Please use this identifier to cite or link to this item: https://ah.lib.nccu.edu.tw/handle/140.119/37074
DC FieldValueLanguage
dc.contributor.advisor楊建銘zh_TW
dc.contributor.advisorYang, Chien Mingen_US
dc.contributor.author周重佑zh_TW
dc.contributor.authorChou, Chung Yuen_US
dc.creator周重佑zh_TW
dc.creatorChou, Chung Yuen_US
dc.date2008en_US
dc.date.accessioned2009-09-19T03:55:13Z-
dc.date.available2009-09-19T03:55:13Z-
dc.date.issued2009-09-19T03:55:13Z-
dc.identifierG0094752017en_US
dc.identifier.urihttps://nccur.lib.nccu.edu.tw/handle/140.119/37074-
dc.description碩士zh_TW
dc.description國立政治大學zh_TW
dc.description心理學研究所zh_TW
dc.description94752017zh_TW
dc.description97zh_TW
dc.description.abstract研究目的:睡眠遲惰(sleep inertia)指的是剛由睡眠中醒來的一種現象,在這段轉換期間內,個體的警覺力較低、心智較為遲緩,認知和行為表現都較差。過去針對睡眠遲惰的研究顯示,睡眠遲惰是從一個較低生理激發的狀態到較高生理激發的漸進式轉換過渡階段。若睡眠遲惰是與較低的生理激發狀態有關,則若能提高個體的激發狀態,應能減少睡眠遲惰的負面影響。從過去的文獻中可發現,快節奏的音樂可以提高個體的生理激發。因此,本研究針對音樂的節奏快慢做操弄,探討生理激發狀態在睡眠遲惰所扮演的角色,比較不同快慢節奏的音樂刺激對於睡眠遲惰效果的影響。\n\n方法:12名年齡介於18到31歲之間的受試者參與此研究。受試者在20分鐘小睡被喚醒後,分次接受快節奏音樂、慢節奏音樂、以及無音樂控制情境等三種情境安排。睡醒後的實驗期間為1小時,受試者每10分鐘被要求進行加法作業及填寫卡羅連斯加睡意量表(Karolinska Sleepiness Scale)、視覺類比量表(visual analog scales)、以及情緒評估等主觀量表,總計六次。同時,他們的腦電波(electroencephalogram)、心率變異率(heart rate variability)、膚電反應(skin conductance responses)、指溫等生理反應亦被記錄。\n\n結果:受試者在認知表現或主觀評量上的確顯現出睡眠遲惰的效果,其加法作業的完成題數隨著時間增加,而主觀睡意則隨著時間減少。快節奏音樂情境比慢節奏音樂情境有顯著較高的主觀激發程度,並有較清醒的評量。在生理測量部分,受試者在快節奏音樂情境中有顯著較高的非特定刺激引起之膚電反應(Non-specific skin conductance responses)和腦電波較多beta波的趨勢。然而,儘管受試者的主觀評量會受到音樂刺激的影響而有不同,其認知表現並沒有出現類似的效果。\n\n結論:本研究發現藉由音樂提高激發狀態,可使主觀睡意評量降低,但認知表現並不受到影響。此分離的現象顯示睡眠遲惰的消散不能以單一的生理激發狀態來解釋,而必須考慮多種歷程機制同時運作的可能性。zh_TW
dc.description.abstractObjective:Sleep inertia (SI) is a transitional state occurring immediately after awakening from sleep that are associated with sleepiness, decreased alertness and decrement in cognitive performance. It has been suggested that SI may be due to a decline in arousal level. Therefore, it was hypothesized that factors likely increasing arousal would reduce the effects of SI. Previous studies showed that fast-tempo music may enhance the level of arousal. The present study was conducted to clarify the role of arousal in SI by exposure to music with different tempos.\n\nMethods:Twelve healthy young adults, aged 18 to 31 years, participated in the study. All subjects went through three conditions: a fast-tempo music, a slow-tempo music, and a control (no music) conditions. Music stimuli were applied to subjects awaked from a 20-mins nap, and the subjects were given an addition task and asked to rate their level of subjective sleepiness and arousal on the Karolinska Sleepiness Scale (KSS), visual analog scales (VAS) and emotional rating scales 6 times over an hour. During the test period, their physiological arousal state was recorded, including electroencephalogram (EEG), heart rate variability (HRV), skin conductance responses (SCR), finger temperature.\n\nResults:The effects of SI on cognitive throughput and subjective ratings were evident. Their performance on the addition task increased and sleepiness decreased over time. Subjective sleepiness was significantly reduced and physiological arousal level measured by non-specific skin conductance responses (NS-SCRs) and EEG beta power were elevated when the participants were exposed to fast-tempo music. However, cognitive performance was not influenced by music exposure.\n\nConclusion:The present findings suggest that increased arousal level during SI by manipulating music stimuli may decrease subjective sleepiness but have no impact on cognitive performance. This dissociative effect suggests that the dissipation of sleep inertia may not be a function of a general arousal level. Rather, there may be multiple processes that are responsible for different aspects of SI.en_US
