Please use this identifier to cite or link to this item: https://ah.nccu.edu.tw/handle/140.119/49451


Title: 不盡相異物的環狀排列公式
A Formula on Circular Permutation of Nondistinct Objects
Authors: 王世勛
Wang,shyh shiun
Contributors: 李陽明
Li,young ming
王世勛
Wang,shyh shiun
Keywords: 環狀排列
不盡相異物
circular permutation
nondistinct objects
indistinguishable objects
Date: 2009
Issue Date: 2010-12-08 11:44:57 (UTC+8)
Abstract: n個物品之直線排列數與環狀排列數有對應關係,一般而言,具有K-循環節的直線排列之所有情形數若為 ,則 即為所對應的環狀排列數,亦即每K種直線排列對應到同一種環狀排列。本文將直線排列之所有情形依所具有的K-循環節之類別做分割,並導出具有K-循環節之直線排列之所有情形數之計數公式,假設直線排列依 -循環節, -循環節, , -循環節分類依序有 種不同排列情形,則所有的環狀排列數 。
There exists a correspondence between ordered arrangements and circular permutations. Generally speaking, suppose the number of ordered arrangements with K-recurring periods is S, then the number of circular permutations is , namely we may assigne each K cases of ordered arrangements with K-recurring periods to a case of circular permutations. This article partitions the total cases of ordered arrangements with indistinguishable objects by means of the different catagories of K-recurring periods and derives a formula to calculate the total number of ordered arrangements with K-recurring periods. Suppose the number of ordered arrangements with -recurring periods、 -recurring periods、 、 -recurring periods is respectively, then the total number of circular permutations is .
Reference: [1]陳壽愷,民國63年(1974),論環狀排列與珠狀排列,科教圖書
[2]陳明哲,民國48年(1959),排列組合,中央書局
[3]王昌銳,民國61年(1972) ,組合論,百成書局
[4]王奉民、陳定凱,民國77年(1988),離散數學導論,儒林書局
[5]李雲、林文達,民國86年(1997) ,離散數學 ,儒林書局
[6]張子浩,民國77年(1988) ,整合離散數學,文笙書局
[7]許振忠,民國86年(1997) ,一些排列組合的演算法,政大應數所
碩士論文
Description: 碩士
國立政治大學
應用數學研究所
94751004
98
Source URI: http://thesis.lib.nccu.edu.tw/record/#G0094751004
Data Type: thesis
Appears in Collections:[應用數學系] 學位論文

Files in This Item:

File SizeFormat
100404.pdf236KbAdobe PDF1103View/Open


All items in 學術集成 are protected by copyright, with all rights reserved.


社群 sharing