103.
Cuthbert, B. N., Schupp, H. T., Bradley, M. M., Birbaumer, N., & Lang, P. J. (2000). Brain potentials in affective picture processing: covariation with autonomic arousal and affective report. Biological Psychology, 52, 95-111.
Dawson, M. E., Schell, A. M., & Filion, D. L. (2007). The electrodermal system. In J. T. Cacioppo, L. G. Tassinary & G. C. Berntson (Eds.), Handbook of psychophysiology (3rd ed., pp. 159-181). Cambridge, MA: Cambridge University Press.
Dinges, D. F. (1990). Are you awake? Cognitive performance and reverie during the hypnopompic state. In R. Bootzin, J. Kihlstrom & D. Schacter (Eds.), Sleep and cognition (pp. 159-175). Washington DC: American Psychological Association.
Dinges, D. F., Orne, M. T., & Orne, E. C. (1985). Assessing performance upon abrupt awakening from naps during quasi-continuous operations. Behavior Research Methods, Instruments & Computer, 17, 37-45.
Feltin, M., & Broughton, R. (1968). Differential effects of arousal from slow wave versus REM sleep. Psychophysiology, 5, 231.
Ferrara, M., Curcio, G., Fratello, F., Moroni, F., Marzano, C., Pellicciari, M. C., et al. (2006). The electroencephalographic substratum of the awakening. Behavioural Brain Research, 167, 237-244.
Ferrara, M., & De Gennaro, L. (2000). The sleep inertia phenomenon during the sleep-wake transition: theoretical and operational issues. Aviation, Space, and Environmental Medicine, 71, 843-848.
Ferrara, M., De Gennaro, L., Ferlazzo, F., Curcio, G., Barattucci, M., & Bertini, M. (2001). Auditory evoked responses upon awakening from sleep in human subjects. Neuroscience Letters, 310, 145-148.
Folkard, S., & Akerstedt, T. (1992). A three-process model of the regulation of alertness-sleepiness. In R. Ogilvie & R. Broughton (Eds.), Sleep, arousal and performance (pp. 11-26). Boston: Birkhouse.
Gabrielsson, A. (2001). Emotions in strong experiences with music. In P. N. Juslin & J. A. Sloboda (Eds.), Music and emotion: theory and research (pp. 431-449). Oxford, UK: Oxford University Press.
Gillberg, M., Kecklund, G., & Akerstedt, T. (1994). Relations between performance and subjective ratings of sleepiness during a night awake. Sleep, 17, 236-241.
Hajak, G., Klingelhofer, J., Schulz-Varszegi, M., Matzander, G., Sander, D., Conrad, B., et al. (1994). Relationship between cerebral blood flow velocities and cerebral electrical activity in sleep. Sleep, 17, 11-19.
Hayashi, M., Fukushima, H., & Hori, T. (2003). The effects of short daytime naps for five consecutive days. Sleep Research Online, 5, 13-17.
Hayashi, M., Masuda, A., & Hori, T. (2003). The alerting effects of caffeine, bright light and face washing after a short daytime nap. Clinical Neurophysiology, 114, 2268-2278.
Hayashi, M., Uchida, C., Shoji, T., & Hori, T. (2004). The effects of the preference for music on sleep inertia after a short daytime nap. Sleep and Biological Rhythms, 2, 184-191.
Hofer-Tinguely, G., Achermann, P., Landolt, H. P., Regel, S. J., Retey, J. V., Durr, R., et al. (2005). Sleep inertia: performance changes after sleep, rest and active waking. Brain Research, 22, 323-331.
Husain, G., Thompson, W. F., & Schellenberg, E. G. (2002). Effect of musical tempo and mode on arousal, mood and spatial abilities. Music Perception, 20, 151-171.
Iwanaga, M., Kobayashi, A., & Kawasaki, C. (2005). Heart rate variability with repetitive exposure to music. Biological Psychology, 70, 61-66.
Jewett, M. E., & Kronauer, R. E. (1999). Interactive mathematical models of subjective alertness and cognitive throughput in humans. Journal of Biological Rhythms, 14, 588-597.
Jewett, M. E., Wyatt, J. K., Ritz-De Cecco, A., Khalsa, S. B., Dijk, D. J., & Czeisler, C. A. (1999). Time course of sleep inertia dissipation in human performance and alertness. Journal of Sleep Research, 8, 1-8.