dc.description.tableofcontents謝誌 ................................................. 2\n中文摘要 ............................................. 6\n英文摘要 ............................................. 8\n目錄 ............................................... 10\n第壹章 緒論\n 第一節 前言 ..................................... 14\n第貳章 文獻探討\n 第一節 睡眠遲惰的相關變項探討.................... 17\n 第二節 睡眠遲惰的生理機制 ...................... 22\n 第三節 對抗睡眠遲惰的方法探討 .................. 23\n 第四節 音樂與情緒和生理激發間的關係探討 ......... 25\n 第五節 研究問題與假設 .......................... 27\n第參章 研究方法\n 第一節 研究對象 ................................ 30\n 第二節 實驗設計與流程 .......................... 30\n 第三節 研究工具 ................................ 32\n 第四節 資料分析 ................................ 38\n第肆章 研究結果\n 第一節 受試者人口統計學資料 .................... 39\n 第二節 控制分析 ................................ 39\n 第三節 不同音樂刺激對睡眠遲惰下之認知表現的影響.. 42\n 第四節 不同音樂刺激對睡眠遲惰下之主觀測量的影響.. 45\n 第五節 不同音樂刺激對睡眠遲惰下之生理測量的影響.. 52\n 第六節 主客觀變項間的關聯 .......................55\n第伍章 討論\n 第一節 音樂的效果 .............................. 62\n 第二節 與其他對抗睡眠遲惰方法之比較 ............ 64\n 第三節 結論 .................................... 66\n參考文獻 .......................................... 68\n附錄\n 附錄一 主觀測量工具 ............................ 74zh_TW
dc.format.extent98066 bytes-
dc.format.extent184749 bytes-
dc.format.extent148845 bytes-
dc.format.extent132213 bytes-
dc.format.extent141577 bytes-
dc.format.extent224052 bytes-
dc.format.extent204514 bytes-
dc.format.extent282169 bytes-
dc.format.extent166124 bytes-
dc.format.extent110402 bytes-
dc.format.extent185512 bytes-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.language.isoen_US-
dc.source.urihttp://thesis.lib.nccu.edu.tw/record/#G0094752017en_US
dc.subject睡眠遲惰zh_TW
dc.subject主觀評量zh_TW
dc.subject認知行為表現zh_TW
dc.subject音樂zh_TW
dc.subject生理激發zh_TW
dc.subjectSleep inertiaen_US
dc.subjectsubjective sleepinessen_US
dc.subjectperformanceen_US
dc.subjectmusicen_US
dc.subjectarousalen_US
dc.title不同快慢節奏之音樂刺激對午間睡眠後之睡眠遲惰效果、情緒以及生理激發狀態的影響zh_TW
dc.titleThe Effects of the Fast and Slow Tempo Music on Sleep Inertia, Mood and Arousal after a Short Daytime Napen_US
dc.typethesisen
dc.relation.reference林一真(民89)。貝克焦慮量表(BAI:1993年版)中文版指導手冊。台北市:中國行為科學社。zh_TW
dc.relation.reference陳心怡(民89)。貝克憂鬱量表第二版(BDI-II)中文版指導手冊。台北市:中國行為科學社。zh_TW
dc.relation.referenceAchermann, P., Werth, E., Dijk, D. J., & Borbely, A. A. (1995). Time course of sleep inertia after nighttime and daytime sleep episodes. Archives Italiennes De Biologie, 134, 109-119.zh_TW
dc.relation.referenceAkerstedt, T., & Gillberg, M. (1990). Subjective and objective sleepiness in the active individual. The International Journal of Neuroscience, 52, 29-37.zh_TW
dc.relation.referenceAmara, C. E., & Wolfe, L. A. (1998). Reliability of noninvasive methods to measure cardiac autonomic function. Canadian Journal of Applied Physiology, 23, 396-408.zh_TW
dc.relation.referenceArmentrout, J. J., Holland, D. A., O`Toole, K. J., & Ercoline, W. R. (2006). Fatigue and related human factors in the near crash of a large military aircraft. Aviation, Space, and Environmental Medicine, 77, 963-970.zh_TW
dc.relation.referenceArnedt, J. T., Owens, J., Crouch, M., Stahl, J., & Carskadon, M. A. (2005). Neurobehavioral performance of residents after heavy night call vs after alcohol ingestion. The Journal of the American Medical Association, 294, 1025-1033.zh_TW
