Please use this identifier to cite or link to this item:

Title: Compatibility of finite discrete conditional distributions
Authors: Song, Chwan Chin
Jiang, Tom J.
Li L.-A.
Chen C.-H.
Kuo K.-L.
Contributors: 國立政治大學應用數學系
Date: 2010
Issue Date: 2010-07-11 15:58:41 (UTC+8)
Abstract: This paper provides new versions of necessary and sufficient conditions for compatibility of finite discrete conditional distributions, and of the uniqueness for those compatible conditional distributions. We note that the ratio matrix (the matrix C in Arnold and Press (1989)), after interchanging its rows and/or columns, can be rearranged to be an irreducible block diagonal matrix. We find that checking compatibility is equivalent to inspecting whether every block on the diagonal has a rank one positive extension, and that the necessary and sufficient conditions of the uniqueness, if the given conditional densities are compatible, is that the ratio matrix itself is irreducible. We show that each joint density, if it exists, corresponds to a rank one positive extension of the ratio matrix, and we characterize the set of all possible joint densities. Finally, we provide algorithms for checking compatibility, for checking uniqueness, and for constructing densities.
Relation: Statistica Sinica, 20, 423-440
Data Type: article
Appears in Collections:[應用數學系] 期刊論文

Files in This Item:

File Description SizeFormat
A20n117.pdf174KbAdobe PDF435View/Open

All items in 學術集成 are protected by copyright, with all rights reserved.

社群 sharing