Kaida, K., Takahashi, M., Akerstedt, T., Nakata, A., Otsuka, Y., Haratani, T., et al. (2006). Validation of the Karolinska sleepiness scale against performance and EEG variables. Clinical Neurophysiology, 117, 1574-1581.
Khalfa, S., Isabelle, P., Jean-Pierre, B., & Manon, R. (2002). Event-related skin conductance responses to musical emotions in humans. Neuroscience Letters, 328, 145-149.
Kleitman, N. (1963). Sleep and wakefulness (2nd ed.). Chicago, IL: University of Chicago Press.
Knight, W. E., & Rickard, N. S. (2001). Relaxing music prevents stress-induced increases in subjective anxiety, systolic blood pressure, and heart rate in healthy males and females. Journal of Music Therapy, 38, 254-272.
Krauchi, K., Cajochen, C., Werth, E., & Wirz-Justice, A. (1999). Warm feet promote the rapid onset of sleep. Nature, 401, 36-37.
Krauchi, K., Cajochen, C., & Wirz-Justice, A. (2004). Waking up properly: is there a role of thermoregulation in sleep inertia? Journal of Sleep Research, 13, 121-127.
Krauchi, K., Cajochen, C., & Wirz-Justice, A. (2005). Thermophysiologic aspects of the three-process-model of sleepiness regulation. Clinics in Sports Medicine, 24, 287-300, ix.
Kuboyama, T., Hori, A., Sato, T., Mikami, T., Yamaki, T., & Ueda, S. (1997). Changes in cerebral blood flow velocity in healthy young men during overnight sleep and while awake. Electroencephalography and Clinical Neurophysiology, 102, 125-131.
Lockley, S. W., Evans, E. E., Scheer, F. A., Brainard, G. C., Czeisler, C. A., & Aeschbach, D. (2006). Short-wavelength sensitivity for the direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans. Sleep, 29, 161-168.
Malik, M. (1996). Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation, 93, 1043-1065.
Matchock, R. L., & Mordkoff, J. T. (2007). Visual attention, reaction time, and self-reported alertness upon awakening from sleep bouts of varying lengths. Experimental Brain Research, 178, 228-239.
Meyer, J., Ishikawa, Y., Hata, T., & Karacan, I. (1987). Cerebral blood flow in normal and abnormal sleep and dreaming. Brain and Cognition, 6, 266-294.
Monk, T. H. (1989). A Visual Analogue Scale technique to measure global vigor and affect. Psychiatry Research, 27, 89-99.
Muzet, A., Nicolas, A., Tassi, P., Dewasmes, G., & Bonneau, A. (1995). Implementation of napping in industry and the problem of sleep inertia. Journal of Sleep Research, 4, 67-69.
Naitoh, P., Kelly, T., & Babkoff, H. (1993). Sleep inertia: best time not to wake up? Chronobiology International, 10, 109-118.
Nakamura, S., Sadato, N., Oohashi, T., Nishina, E., Fuwamoto, Y., & Yonekura, Y. (1999). Analysis of music-brain interaction with simultaneous measurement of regional cerebral blood flow and electroencephalogram beta rhythm in human subjects. Neuroscience Letters, 275, 222-226.
Peretz, I., & Zatorre, R. J. (2005). Brain organization for music processing. Annual Review of Psychology, 56, 89-114.
Platel, H., Price, C., Baron, J. C., Wise, R., Lambert, J., Frackowiak, R. S., et al. (1997). The structural components of music perception. A functional anatomical study. Brain, 120 229-243.
Popescu, M., Otsuka, A., & Ioannides, A. A. (2004). Dynamics of brain activity in motor and frontal cortical areas during music listening: a magnetoencephalographic study. Neuroimage, 21, 1622-1638.
Rechtschaffen, A., & Kales, A. (1968). A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Washington, DC: US Government Printing Office.
Rickard, N. S., Toukhsati, S. R., & Field, S. E. (2005). The effect of music on cognitive performance: insight from neurobiological and animal studies. Behavioral and Cognitive Neuroscience Reviews, 4, 235-261.
Rigg, M. G. (1937). An experiment to determine how accurately college students can interpret the intended meanings of musical compositions. Journal of Experimental Psychology, 21, 223-229.