dc.relation.referenceBalch, W. R., & Lewis, B. S. (1999). Music-dependent memory: The roles of tempo changes and mood mediation. Journal of Experimental Psychology: Learning, Memory, & Cognition, 22, 1354-1363.zh_TW
dc.relation.referenceBalkin, T. J., Braun, A. R., Wesensten, N. J., Jeffries, K., Varga, M., Baldwin, P., et al. (2002). The process of awakening: a PET study of regional brain activity patterns mediating the re-establishment of alertness and consciousness. Brain, 125, 2308-2319.zh_TW
dc.relation.referenceBlood, A. J., Zatorre, R. J., Bermudez, P., & Evans, A. C. (1999). Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nature Neuroscience, 2, 382-387.zh_TW
dc.relation.referenceBonnet, M. H., & Arand, D. L. (2000). The impact of music upon sleep tendency as measured by the multiple sleep latency test and maintenance of wakefulness test. Physiology & Behavior, 71, 485-492.zh_TW
dc.relation.referenceBorbely, A. A. (1982). A two process model of sleep regulation. Human Neurobiology, 1, 195-204.zh_TW
dc.relation.referenceBradley, M. M., & Lang, P. J. (1994). Measuring emotion: the Self-Assessment Manikin and the Semantic Differential. Journal of Behavior Therapy and Experimental Psychiatry, 25, 49-59.zh_TW
dc.relation.referenceBroughton, R. (1968). Sleep disorder: disorders of arousal? Science, 159, 1070-1078.zh_TW
dc.relation.referenceBrown, S., Martinez, M. J., & Parsons, L. M. (2004). Passive music listening spontaneously engages limbic and paralimbic systems. Neuroreport, 15, 2033-2037.zh_TW
dc.relation.referenceBruck, D., & Pisani, D. L. (1999). The effects of sleep inertia on decision-making performance. Journal of Sleep Research, 8, 95-103.zh_TW
dc.relation.referenceCuthbert, B. N., Schupp, H. T., Bradley, M. M., Birbaumer, N., & Lang, P. J. (2000). Brain potentials in affective picture processing: covariation with autonomic arousal and affective report. Biological Psychology, 52, 95-111.zh_TW
dc.relation.referenceDawson, M. E., Schell, A. M., & Filion, D. L. (2007). The electrodermal system. In J. T. Cacioppo, L. G. Tassinary & G. C. Berntson (Eds.), Handbook of psychophysiology (3rd ed., pp. 159-181). Cambridge, MA: Cambridge University Press.zh_TW
dc.relation.referenceDinges, D. F. (1990). Are you awake? Cognitive performance and reverie during the hypnopompic state. In R. Bootzin, J. Kihlstrom & D. Schacter (Eds.), Sleep and cognition (pp. 159-175). Washington DC: American Psychological Association.zh_TW
dc.relation.referenceDinges, D. F., Orne, M. T., & Orne, E. C. (1985). Assessing performance upon abrupt awakening from naps during quasi-continuous operations. Behavior Research Methods, Instruments & Computer, 17, 37-45.zh_TW
dc.relation.referenceFeltin, M., & Broughton, R. (1968). Differential effects of arousal from slow wave versus REM sleep. Psychophysiology, 5, 231.zh_TW
dc.relation.referenceFerrara, M., Curcio, G., Fratello, F., Moroni, F., Marzano, C., Pellicciari, M. C., et al. (2006). The electroencephalographic substratum of the awakening. Behavioural Brain Research, 167, 237-244.zh_TW
dc.relation.referenceFerrara, M., & De Gennaro, L. (2000). The sleep inertia phenomenon during the sleep-wake transition: theoretical and operational issues. Aviation, Space, and Environmental Medicine, 71, 843-848.zh_TW
dc.relation.referenceFerrara, M., De Gennaro, L., Ferlazzo, F., Curcio, G., Barattucci, M., & Bertini, M. (2001). Auditory evoked responses upon awakening from sleep in human subjects. Neuroscience Letters, 310, 145-148.zh_TW
dc.relation.referenceFolkard, S., & Akerstedt, T. (1992). A three-process model of the regulation of alertness-sleepiness. In R. Ogilvie & R. Broughton (Eds.), Sleep, arousal and performance (pp. 11-26). Boston: Birkhouse.zh_TW
dc.relation.referenceGabrielsson, A. (2001). Emotions in strong experiences with music. In P. N. Juslin & J. A. Sloboda (Eds.), Music and emotion: theory and research (pp. 431-449). Oxford, UK: Oxford University Press.zh_TW
dc.relation.referenceGillberg, M., Kecklund, G., & Akerstedt, T. (1994). Relations between performance and subjective ratings of sleepiness during a night awake. Sleep, 17, 236-241.zh_TW
dc.relation.referenceHajak, G., Klingelhofer, J., Schulz-Varszegi, M., Matzander, G., Sander, D., Conrad, B., et al. (1994). Relationship between cerebral blood flow velocities and cerebral electrical activity in sleep. Sleep, 17, 11-19.zh_TW
dc.relation.referenceHayashi, M., Fukushima, H., & Hori, T. (2003). The effects of short daytime naps for five consecutive days. Sleep Research Online, 5, 13-17.zh_TW
dc.relation.referenceHayashi, M., Masuda, A., & Hori, T. (2003). The alerting effects of caffeine, bright light and face washing after a short daytime nap. Clinical Neurophysiology, 114, 2268-2278.zh_TW
dc.relation.referenceHayashi, M., Uchida, C., Shoji, T., & Hori, T. (2004). The effects of the preference for music on sleep inertia after a short daytime nap. Sleep and Biological Rhythms, 2, 184-191.zh_TW
dc.relation.referenceHofer-Tinguely, G., Achermann, P., Landolt, H. P., Regel, S. J., Retey, J. V., Durr, R., et al. (2005). Sleep inertia: performance changes after sleep, rest and active waking. Brain Research, 22, 323-331.zh_TW
dc.relation.referenceHusain, G., Thompson, W. F., & Schellenberg, E. G. (2002). Effect of musical tempo and mode on arousal, mood and spatial abilities. Music Perception, 20, 151-171.zh_TW
dc.relation.referenceIwanaga, M., Kobayashi, A., & Kawasaki, C. (2005). Heart rate variability with repetitive exposure to music. Biological Psychology, 70, 61-66.zh_TW
dc.relation.referenceJewett, M. E., & Kronauer, R. E. (1999). Interactive mathematical models of subjective alertness and cognitive throughput in humans. Journal of Biological Rhythms, 14, 588-597.zh_TW
dc.relation.referenceJewett, M. E., Wyatt, J. K., Ritz-De Cecco, A., Khalsa, S. B., Dijk, D. J., & Czeisler, C. A. (1999). Time course of sleep inertia dissipation in human performance and alertness. Journal of Sleep Research, 8, 1-8.zh_TW
dc.relation.referenceKaida, K., Takahashi, M., Akerstedt, T., Nakata, A., Otsuka, Y., Haratani, T., et al. (2006). Validation of the Karolinska sleepiness scale against performance and EEG variables. Clinical Neurophysiology, 117, 1574-1581.zh_TW
dc.relation.referenceKhalfa, S., Isabelle, P., Jean-Pierre, B., & Manon, R. (2002). Event-related skin conductance responses to musical emotions in humans. Neuroscience Letters, 328, 145-149.zh_TW
dc.relation.referenceKleitman, N. (1963). Sleep and wakefulness (2nd ed.). Chicago, IL: University of Chicago Press.zh_TW
dc.relation.referenceKnight, W. E., & Rickard, N. S. (2001). Relaxing music prevents stress-induced increases in subjective anxiety, systolic blood pressure, and heart rate in healthy males and females. Journal of Music Therapy, 38, 254-272.zh_TW
dc.relation.referenceKrauchi, K., Cajochen, C., Werth, E., & Wirz-Justice, A. (1999). Warm feet promote the rapid onset of sleep. Nature, 401, 36-37.zh_TW
dc.relation.referenceKrauchi, K., Cajochen, C., & Wirz-Justice, A. (2004). Waking up properly: is there a role of thermoregulation in sleep inertia? Journal of Sleep Research, 13, 121-127.zh_TW
dc.relation.referenceKrauchi, K., Cajochen, C., & Wirz-Justice, A. (2005). Thermophysiologic aspects of the three-process-model of sleepiness regulation. Clinics in Sports Medicine, 24, 287-300, ix.zh_TW