Roehrs, T., Burduvali, E., Bonahoom, A., Drake, C., & Roth, T. (2003). Ethanol and sleep loss: a "dose" comparison of impairing effects. Sleep, 26, 981-985.
Sandercock, G. R., Bromley, P. D., & Brodie, D. A. (2005). The reliability of short-term measurements of heart rate variability. International Journal of Cardiology, 103, 238-247.
Scheer, F. A., Shea, T. J., Hilton, M. F., & Shea, S. A. (2008). An Endogenous Circadian Rhythm in Sleep Inertia Results in Greatest Cognitive Impairment upon Awakening during the Biological Night. Journal of Biological Rhythms, 23, 353-361.
Schellenberg, E. G., Nakata, T., Hunter, P. G., & Tamoto, S. (2007). Exposure to music and cognitive performance: Tests of children and adults. Psychology of Music, 35, 5-19.
Stampi, C., Mullington, J., Rivers, M., Campos, J. P., & Broughton, R. (1990). Ultrashort sleep schedules: Sleep architecture and recuperative value of 80-, 50- and 20-min naps. In J. Horne (Ed.), Sleep' 90 (pp. 71-74). Bochum: Pontenagel Press.
Stones, M. J. (1977). Memory performance after arousal from different sleep stages. British Journal of Psychology, 68, 177-181.
Takahashi, M., & Arito, H. (1998). Sleep inertia and autonomic effects on post-nap P300 event-related potential. Industrial Health, 36, 347-353.
Tassi, P., Bonnefond, A., Engasser, O., Hoeft, A., Eschenlauer, R., & Muzet, A. (2006). EEG spectral power and cognitive performance during sleep inertia: the effect of normal sleep duration and partial sleep deprivation. Physiology & Behavior, 87, 177-184.
Tassi, P., & Muzet, A. (2000). Sleep inertia. Sleep Medicine Reviews, 4, 341-353.
Tassi, P., Nicolas, A., Dewasmes, G., Eschenlauer, R., Ehrhart, J., Salame, P., et al. (1992). Effects of noise on sleep inertia as a function of circadian placement of a one-hour nap. Perceptual and Motor Skills, 75, 291-302.
Tebbs, R., & Foulkes, D. (1966). Strength of grip following different stages of sleep. Perceptual and Motor Skills, 23, 827-834.
Thayer, J. F., & Faith, M. L. (2001). A dynamic systems model of musically induced emotions. Physiological and self-report evidence. Annals of the New York Academy of Sciences, 930, 452-456.
Van Dongen, H. P., Price, N. J., Mullington, J. M., Szuba, M. P., Kapoor, S. C., & Dinges, D. F. (2001). Caffeine eliminates psychomotor vigilance deficits from sleep inertia. Sleep, 24, 813-819.
Webb, W. B., & Agnew, H. (1964). Reaction Time and Serial Response Efficiency on Arousal from Sleep. Perceptual and Motor Skills, 18, 783-784.
Wertz, A. T., Ronda, J. M., Czeisler, C. A., & Wright, K. P., Jr. (2006). Effects of sleep inertia on cognition. The Journal of the American Medical Association, 295, 163-164.
Wesensten, N. J., & Badia, P. (1987). Changes in P300 amplitude following nocturnal sleep. Psychophysiology, 24, 621.
Wilkinson, R. T., & Stretton, M. (1971). Performance after awakening at different times of night. Psychonomic Science, 23, 283-285.
Description: 碩士
國立政治大學
心理學研究所
94752017
97
Source URI: http://thesis.lib.nccu.edu.tw/record/#G0094752017
Data Type: thesis
Appears in Collections:[心理學系] 學位論文

Files in This Item:

File Description SizeFormat
201701.pdf95KbAdobe PDF1496View/Open
201702.pdf180KbAdobe PDF1452View/Open
201703.pdf145KbAdobe PDF1955View/Open
201704.pdf129KbAdobe PDF1320View/Open
201705.pdf138KbAdobe PDF1634View/Open
201706.pdf218KbAdobe PDF2345View/Open
201707.pdf199KbAdobe PDF4658View/Open
201708.pdf275KbAdobe PDF1446View/Open
201709.pdf162KbAdobe PDF1600View/Open
201710.pdf107KbAdobe PDF1467View/Open
201711.pdf181KbAdobe PDF1426View/Open


All items in 學術集成 are protected by copyright, with all rights reserved.


社群 sharing