dc.relation.referenceKuboyama, T., Hori, A., Sato, T., Mikami, T., Yamaki, T., & Ueda, S. (1997). Changes in cerebral blood flow velocity in healthy young men during overnight sleep and while awake. Electroencephalography and Clinical Neurophysiology, 102, 125-131.zh_TW
dc.relation.referenceLockley, S. W., Evans, E. E., Scheer, F. A., Brainard, G. C., Czeisler, C. A., & Aeschbach, D. (2006). Short-wavelength sensitivity for the direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans. Sleep, 29, 161-168.zh_TW
dc.relation.referenceMalik, M. (1996). Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation, 93, 1043-1065.zh_TW
dc.relation.referenceMatchock, R. L., & Mordkoff, J. T. (2007). Visual attention, reaction time, and self-reported alertness upon awakening from sleep bouts of varying lengths. Experimental Brain Research, 178, 228-239.zh_TW
dc.relation.referenceMeyer, J., Ishikawa, Y., Hata, T., & Karacan, I. (1987). Cerebral blood flow in normal and abnormal sleep and dreaming. Brain and Cognition, 6, 266-294.zh_TW
dc.relation.referenceMonk, T. H. (1989). A Visual Analogue Scale technique to measure global vigor and affect. Psychiatry Research, 27, 89-99.zh_TW
dc.relation.referenceMuzet, A., Nicolas, A., Tassi, P., Dewasmes, G., & Bonneau, A. (1995). Implementation of napping in industry and the problem of sleep inertia. Journal of Sleep Research, 4, 67-69.zh_TW
dc.relation.referenceNaitoh, P., Kelly, T., & Babkoff, H. (1993). Sleep inertia: best time not to wake up? Chronobiology International, 10, 109-118.zh_TW
dc.relation.referenceNakamura, S., Sadato, N., Oohashi, T., Nishina, E., Fuwamoto, Y., & Yonekura, Y. (1999). Analysis of music-brain interaction with simultaneous measurement of regional cerebral blood flow and electroencephalogram beta rhythm in human subjects. Neuroscience Letters, 275, 222-226.zh_TW
dc.relation.referencePeretz, I., & Zatorre, R. J. (2005). Brain organization for music processing. Annual Review of Psychology, 56, 89-114.zh_TW
dc.relation.referencePlatel, H., Price, C., Baron, J. C., Wise, R., Lambert, J., Frackowiak, R. S., et al. (1997). The structural components of music perception. A functional anatomical study. Brain, 120 229-243.zh_TW
dc.relation.referencePopescu, M., Otsuka, A., & Ioannides, A. A. (2004). Dynamics of brain activity in motor and frontal cortical areas during music listening: a magnetoencephalographic study. Neuroimage, 21, 1622-1638.zh_TW
dc.relation.referenceRechtschaffen, A., & Kales, A. (1968). A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Washington, DC: US Government Printing Office.zh_TW
dc.relation.referenceRickard, N. S., Toukhsati, S. R., & Field, S. E. (2005). The effect of music on cognitive performance: insight from neurobiological and animal studies. Behavioral and Cognitive Neuroscience Reviews, 4, 235-261.zh_TW
dc.relation.referenceRigg, M. G. (1937). An experiment to determine how accurately college students can interpret the intended meanings of musical compositions. Journal of Experimental Psychology, 21, 223-229.zh_TW
dc.relation.referenceRoehrs, T., Burduvali, E., Bonahoom, A., Drake, C., & Roth, T. (2003). Ethanol and sleep loss: a \"dose\" comparison of impairing effects. Sleep, 26, 981-985.zh_TW
dc.relation.referenceSandercock, G. R., Bromley, P. D., & Brodie, D. A. (2005). The reliability of short-term measurements of heart rate variability. International Journal of Cardiology, 103, 238-247.zh_TW
dc.relation.referenceScheer, F. A., Shea, T. J., Hilton, M. F., & Shea, S. A. (2008). An Endogenous Circadian Rhythm in Sleep Inertia Results in Greatest Cognitive Impairment upon Awakening during the Biological Night. Journal of Biological Rhythms, 23, 353-361.zh_TW
dc.relation.referenceSchellenberg, E. G., Nakata, T., Hunter, P. G., & Tamoto, S. (2007). Exposure to music and cognitive performance: Tests of children and adults. Psychology of Music, 35, 5-19.zh_TW
dc.relation.referenceStampi, C., Mullington, J., Rivers, M., Campos, J. P., & Broughton, R. (1990). Ultrashort sleep schedules: Sleep architecture and recuperative value of 80-, 50- and 20-min naps. In J. Horne (Ed.), Sleep` 90 (pp. 71-74). Bochum: Pontenagel Press.zh_TW
dc.relation.referenceStones, M. J. (1977). Memory performance after arousal from different sleep stages. British Journal of Psychology, 68, 177-181.zh_TW
dc.relation.referenceTakahashi, M., & Arito, H. (1998). Sleep inertia and autonomic effects on post-nap P300 event-related potential. Industrial Health, 36, 347-353.zh_TW
dc.relation.referenceTassi, P., Bonnefond, A., Engasser, O., Hoeft, A., Eschenlauer, R., & Muzet, A. (2006). EEG spectral power and cognitive performance during sleep inertia: the effect of normal sleep duration and partial sleep deprivation. Physiology & Behavior, 87, 177-184.zh_TW
dc.relation.referenceTassi, P., & Muzet, A. (2000). Sleep inertia. Sleep Medicine Reviews, 4, 341-353.zh_TW
dc.relation.referenceTassi, P., Nicolas, A., Dewasmes, G., Eschenlauer, R., Ehrhart, J., Salame, P., et al. (1992). Effects of noise on sleep inertia as a function of circadian placement of a one-hour nap. Perceptual and Motor Skills, 75, 291-302.zh_TW
dc.relation.referenceTebbs, R., & Foulkes, D. (1966). Strength of grip following different stages of sleep. Perceptual and Motor Skills, 23, 827-834.zh_TW
dc.relation.referenceThayer, J. F., & Faith, M. L. (2001). A dynamic systems model of musically induced emotions. Physiological and self-report evidence. Annals of the New York Academy of Sciences, 930, 452-456.zh_TW
dc.relation.referenceVan Dongen, H. P., Price, N. J., Mullington, J. M., Szuba, M. P., Kapoor, S. C., & Dinges, D. F. (2001). Caffeine eliminates psychomotor vigilance deficits from sleep inertia. Sleep, 24, 813-819.zh_TW
dc.relation.referenceWebb, W. B., & Agnew, H. (1964). Reaction Time and Serial Response Efficiency on Arousal from Sleep. Perceptual and Motor Skills, 18, 783-784.zh_TW
dc.relation.referenceWertz, A. T., Ronda, J. M., Czeisler, C. A., & Wright, K. P., Jr. (2006). Effects of sleep inertia on cognition. The Journal of the American Medical Association, 295, 163-164.zh_TW
dc.relation.referenceWesensten, N. J., & Badia, P. (1987). Changes in P300 amplitude following nocturnal sleep. Psychophysiology, 24, 621.zh_TW
dc.relation.referenceWilkinson, R. T., & Stretton, M. (1971). Performance after awakening at different times of night. Psychonomic Science, 23, 283-285.zh_TW
item.openairetypethesis-
item.languageiso639-1en_US-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
Appears in Collections:學位論文
Files in This Item:
File Description SizeFormat
201701.pdf95.77 kBAdobe PDF2View/Open
201702.pdf180.42 kBAdobe PDF2View/Open
201703.pdf145.36 kBAdobe PDF2View/Open
201704.pdf129.11 kBAdobe PDF2View/Open
201705.pdf138.26 kBAdobe PDF2View/Open
201706.pdf218.8 kBAdobe PDF2View/Open
201707.pdf199.72 kBAdobe PDF2View/Open
201708.pdf275.56 kBAdobe PDF2View/Open
201709.pdf162.23 kBAdobe PDF2View/Open
201710.pdf107.81 kBAdobe PDF2View/Open
201711.pdf181.16 kBAdobe PDF2View/Open
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.